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In this paper, a nonlinear coupled three degree-of-freedom autoparametric vibration
system with elastic pendulum attached to the main mass is investigated numerically.
Solutions for the system response are presented for specific values of the uncoupled
normal frequency ratios and the energy transfer between modes of vibrations is observed.
Curves of internal resonances for free vibrations and external resonances for vertical
exciting force are shown. In this type system one mode of vibration may excite or damp
another one, and except different kinds of periodic vibration there may also appear
chaotic vibration. Various techniques, including chaos techniques such as bifurcation
diagrams and: time histories, phase plane portraits, power spectral densities, Poincarè
maps and exponents of Lyapunov, are used in the identification of the responses. These
bifurcation diagrams show many sudden qualitative changes, that is, many bifurcations
in the chaotic attractor as well as in the periodic orbits. The results show that the system
can exhibit various types of motion, from periodic to quasi-periodic and to chaotic, and
is sensitive to small changes of the system parameters.
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1. Introduction

In this work the nonlinear dynamics of a three-degree-of-freedom system with elastic
pendulum is studied. Dynamically systems with elements of the mathematical or
physical pendulum type have important applications. If the pendulum is suspended
to the flexible element, in this system may occur the autoparametric excitation as
a result of inertial coupling. In the systems of this type may occur the internal
resonance of a parametric type [1,2,3,4]. It is well known, that internal resonances
can give rise to coupling between the responses of various modes. Similarly is in one
mass system with spring pendulum (pendulum type elastic oscillator), where was
observe autoparametric nonlinear coupling between the angle of the pendulum and
the elongation of the spring [5,6,7,8]. Fundamental is the influence of values different
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parameters of the system on conditions of internal or external resonances, because
the equations of the autoparametric system have coupled nonlinearities and in this
type systems can occurs except steady- state also chaotic vibrations. It depends on
various amplitudes of excitation, frequencies ratio and different parameters of the
systems, for example various coefficients of the damping.

In the present paper the nonlinear response of three degree of freedom system,
in which a elastic pendulum suspended to the flexible element is investigated

A number of research have been discussed the complicated motion that may
occur chaos in nonlinear mechanical systems with external excitation. A typical
example of the governing equation is Duffing’s equation with damping and har-
monic or parametrically excited systems were presented by Moon [9]; Bajaj and
Johnson [10]; Bajaj and Tousi [11]; Szempliska-Stupnicka, [12,13]. Chaos in a
nonlinear single-degree-of-freedom, parametrically excited system was observed by
Szempliska-Stupnicka at all [14]. There the excitation appears as a coefficient in
the equation of motion (similarly as in the autoparametric systems).

Chaos for two degree-of-freedom autoparametric system was investigated by
Hatwall at all [15]. Those authors used the harmonic balance method showed that
for higher excitation levels, the response was found to be chaotic. This system was
next investigated, using the averaging analysis, by Bajaj at all [16] and by Benerjee
at all [17]. Those authors showed bifurcation analysis and Poincaré maps of the
period and chaotic solution for different various detuning of frequency. There was
assumed that system is weakly nonlinear. The analysis of transitions from periodic
regular motion to chaotic motion for two degree-of-freedom systems were presented
by Gonzales at all [18] or by Pust and Szöllös [19], and for autoparametric system
by Mustafa and Ertas [20], by Tondl [21] or by Verhulst [22] and author [23,24,25].

Many researchers studied the effect of parametric or autoparametric excitation
on three-mass systems. Three mass system chain self-excited system was investi-
gated by Tondl and Nabergoj [26]. Chaos for three degree-of-freedom autoparamet-
ric system with double pendulum was investigated by author at all [27,28]. It was
shown that except different kinds periodic vibrations there may also appear chaotic
vibration. There the bifurcation diagrams were used to assess the effect of changes
in system parameters on the qualitative motion of the systems.

This paper describes the numerical simulation of a nonlinear two-mass autopara-
metric system with elastic pendulum hangs down from the flexible suspended body.
It was shown that in this three degree-of freedom system one mode of vibrations
may excite or damp another mode, and that in the neighbourhood internal and ex-
ternal resonances except different kinds periodic vibrations may appear also chaotic
vibration. In this work the bifurcation diagrams for different damping parameters
are constructed. When a bifurcation diagram is plotted, several phenomena can be
observed: existence of a simple attractor with low period, or existence of a chaotic
attractor, and various bifurcations. All these phenomena have to be verified in the
phase space [29,30,31]. So in the present paper the time histories, phase plane por-
traits, power spectral densities, the Poincaré maps and exponents of Lyapunov also
are constructed.



