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The electrodynamic instability of a capillary dielectric fluid cylinder (radius a and density
ρ) penetrated by a uniform axial electric field surrounded by a transverse varying electric
field is investigated. A general dispersion relation to all possible axisymmetric modes
of perturbation for all short wavelengths and long wavelengths is derived and discussed
in detail. The model is capillary stable to axisymmetric modes if the longitudinal wave
number normalized with respect to the jet radius is equal to or greater than 1.05757 and
vice versa. The axial electric fields pervading the interior and the exterior of the cylinder
are stabilizing or destabilizing for all disturbance modes according to some restrictions.
The transverse varying electric field is purely stabilizing in the axisymmetric disturbances
for all wavelengths. The electrodynamic force has a strong stabilizing influence in the
axisymmetric mode and can suppress the capillary instability above a certain value of
the basic electric field.
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1. Introduction

The research on the interaction of electromagnetic field with fluid media has heavily
emphasized the Lorentz force which forms the basis of magnetohydrodynamics [1].

Electrical components of the electromagnetic stress tensor [2] were given atten-
tion under the heading of electrohydrodynamics. Rayleigh [3] has shown that the
critical length of a cylinder jet is 2πa, where a is the radius of the cylinder.

Chandrasekhar and Fermi ([4] & [5]) elaborated the related problem of a fluid
jet acting on its own attraction to small axisymmetric disturbances. Such a study
has a correlation with the understanding of the dynamical behaviour of the spiral
arms of galaxies [5]. Mohamed [6] has studied the electrodynamic stability of a
rotating jet under the influence of an axial electric field. Radwan ([7] & [8]) has
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recently modified the stability criterion in the refs. [4] and [5] by including the effect
of the electrodynamic force on the capillary force pervaded by a homogeneous and
uniform electric field, see also [12]. Recently Elazab ([9] & [10]) has studied the
stability of a liquid cylinder under the influence of surface tension and axial electric
currents.

The main aim of this work is to investigate capillary instability of fluid cylinder
under the effect of transverse varying electric field.

2. Formulation of the problem

Consider a dielectric fluid cylinder of radius a and dielectric constant ε(1) with di-
electric capillary vacuum of dielectric constant ε(2). The fluid is assumed to be
homogeneous, incompressible, non-viscous and with uniform density ρ. The su-
perscripts (1) and (2) characterize the variables interior to the fluid cylinder and
exterior to the fluid cylinder.

In the basic state it is proposed that there are no surface charges at the fluid
boundary surface and consequently the surface charge density will be considered to
be zero during the perturbation. The fluid is acting upon the capillary, inertia and
electrodynamic forces.

In the region surrounding the fluid, the only existing force is the electrodynamic
force. We shall use the cylindrical coordinates system (r, φ, z) with the z−axis
coinciding with the axis of the fluid cylinder. The dielectric fluid cylinder is pervaded
by the longitudinal uniform electric field

E(1)
o = (0, 0, Eo), (1)

and the surrounding medium of the liquid cylinder (in the vacuum) is assumed to
be pervaded by

E(2)
o = (0,

βEoa

r
, αEo) (2)

where β and α are some parameters satisfying certain conditions, see equation (21).
The basic equations for such a problem under consideration are a combination

of the pure hydrodynamic, capillary and Maxwell equations. Under the present
circumstances they are the following.

In the liquid cylinder of radius a:

ρ
( ∂

∂t
+ (u · ∇)

)

u = −∇p +
1

2
ε(1)∇(E · E)(1), (3)

∇ · u = 0, (4)

∇ · (εE)(1) = 0, (5)

∇∧ E(1) = 0. (6)

In the region surrounding the liquid cylinder, we have

∇ · (εE)(2) = 0, (7)

∇∧ E(2) = 0, (8)
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and along the liquid interface:

ps = T (∇ · Ns), (9)

where ρ is the mass density, u velocity vector, p kinetic pressure, E(1) and E(2) are
the electric field intensities acting inside and outside the liquid cylinder, respectively,
and ps the pressure due to the capillary force, T the surface tension coefficient. Ns

is the unit outward normal vector to the gas liquid interface,

Ns =
∇F (r, φ, z, t)

|∇F (r, φ, z, t)| , (10)

such that
F (r, φ, z, t) = 0, (11)

where surface tension coefficient T is assumed to be constant.

