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Functionally graded materials have gained considerable attention in the high temperature
applications. Linear dynamics equations taking into account a coupling of in-plane and
transverse motions are used. Material properties are graded in the thickness direction of
the plate according to volume fraction power law distribution. An oscillating temperature
causes generation of in-plane time-dependent forces destabilizing the plane state of the
plate equilibrium. The asymptotic stability and almost-sure asymptotic stability criteria
involving a damping coefficient and loading parameters are derived using Liapunov’s
direct method. Effects of power law exponent on the stability domains are studied.
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1. Introduction

Functionally graded materials have gained considerable attention in the high tem-
perature applications.Functionally graded materials are composite materials, which
are microscopically inhomogeneous, and the mechanical properties vary smoothly
or continuously from one surface tothe other. It is this continuous change that
results in gradient properties in functionally graded materials (FGM). Commonly,
these materials are made from a mixture of ceramic and metal or a combination
of different metals. The ceramic material provides high temperature resistance due
to its low thermal conductivity while the ductile metal component prevents frac-
ture due to thermas stresses and secures a suitable strength and stiffness. Many
studies have examined FGM as thermal bariers. With the increased usage of these
materials it is also important to understand the dynamics of FGM structures. A
few studies have addressed this. Transient thermal stresses in a plate made of func-
tionally gradient material were examined by Obata and Noda (1993). Vibration
analysis of functionally graded cylindrical shells was performed by Loy, Lam and
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Reddy (1999). Recently, Lam, Liew, and Reddy (2001) presented dynamic stability
analysis of functionally graded cylindrical shells under periodic axial loading. In
this paper, the parametric vibrations or dynamic stability of functionally graded
rectangular plate described by linear partial differential equations is studied us-
ing the direct Liapunov method. Small deflection equations taking into account a
coupling of in-plane and transverse motions are used. Due to a small thickness cou-
pling, and rotary inertia terms are neglected. Material properties are graded in the
thickness direction of the plate according to volume friction power law distribution.
The viscous model of external damping with a constant coefficient is assumed. An
oscillating temperature causes generation of in-plane time-dependent forces destabi-
lizing plane state of the plate equilibrium. The asymptotic stability and almost-sure
asymptotic stability criteria involving a damping coefficient and loading parameters
are derived. Effects of power law exponent on the stability domains are studied.

2. Problem formulation

Consider the thin functionally graded rectangular plate with in-plane dimensions
a and b. In-plane and transverse displacements are denoted by u, v, and w, re-
spectively. Taking into account the Kirchhoff hypothesis on nondeformable normal
element the governing partial differential equations are given as follows

Nx,x + Nxy,y = 0 (1)

Nxy,x + Ny,y = 0 (2)

w,tt+2βρhw,t+(N̄x0+N̄x)w,xx+(N̄y0+N̄x)w,yy−Mx,xx−2Mxy,xy−My,yy = 0 (3)

(x, y) ∈ Ω ≡ (0, a)× (0, b)

where β is a damping coefficient, N̄x0 and N̄y0 are constant components of mem-
brane forces, N̄x and N̄y are time-dependent components of membrane forces, and ρ
is the equivalent density of the plate, h is the total thickness. The membrane forces
are stochastic with means equal to zero and known probability distributions. The
processes are physically realizable and sufficently smooth in order the solution of
dynamics equations exist. We use the extensional, coupling and bending stiffnesses
Aij , Bij , and Dij (i, j) = 1, 2, 6), defined as follows

{Aij , Bij , Dij} =
∫ h/2

−h/2

Qij

{
1, z, z2

}
dz (4)

The stiffnesses Qij for isotropic materials are given by

Q =

∣∣∣∣∣∣∣∣

Eeff

1−ν2
eff

νeff Eeff

1−ν2
eff

0
νeff Eeff

1−ν2
eff

Eeff

1−ν2
eff

0

0 0 Eeff

2(1+νeff )

∣∣∣∣∣∣∣∣
(5)
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In-plane and moments are expressed by displacements as follows
∣∣∣∣∣∣∣∣∣∣∣∣

