
Mechanics and Mechanical Engineering

Vol. 9, No. 2 (2005) 5–13

c© Technical University of Lodz

Unsteady Couette-Poiseulle Flow with Variable Physical Properties in

the Presence of a Uniform Magnetic Field

Hazem A. Attia

Dept. of Mathematics, College of Science,
King Saud University (Al-Qasseem Branch)

P.O. Box 237, Buraidah 81999, KSA

Received (27 August 2005)

Revised (2 November 2005)

Accepted (8 November 2005)

The unsteady hydromagnetic Couette-Poiseulle flow and heat transfer of an electrically
conducting fluid is studied in the presence of a transverse uniform magnetic field with
variable physical properties. The viscosity and thermal conductivity of the fluid are
assumed to vary with temperature. The fluid is subjected to a constant pressure gradient
and an external uniform magnetic field perpendicular to the plates which are kept at
different but constant temperatures. The effect of the magnetic field, the temperature
dependent viscosity and thermal conductivity on both the velocity and temperature fields
is reported.
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1. Introduction

The flow with heat transfer of a viscous incompressible electrically conducting fluid
between two parallel plates is a classical problem that has important applications in
magnetohydrodynamic (MHD) power generators and pumps, accelerators, aerody-
namics heating, electrostatic precipitation, polymer technology, petroleum industry.
This problem has been considered by many researchers under different physical ef-
fects [1–5]. Most of these studies are based on constant physical properties, although
some physical properties are varying with temperature and assuming constant prop-
erties is a good approximation as long as small differences in temperature are in-
volved [6]. More accurate prediction for the flow and heat transfer can be achieved
by considering the variation of these physical properties with temperature. Klemp
et al. [7] studied the effect of temperature dependent viscosity on the entrance
flow in a channel in the hydrodynamic case. The MHD fully developed flow and
heat transfer of an electrically conducting fluid between two parallel plates with
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temperature dependent viscosity is studied in [8,9] without taking the Hall effect
into consideration.

In the present work, the unsteady Couette-Poiseulle flow of a viscous incom-
pressible electrically conducting fluid with heat transfer between two electrically
insulating plates is studied in the presence of uniform magnetic field. The upper
plate is moving with a constant speed and the lower plate is kept stationary while
the fluid is acted upon by a constant pressure gradient and an external uniform
magnetic field is applied perpendicular to the plates. The magnetic Reynolds num-
ber is assumed small so that the induced magnetic field is neglected [1,5]. The two
plates are kept at two constant but different temperatures while the viscosity and
thermal conductivity of the fluid are assumed to vary with temperature. Thus, the
coupled set of the nonlinear equations of motion and the energy equation including
the viscous and Joule dissipations terms is solved numerically using finite differences
to obtain the velocity and temperature distributions at any instant of time.

2. Formulation of the Problem

The fluid is assumed to be flowing between two infinite horizontal plates located at
the y = ±h planes. The upper plate moves with a uniform velocity U0 while the
lower plate is stationary. The two plates are assumed to be electrically insulating
and kept at two constant temperatures T1 for the lower plate and T2 for the upper
plate with T2 > T1. A constant pressure gradient ∂P/∂x is applied in the x-
direction. A uniform magnetic field B0 is applied in the positive y-direction which
is the only magnetic field in the problem as the induced magnetic field is neglected
by assuming a very small magnetic Reynolds number [1,5]. The viscosity of the fluid
is assumed to vary exponentially with temperature while the thermal conductivity
is assumed to depend linearly on temperature. The viscous and Joule dissipations
are taken into consideration. The flow of the fluid is governed by the Navier-Stokes
equation which has the form [1,5],
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where ρ is the density of the fluid, µ is the viscosity of the fluid, σ is the electric
conductivity of the fluid, and u = u(y, t) is the velocity component of the fluid in
the x-direction. It is assumed that the pressure gradient is applied at t = 0 and the
fluid starts its motion from rest. Thus

t = 0 : u = 0 (2a)

For t > 0, the no-slip condition at the plates that

y = −h : u = 0, y = h : u = U0 (2b)

The energy equation describing the temperature distribution for the fluid is given
by [1,10]
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where T is the temperature of the fluid, cp is the specific heat at constant pressure
of the fluid, and k is the thermal conductivity of the fluid. The last two terms in the
left-hand side of Eq. (3) represent, respectively, the viscous and Joule dissipations.
The temperature of the fluid must satisfy the boundary conditions,

t = 0 : T = T1 (4a)

t > 0 : T = T1, y = −h, T = T2, y = h . (4b)

The viscosity of the fluid is assumed to vary with temperature and is defined as,
µ = µ0f1(T ). By assuming the viscosity to vary exponentially with temperature,
the function f1(T ) takes the form [7], f1(T ) = exp(−a1(T − T1)). In some cases a1

may be negative, i.e. the coefficient of viscosity increases with temperature [8,9].
Also, the thermal conductivity of the fluid is assumed to vary with temperature
as k = k0f2(T ). We assume linear dependence for the thermal conductivity upon
temperature in the form k = k0[1 + b1(T − T1)] [10], where the parameter b1 may
be positive or negative [10].