3. Equilibrium State

In the equilibrium state, which is the unperturbed state, the basic electrodynamical
equations take the form:

In the liquid cylinder of radius a:

−∇po +
1

2
ε(1)∇(Eo · Eo)

(1) = 0, (12)

∇ · uo = 0, (13)

∇ · (εEo)
(1) = 0, (14)

∇∧ E(1)
o = 0. (15)

In the region outside the liquid cylinder:

∇ · (εEo)
(2) = 0, (16)

∇∧ E(2)
o = 0, (17)

subscript (0) here and henceforth indicates equilibrium quantities. The fundamen-
tal equations (12)-(17) of the unperturbed state are simplified and solved with
azimuthal and longitudinal symmetries

∂

∂z
= 0,

∂

∂φ
= 0. (18)

The fluid hydrostatic pressure is identified and given by

po =
T

a
+

1

2
E2

o

(

ε(1) − ε(2)(β2 + α2)
)

. (19)

It is clear as po ≥ 0 at the fluid boundary surface r = a, the restriction

ε(1) ≥ ε(2)(β2 + α2) (20)

must be satisfied, where the equality holds a limiting case with zero fluid pressure.
If the medium surrounding the cylinder has the same permitivity constant as

that of the fluid, the conditions are given explicity by

β2 + α2 ≤ 1. (21)



156 Capillary Instability of Fluid Cylinder Under the Effect of ...

4. Perturbation State

Let the basic state be perturbed, then for small departure from the equilibrium
state every perturbed quantity Q(r, φ, z, t) can be expanded as

Q(r, φ, z, t) = Qo(r) + Q1(r, φ, z), (22)

with
Q1(r, φ, z, t) = Q1(r)ε(t)e

i(kz+mφ), (23)

where Q(r, φ, z, t) stands for E(1), E(2), p or u and subscript (1) indicates the
perturbed quantities. k (a real number) is the longitudinal wavenumber, m (an
integer) is the azimuthal wavenumber. ε(t) is the amplitude of the surface wave at
time t take the form

ε(t) = εoe
σt, (24)

and hence
Q1(r, φ, z, t) = Q1(r)εoe

σt+i(kz+mφ), (25)

where εo is the initial amplitude at t = 0 and σ is the growth rate. If σ = iω,
i =

√
−1 is imaginary then ω

2π
is the wave oscillation frequency. The perturbed

radial distance of the interface of the compound fluid cylinder

r = a + εoe
σt+i(kz+mφ). (26)

The linearization of equations (3)–(8) by means of equations (22)–(26) leads to the
following relevant perturbation equations.

In the liquid cylinder of radius a:

ρσu1 = −∇Π1, (27)

∇ · u1 = 0, (28)

∇ · E(1)
1 = 0, (29)

∇∧ E
(1)
1 = 0. (30)

where

Π1 = p1 −
1

2
ε(1)(2Eo · E1)

(1). (31)

In the region outside the liquid cylinder:

∇ · E(2)
1 = 0, (32)

∇∧ E
(2)
1 = 0, (33)

Taking the divergence of the vector equation of motion (27) and utilizing equation
(28) we get

∇2Π1 = 0. (34)

The circulation equations (30) and (33) concerning the perturbed electric field

intensities interior and exterior to the liquid cylinder means that E
(1)
1 , E

(2)
1 and can

be derived by means of the scalar functions Ψ
(1)
1 and Ψ

(2)
1

E
(1)
1 = ∇Ψ

(1)
1 , (35)
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E
(2)
1 = ∇Ψ

(2)
1 . (36)