Sado, D 31

2. System description and equation of motion

The investigated system is shown in Fig. 1. It consists of the flexible pendulum of
length l0, rigidity k2 and mass m hangs down from the body of mass M suspended by
an element characterized by linear elasticity of rigidity k1and viscous damping. It is
admitted that a linear viscous damping force acts upon the body M and a damping
force proportional to angular velocity applied in the hinge opposes the motion of the
pendulum. The body of mass M is subjected to harmonic vertical excitation F (t) =
F0 cos ηt. This system has three degrees of freedom. As generalised coordinates are
assumed the vertical displacement y of the body of mass M measured from the
equilibrium position, the angle ϕ of deflection of the body of mass m measured
from the vertical line and the elongation x of the spring.
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Figure 1 Schematic diagram of system

The kinetic energy E and the potential energy V of the system are

E =
(M + m)ẏ

2
+

mẋ2

2
+

m

2
(l0 + ypst + x)2ϕ̇2

+mẏẋ cos ϕ − mẏϕ̇(l0 + ypst + x) sin ϕ

V = −(M + m)gy − mg(l0 + ypst + x) cos ϕ + mg(l0 + ypst) + (1)

k1(y + yst)
2

2
+

k2(ypst + x)2

2

where

yst =
(M + m)g

k1
, ypst =

mg

k2

and g – acceleration of gravity.
Applying the Lagranges equations the equations of motion of the system take

the following

(M + m)ÿ + mẍ cos ϕ − 2mẋφ̇ sin φ − mφ̈ (l0 + y2st + x) sinϕ

−mϕ̇2 (l0 + y2st + x) cos ϕ − (M + m)g + k1(y + yst) + C1ẏ = F0 cos νt
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m(l0 + y2st + x)2ϕ̈ − mÿ (l0 + y2st + x) sinϕ

+2m (l0 + y2st + x) ϕ̇ẋ + mg (l0 + y2st + x) sinϕ + C2ϕ̇ = 0

−mẍ + mÿ cos ϕ − m (l0 + y2st + x) ϕ2 − mg cos ϕ + k2(y2st + x) = 0 ,

(2)

By introducing the dimensionless time τ = ω1t and the following definitions

y1 = y
l0

y1st = yst

l0
y2st =

ypst

l0
x1 = x

l0
d = m

M

a = d
1+d

ω1 = k1

M+m
ω2 = g

l
ω3 = k2

m
β1 = ω2

ω1

β2 = ω3

ω2

µ = η
ω1

γ1 = C1

(M+m)ω1

γ2 = C2

ml2
0
ω1

q = F0

m2lω2

1

(3)

We can transform (2) into

ÿ1 =
1

(a − 1)(1 + y2st + x1)2
{

a(1 + y2st + x1)
2
[

(1 + y2st + x1)ϕ̇
2+

β2
1(1 + y2st) cos ϕ − β2

1β2
2(y2st + x1)

]

cos ϕ + [2(1 + y2st + x1)ϕ̇ẋ1+

β2
1(1 + y2st + x1)(1 + y2st) sin ϕ + γ2ϕ̇

]

a(1 + y2st + x1) sin ϕ −
[

2a ẋ1ϕ̇ sinϕ + a ϕ̇2(1 + y2st + x1) cos ϕ − y1 − γ1ẏ1 + q cos µτ
]

(1 + y2st + x1)
2 }

ϕ̈ =
1

(a − 1)(1 + y2st + x1)2
+ {[2(1 + y2st + x1)ϕẋ1

+β2
1(1 + y2st + x1)(1 + y2st) sin ϕ + γ2ϕ̇

]

(1 − a2 cos ϕ) − [2aẋ1ϕ̇ sinϕ+

aϕ̇2(1 + y2st + x1) cos ϕ − y1 − γ1ẏ1 + q cos µτ
]

(1 + y2st + x1) sin ϕ +
[
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2 + β2

1(1 + y2st) cos ϕ − β2
1β2
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]

a(1 + y2st + x1) cos ϕ sin ϕ} (4)

ẍ =
1
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2aẋ1ϕ̇ sin φ + aϕ̇2(1 + y2st + x1) cos ϕ−

+y1 − γ1ẏ1 + q cos µτ ] (1 + y2st + x1)
2 cos ϕ +

[

(1 + y2st + x1)ϕ̇
2 + β2

1(1 + y2st) cos ϕ − β2
1β2
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]