The problem is simplified by writing the equations in the non-dimensional form.
To achieve this, we define the following non-dimensional quantities,

(x̂, ŷ, ẑ) =
(x, y, z)

h
, t̂ =

tU0

h
,

P̂ =
P

ρU2

0

, (û, v̂, ŵ) =
(u, v, w)

U0

,

θ =
T − T1

T2 − T1

, G = −
dP̂

dx̂
.

f̂1(θ) = exp(−a1(T2 − T1)) = exp(−aθ), a is the viscosity exponent,

f̂2(θ) = 1 + b1(T2 − T1) θ = 1 + bθ, b is the thermal conductivity
parameter,

Re= ρU0h/µ0, is the Reynolds number,

Ha2 = σB2

0
h2/µ0, is the Hartmann number,

Pr = µ0cp/k0, is the Prandtl number,

Ec = U2

0
/cp (T2 − T1), is the Eckert number.

τL = (∂û/∂ŷ)ŷ
=
−1

/Re is the axial skin friction coefficient at the lower
plate,

τU = (∂û/∂ŷ)ŷ=1
/Re is the axial skin friction coefficient at the upper

plate,

NuL = (∂θ/∂ŷ)ŷ=−1
is the Nusselt number at the lower plate,

NuU = (∂θ/∂ŷ)ŷ=1
is the Nusselt number at the upper plate.

In terms of the above non-dimensional quantities Eqs. (1) to (4) read (the hats
are dropped for convenience)

∂u

∂t
= G +

1

Re
f1(T )

∂2u

∂y2
+

1

Re

∂f1(T )

∂y

∂u

∂y
−

Ha2

Re
u (5)



8 Unsteady Couette-Poiseulle Flow with ...

t = 0 : u = 0 (6a)

t > 0 : u = 0, y = −1, u = 0, y = 1 (6b)
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t = 0 : θ = 0 (8a)

t > 0 : θ = 0, y = −1, θ = 1, y = 1 . (8b)

Equations (5) and (7) represent a system of coupled non-linear partial differential
equations which can be solved numerically under the initial and boundary condi-
tions (6) and (8) using the finite difference approximations. The Crank-Nicolson
implicit method is used [11]. Finite difference equations relating the variables are
obtained by writing the equations at the mid point of the computational cell and
then replacing the different terms by their second order central difference approx-
imations in the y-direction. The diffusion terms are replaced by the average of
the central differences at two successive time levels. The non-linear terms are first
linearized and then an iterative scheme is used at every time step to solve the lin-
earized system of difference equations. All calculations have been carried out for
G = 5, R = 1, Pr = 1, and Ec = 0.2.

3. Results and Discussion

Figures 1(a) and (b) present the velocity and temperature distributions as functions
of y for various values of time t starting from t = 0 up to the steady-state. The
figures are evaluated for Ha = 1, a = 0.5, and b = 0.5. The velocity component
u reaches the steady state faster than θ. This is expected as u is the source of T .
Figure 1(b) shows that the temperature T inside the fluid may exceed the value 1,
which is the temperature of the hot plate, especially at large times. This is due to
the Joule and viscous dissipations.
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Figure 1 Time development of the profile of: (a) u; (b) T ; Ha = 1, a = 0.5, b = 0.5
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Figure 2 Time development of u at y = 0 for various values of a: (a) Ha = 0; (b) Ha = 1

Figures 2(a) and (b) present the time development of the velocity component u
at the center of the channel (y = 0), for various values of the parameters a and Ha
and for b = 0. Figures 2(a) and (b) show that increasing the parameter a decreases
u for all values of Ha. It is also shown that the steady state time of u is not greatly
affected by changing a. Comparing Figs. 1(a) and (b) indicates the damping effect
of the magnetic field which decreases u for all values of a. Figures 3(a) and (b)
present the time development of the temperature T at the center of the channel
(y = 0), for various values of the parameters a and Ha and for b = 0. The figures
show that increasing a decreases T for all values of Ha as a result of decreasing the
velocity u and its gradient the function f1 which decreases the viscous and Joule
dissipations. It is also shown that the steady state value of T is not greatly affected
by changing a. The comparison between Figs. 2(a) and (b) shows that increasing
Ha increases T , for all values of a, due to the increase in the Joule dissipations.