Inserting equations (35) and (36) into equations (29) and (32), we get

∇2Ψ
(1)
1 = 0, (37)

∇2Ψ
(2)
1 = 0. (38)

By using the equations (34), (37) and (38) we note that Π1, Ψ
(1)
1 and Ψ

(2)
1 satisfied

Lapace’s equation. The non-singular solutions are given by

Π1 = AIm(kr)εoe
σt+i(kz+mφ), (39)

u1 =
−1

ρσ
∇Π1, (40)

Ψ
(1)
1 = BIm(kr)εoe

σt+i(kz+mφ), (41)

Ψ
(2)
1 = CKm(kr)εoe

σt+i(kz+mφ), (42)

E
(1)
1 = B∇Im(kr)εoe

σt+i(kz+mφ), (43)

E
(2)
1 = C∇Km(kr)εoe

σt+i(kz+mφ), (44)

p1s =
−T

a
(1 − m2 − k2a2)εoe

σt+i(kz+mφ), (45)

where Im(kr) and Km(kr) are modified Bessel functions of the first and second kind
of the order m and A, B and C are constants of integration to be determined by
using the boundary conditions.

The solutions (39)-(45) of the relevant perturbation equations (27)-(33) must
satisfy certain boundary conditions. For the problem at hand these approximate
boundary conditions at r = a are the following.

4.1. Kinematic Conditions

The normal component of the velocity vector must be compatible with the velocity
of the boundary surface particles across the interface (26) at r = a, i.e.

u1r =
∂R

∂t
, (46)

where
R = εoe

σt+i(kz+mφ), (47)

then

A =
−ρσ2

kI ′m(x)
. (48)

where x(= ka) is the dimensionless longitudinal wavenumber.

4.2. Electrodynamic Conditions

1. The electric potential Ψ must be continuous across the fluid interface (26) at
r = a

Ψ
(1)
1 = Ψ

(2)
1 . (49)
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2. The normal component of the electric displacement current must also be con-
tinuous across the perturbed interface (26) at r = a. That is,

ε(1)(N · E(1)) = ε(2)(N · E(2)), (50)

where E(1) and E(2) are the total electric fields and N is the unit normal
vector to the interface pointing outwards.

By using the conditions (1) and (2), we get

B =
iEoKm(x)

x
(

ε(1)I ′m(x)Km(x) − ε(1)Im(x)K ′

m(x)
)

(

xε(1) − ε(2)(mβ + αx)
)

, (51)

C =
iEoIm(x)

x
(

ε(1)I ′m(x)Km(x) − ε(1)Im(x)K ′

m(x)
)

(

xε(1) − ε(2)(mβ + αx)
)

, (52)

where
x = ka (53)

4.3. The Dynamical Condition

The normal component of the total stress tensor must also be continuous across the
disturbed boundary interface (26) at r = a. This implies that

p1 + R
∂po

∂r
+

1

2
ε(1)

(

2E(1)
o · E(1)

1 + R
∂

∂r

(

E(1)
o · E(1)

1

)

)

=
1

2
ε(2)

(

2E(2)
o · E(2)

1 + R
∂

∂r

(

E(2)
o · E(2)

1

)

)

+ p1s. (54)

5. Dispersion Relation

Afterwards, we will obtain the analytical expressions of the dispersion relation,
by the use of the equations (1), (2), (39)-(45), (48), (51), (52) for the dynamical
condition (54).