Nx

Ny

Nxy

Mx

My

Mxy

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 B11 B12 0
A12 A22 0 B12 B11 0
0 0 A66 0 0 B66

B11 B12 0 D11 D12 0
B12 B11 0 D12 D22 0
0 0 B66 0 0 D66

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

u,x

v,y

u,y + v,x

−w,xx

−w,yy

−2w,xy

∣∣∣∣∣∣∣∣∣∣∣∣

(6)

The effective elastic modulus and effective Poisson’s ratio of the functionall graded
plate are denoted by Eeff and νeff , respectively. In order to precisely model the
material properties of functionally graded materials, the properties must be both
temperature and position dependent. This is achieved by using a rule of mixtures
for the mechanical parameters (Eeff , νeff , ρ). The volume fraction is a spatial func-
tion and the properties of the constituents are functions of the temperature. The
combination of these functions gives the effective material properties of functionally
graded materials and can be expressed as follows

Feff (T, z) = Fc(T )V (z) + Fm(T )(1− V (z)) (7)

where Feff is the effective material property of the functionally graded material, Fc

and Fm are the properties of the ceramic and the metal, respectively, and V is the
volume fraction of the ceramic constituent of the functionally graded material. A
simple power law exponent of the volume fractions is used to describe the amount
of ceramic and metal in the functionally graded material as follows

V (z) =
(

z + h/2
h

)q

(8)

where q is the power law exponent (0 ≤ q < ∞).
Using equation (5) the constitutive equation (6) can be rewritten in the form

∣∣∣∣∣∣∣∣∣∣∣∣

Nx

Ny

Nxy

Mx

My

Mxy

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

A11 A12 0 B11 B12 0
A12 A11 0 B12 B11 0
0 0 (A11 −A12)/2 0 0 (B11 −B12)/2

B11 B12 0 D11 D12 0
B12 B11 0 D12 D11 0
0 0 (B11 −B12)/2 0 0 (D11 −D12)/2

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

u,x

v,y

u,y + v,x

−w,xx

−w,yy

−2w,xy

∣∣∣∣∣∣∣∣∣∣∣∣
(9)

The plate is assumed to be simply supported along each edge. The conditions
imposed on displacements and internal forces and moments, called according to
Almroth’s [1] classifications S2, can be written down as

w = 0 Mx = 0 Nx = 0 v = 0 at x = 0, a (10)

w = 0 My = 0 Ny = 0 u = 0 at y = 0, b (11)

It is assumed that the plate is subjected to the time-varying in-plane axial forces
N̄x and N̄y leading to parametric vibrations. Dividing equations (1)-(3) by ρh and
denoting

n̄x = N̄x/ρh n̄y = N̄y/ρh
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n̄x0 = N̄x0/ρh n̄y0 = N̄y0/ρh

nx = Nx/ρh ny = Ny/ρh

nxy = Nxy/ρh mx = Mx/ρh

my = My/ρh mxy = Mxy/ρh

leads to the basic equations of motion

nx,x + nxy,y = 0 (12)

nxy,x + ny,y = 0 (13)

w,tt +2βw,t +(n̄x0 + n̄x)w,xx +(n̄y0 + n̄x)w,yy−mx,xx−2mxy,xy−my,yy = 0 (14)

(x, y) ∈ Ω

The plate motion is described by the uniform equations (12)–(14) with the trivial
solution w = 0, w,t = 0 corresponding to the plane (undisturbed) state. The
trivial solution is called almost sure asymptotically stable if

P{ lim
t→∞

‖w(., t)‖ = 0} = 1 (15)

where ‖w(., t)‖ is a measure of disturbed solution w, w,t from the equilibrium state,
and P is a probability measure. The crucial point of the method is a construction
of a suitable Liapunov functional, which is positive for any motion of the analyzed
system. It follows that the measure of distance can be chosen as the square root of
Liapunov functional ‖w(., t)‖ = V 1/2.