(1 + y2st + x1)
2(a sin2 ϕ − 1) − [2(1 + y2st + x1)φẋ1+

β2
1(1 + y2st + x1)(1 + y2st) sin ϕ − γ2ϕ̇

]

a(1 + y2st + x1) sin ϕ cos ϕ
}

3. Numerical results

Equations (4) were solved numerically by using the Runge-Kutta procedure with a
variable step length. Calculations have been done for different values of the system
parameters. Exemplary results the energy transfer are presented in Fig. 2 for the
initial values y1(0) = 0.05 and for the following parameters of the system: d = 0.02,
β1 = 0.5, β2 = 2. As it can be seen from the presented diagrams, the amplitudes
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grow and diminish periodically. In Fig. 3 are demonstrated the internal resonant
curves for the initial values y1(0) = 0.05 and ϕ(0) = 0.005o. The external resonant
curves of the mass M and of the pendulum for no damping effect for the conditions
of an autoparametric internal resonances are shown in Fig. 4.

When the excitation acts vertically on the body of mass M (Fig. 4), one can
observe three resonant amplitudes y1, x and ϕ for frequencies: µ = 0.93, µ = 1 and
µ = 1.08.

 

 

 

Figure 2 Time history corresponding to coordinates y1, x1 and ϕ for: d = 0.02, β1 = 0.5, β2 = 2,
q = 0, γ1 = γ2 = 0, y1(0) = 0.05

Near the internal and external resonances depending on a selection of physical
system parameters the amplitudes of vibrations of coupled bodies may be related
differently, motions: y1 and pendulum are periodic or quasiperiodic vibrations, but
sometimes the motions are chaotic. For characterizing a irregular chaotic response
forms a transition zone between one and another type of regular steady resonant
motion, in the present paper the bifurcation diagrams for different damping pa-
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Figure 3 Amplitudes of the pendulum versus frequency ratio β1 (internal resonant curves) for
y1(0) = 0.05 and d = 0.02, β2 = 2, γ1 = γ2 = 0, q = 0

rameters are constructed. Exemplary results, for small damping put on pendulum,
near internal and external resonances (near principal autoparametric resonances for
β1 = 0.5, β2 = 2 and near eternal resonance for µ = 1), are presented in Fig. 5,
where are showed displacements and velocities of the beam end of the pendulum
versus amplitude of excitation.

As we can seen from diagrams presented in Fig. 2 in this case (β = 0.45) for
small value of the excitation amplitude q (q < 0.00034) motions: body of mass
M (displacement y1) and pendulum(displacements x and ϕ) are periodic, but for
greater value of parameter q character these motions may be irregular.

Even small change the parameters of the system gives different character of the
body of mass M and of the pendulum motion. As can be seen from these bifurcation
diagrams, several phenomena can be observed: existence of a simple or a chaotic
attractor, and various bifurcations. All these phenomena have to be verified in the
phase space. Next than the time histories, phase plane portraits (Poincaré maps),
power spectral densities (their fast Fourier transform – FFT), and the exponents of
Lyapunov are constructed. This descriptors are available to observe chaos, and to
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Figure 4 Resonant curves of the mass M and of the pendulum (d = 0.02, β1 = 0.5, β2 = 2,
q = 0.0001, γ1 = γ2 = 0)

better understand it.

Exemplary results chaotic motions are presented in Fig. 6 (time histories, power
spectral densities (FFT), Poincaré maps and the maximum exponents of Lyapunov
corresponding to coordinate y1 as well as to coordinates x and ϕ).

As can be seen from Fig. 6 this response is chaotic.We see that in this case
the motion looks like irregular, the Poincarè maps trace the ’strange attractors’,
the frequency spectrums are continuous and the largest exponents of Lyapunov are
positive.

4. Conclusions

Influence of parameters on the behaviour of the autoparametric flexible element
–elastic pendulum system near the internal and external resonances frequencies is
very interesting and important. In autoparametric system the energy is transferred
from one degree of freedom to the others. Depending on a selection of physical sys-
tem parameters the amplitudes of vibrations of both coupled bodies (and of three
modes) may be related differently and were observed two types internal resonances.
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Figure 5 Bifurcation diagram for y1, x and ϕ for β1 = 0.5, β2 = 2, d = 0.02, γ2 = 0.002, µ1 = 1.07

It was also shown that near the internal and external resonances depending on a
selection of physical system parameters, the amplitudes of vibrations of coupled
modes may be related differently. It was observed that except different kinds pe-
riodic vibrations may appear also different kinds irregular vibrations. Nonperiodic
attractors are traced by solving an initial value problem. The maximum Lyapunov
exponents have been calculated in order to characterize the chaotic orbits. Sensi-
tivity to initial conditions occurs where this exponent is positive.
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