The following dispersion relation is obtained:

σ2 =
T

ρa3

(

1 − m2 − x2
) xI ′m(x)

Im(x)
−

E2
o

ρa2

[

(

xε(1) − ε(2)(mβ + αx)
)

I ′m(x)Km(x)

ε(1)I ′m(x)Km(x) − ε(2)Im(x)K ′(x)
− ε(2)β2xI ′m(x)

Im(x)

]

(55)

then we can write this equation as follows

σ2

T/ρa3
=

(

1 − m2 − x2
) xI ′m(x)

Im(x)
−

(Eo

Es

)2
[

(

xε(1) − ε(2)(mβ + αx)
)

I ′m(x)Km(x)

ε(1)I ′m(x)Km(x) − ε(2)Im(x)K ′(x)

ε(2)β2xI ′m(x)

Im(x)

]

(56)

where

Es =

√

a

T
(57)
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For the rotationally axisymmetric mode m = 0, the dispersion relation (56) reduces
to

σ2

T/ρa3
=

xI1(x)

Io(x)
(1 − x2) −

(Eo

Es

)2
[

x2
(

ε(1) − αε(2)
)2

I1(x)Ko(x)

ε(1)I1(x)Ko(x) + ε(2)Io(x)K1(x)
− ε(2)β2 xI1(x)

Io(x)

]

,

and if non-axisymmetric m = 1, the dispersion relation (56) reduces to

σ2

T/ρa3
=

−x3(Io(x) + I2(x))

2I1(x)
−

(Eo

Es

)2
[

(

xε(1) − ε(2)(β + αx)
)2

K1(x)
(

Io(x) + I2(x)
)

ε(1)K1(x)
(

Io(x) + I2(x)
)

+ ε(2)I1(x)
(

Ko(x) + K2(x)
) −

ε(2)β2 x
(

Io(x) + I2(x)
)

2I1(x)

]

. (58)

6. Stability Analysis

Equation (56) is the desired dispersion relation of a capillary stationary fluid cylin-
der of radius a under the influence of an axial electric field. The electric field
surrounding the cylinder has the component (βEoa

r
) in the φ−direction and (αEo)

in the z−direction where β and α are constants. The dispersion relation (56) relates
the growth rate σ or rather the oscillation frequency (if σ is imaginary, σ = iω)

with
(

√

T
ρa3

)

as a unit of time, the wave number x, the density ρ, the constants β

and α, the electric field intensity Eo, the modified Bessel functions Im(x), Km(x),
I ′m(x) and K ′

m(x), the dielectric constant ε(1) and ε(2).
The influence of the uniform electric field only represented upon neglecting the

capillary force influence by putting T = 0. The dispersion relation (56) degenerates
to

σ2 = −
( E2

o

ρa2

)

[

(

xε(1) − ε(2)(mβ + αx)
)

I ′m(x)Km(x)

ε(1)I ′m(x)Km(x) − ε(2)Im(x)K ′(x)
− ε(2)β2I ′m(x)

xIm(x)

]

. (59)

From the equation (60) with β = 0 it is clear that σ2 is negative for all values of α
and x and ε(1) ≥ ε(2), since the following inequality

x2
(

ε(1) − αε(2)
)2

I ′m(x)Km(x)

ε(1)I ′m(x)Km(x) + ε(2)Im(x)K ′

m(x)
> 0 (60)

is satisfied for all values of α and x, see refs. [10] and [11] thus, the stability or
instability depends on the values of β, as can be shown numerically.

If we take Eo = 0 and the effect of a capillary force only, the dispersion relation
(56) becomes

σ2 =
T

ρa3
(1 − m2 − x2)

xI ′m(x)

Im(x)
. (61)
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This dispersion relation is deduced by Chandrasekhar [4].
Moreover, the general analytical results are verified numerically by using the

dispersion relation (56) for all short wavelengths and long wavelengths in which the
nondimensional wave number x is taken to be 0 ≤ x ≤ 3.0 and the corresponding

values of σ and/or ω in the normal unit
(

√

T
ρa3

)

are obtained where σ is the growth

rate of instability and ω is the oscillation frequency of the stability states. This
has already been done for different values of β = 0.2, 0.4, 0.6, 0.8, 1.0 and α =
1.0, 3.0, 6.0, 8.0 and for each value of β and α the basic electric field Eo relative to
Es is considered for the different values

(

Eo

Es

)

= 0.0, 0.5, 1.0, 1.5, 2.0 and (ε(1), ε(2))
has a definite value (9.0, 3.0).
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