3. Stability analysis

The energy-like Liapunov functional has the form of a sum of modified kinetic
energy T and potential energy of the plate and can be chosen in the form similar to
the functional involved in stability analysis of laminated plates (Tylikowski, 1989)

V =
1
2

∫

Ω

[
v2 +2βvw+2β2w2−mxw,xx−myw,yy−2mxyw,xy− n̄x0w

2
,x− n̄y0w

2
,y

]
dΩ

(16)
It is assumed that the in-plane forces are periodic or stochastic non-white sta-

tionary and sufficiently smooth ergodic process. Therefore, it is legitimate to use
the classical differentation rule. Upon differentiation with respect to time, substi-
tuting dynamic equations (12)-(14) and using the boundary conditions we obtain
the time derivative of functional in the form

dV
dt

= −2λV + 2U (17)

where the auxiliary functional U is defined as follows

U =
1
2

∫

Ω

[
2β2ww,t + 2β3w2 + (w,t + βw)(n̄xw,xx + n̄yw,yy)

]
dΩ (18)



Tylikowski, A 9

Therefore, the stability analysis depends on the construction of the bound

U ≤ λV (19)

or we look for a function λ defined as a maximum over all admissible functions u, v,
w, wt and satisfying the boundary conditions of the ratio U/V. As a maximum is
a particular of stationary point we put to zero a variation of U/V. The associated
Euler equations are linear in the case of the second-order functionals. Solving the
associated Euler problem we find the function λ as follows

λ = max
m,n=1,2,...

{∣∣∣β̂2 + 1
2

(
f̂xm2r2 + f̂yn2

)∣∣∣
√

β̂2 + Ω2
mn

}
(20)

where the dimensionless damping coefficient, the dimensionless forces are, respec-
tively

β̂ = β
( b

π

)2

√
ρh

D11
(21)

f̂x =
N̄xb2

D11π2
f̂y =

N̄yb2

D11π2
(22)

f̂x0 =
N̄x0b

2

D11π2
f̂y0 =

N̄y0b
2

D11π2
(23)

Ωmn is the dimensionless natural frequency given as

Ω2
mn =

(
m2r2 + n2

)2
[
1 +

(B11

D11

)2 m2r2∆22 + n2∆11 − 2mrn∆12

∆11∆22 −∆2
12

+

−m2r2f̂x0 − n2f̂y0

]
(24)

where r = b/a is the plate aspect ratio and

∆11 = m2r2A11/D11 + n2A66/D11 (25)

∆22 = m2r2A66/D11 + n2A11/D11 (26)
∆12 = mrn(A12 + A66)/D11 (27)

Using the property of function λ in equality (17) leads to the first-order differential
inequality, the solution of which has the form

V(t) ≤ V(0) exp
[−(

β − 1
t

∫ t

0

λ(τ)dτ
)]

(28)

Therefore,the sufficient criterion of the asymptotic stability has the form

β̂ ≥ lim
t→∞

1
t

∫ t

0

λ(τ)dτ (29)

If the processes N̄x and N̄y satisfy an ergodic property, the sufficient condition of
the almost sure asymptotic stability can be written down as follows

β ≥ Eλ (30)

where E denotes the mathematical expectation.
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Figure 1 Stability domains of square plate for the zero mean Gaussian uniaxial force f̂x

4. Numerical results

The ceramic material used in this study is zirconia and the metal material is steel.
Mechanical properties are given in Table 1.

Table 1. Mechanical properties of constituents of the FGM

Material Steel Nickel Zirconia Titanium Silicon
alloy Nitride

Ti-6Al-4V

ρ kg/m3 7850 8900 5490 4500 2370
E N/m2 2.1× 1011 2.2395× 1011 1.51× 1011 1.16× 1011 3.4843× 1011

ν 0.25 0.31 0.33 0.33 0.24

The plate thickness is as follows: h = 0.005 m. Formulae (20) and (30) give us the
possibility to calculate a maximal excitation intensity (e.g. square root of variance)
of dimensionless in-plane forces (f̂x , f̂y) guaranteeing the almost sure asymptotic
stability for given values of power law exponent q. The stability region is calculated
for a Gaussian zero-mean process with variance σ2.

5. Conclusions

The applicability of the direct Liapunov method has been extended to functionally
graded plates subjected to time-dependent, in-plane forces. The major conclusion
is that The influence of the power law exponent on the critical value of stability
domains (expressed by the variance of dimensionless forces) is shown.
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