Figures 4(a) and (b) present the time development of the temperature T at the
center of the channel (y = 0), for various values of the parameters b and Ha and for
a = 0. The figures show that the variation of the temperature θ with the parameter
b depends on t where a crossover in T − t charts occurs. The effect of b on T
depends on t and increasing b increases T at small times, but decreases T when t
is large. This occurs because, at low times, the center of the channel acquires heat
by conduction from the hot plate, but after large time, when u is large, the Joule
dissipation is large at the center and center looses heat by conduction. It is noticed
that the parameter b has no significant effect on u inspite of the coupling between
the momentum and energy equations. It is also shown in the figures that increasing
the parameter b decreases the steady state time of T . Figure 3(b) indicates that
increasing Ha increases T as the Joule dissipation increases and decreases the time
at which the crossover in T − t charts occurs.

Table 1 and 2 presents the variation of the steady state axial skin friction coef-
ficients at both walls for various values of a and for Ha=0 and 3, respectively. It is
clear that increasing a increases the magnitude of τL and τU for all values of Ha.
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Figure 3 Time development of θ at y = 0 for various values of a: (a) Ha = 0; (b) Ha = 1
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Figure 4 Time development of θ at y = 0 for various values of b: (a) Ha = 0; (b) Ha = 1

a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5
τL 5.2131 5.4494 5.4998 5.5458 5.6355
τU -2.9642 -4.1236 -4.4999 -0.4918 -7.0608

Table 1 Variation of the steady state skin friction coefficients τL and τU for various values of a

(Ha=0)

a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5
τL 1.6089 1.6535 1.6617 1.6690 1.6897
τU 0.9174 1.2451 1.3299 1.4168 1.7888

Table 2 Variation of the steady state skin friction coefficients τL and τU for various values of a

(Ha=3)
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T a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5
b=-0.5 0.8652 1.0583 1.1322 1.2235 1.7873
b=-0.1 0.8181 0.9324 0.9706 1.0148 1.2737
b=0.0 0.8109 0.9151 0.9495 0.9888 1.2148
b=0.1 0.8045 0.9005 0.9317 0.9673 1.1682
b=0.5 0.7832 0.8569 0.8801 0.9061 1.0468

Table 3 Variation of the steady state temperature T at y = 0 for various values of a and b (Ha=0)

T a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5
b = −0.5 0.8948 0.8563 0.8482 0.8407 0.8177
b = −0.1 0.8254 0.8046 0.7999 0.7955 0.7811
b = 0.0 0.8161 0.7973 0.7930 0.7890 0.7758
b = 0.1 0.8079 0.7909 0.7869 0.7833 0.7711
b = 0.5 0.7827 0.7700 0.7671 0.7642 0.7549

Table 4 Variation of the steady state temperature T at y = 0 for various values of a and b (Ha=3)

NuL a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5
b = −0.5 2.0662 2.4035 2.5176 2.6479 3.2568
b = −0.1 2.0626 2.4015 2.5110 2.6346 3.3095
b = 0.0 2.0677 2.4066 2.5152 2.6374 3.3046
b = 0.1 2.0739 2.4129 2.5210 2.6421 3.3013
b = 0.5 2.1048 2.4453 2.5515 2.6697 3.3031

Table 5 Variation of the steady state Nusselt number NuL for various values of a and b (Ha=0)

NuL a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5
b = −0.5 0.9978 0.9631 0.9559 0.9495 0.9309
b = −0.1 0.9712 0.9420 0.9356 0.9299 0.9114
b = 0.0 0.9730 0.9445 0.9382 0.9325 0.9141
b = 0.1 0.9763 0.9485 0.9424 0.9367 0.9184
b = 0.5 0.9958 0.9698 0.9639 0.9584 0.9405

Table 6 Variation of the steady state Nusselt number NuL for various values of a and b (Ha=3)

NuU a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5
b = −0.5 -0.9800 -1.6554 -1.8797 -2.1323 -3.0552
b = −0.1 -0.5221 -0.9089 -1.0353 -1.1795 -2.0039
b = 0.0 -0.4715 -0.8200 -0.9331 -1.0615 -1.7918
b = 0.1 -0.4318 -0.7488 -0.8508 -0.9665 -1.6194
b = 0.5 -0.3358 -0.5682 -0.6414 -0.7234 -1.1741

Table 7 Variation of the steady state Nusselt number NuU for various values of a and b (Ha=0)
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NuU a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5
b = −0.5 -1.0377 -0.9168 -0.8872 -0.8586 -0.7536
b = −0.1 -0.5353 -0.4727 -0.4570 -0.4415 -0.3839
b = 0.0 -0.4807 -0.4249 -0.4109 -0.3971 -0.3453
b = 0.1 -0.4381 -0.3878 -0.3751 -0.3625 -0.3155
b = 0.5 -0.3354 -0.2992 -0.2900 -0.2809 -0.2465

Table 8 Variation of the steady state Nusselt number NuU for various values of a and b (Ha=3)

Increasing Ha decreases the magnitude of τL and τU while reverses the direction of
τU for all values of a. Tables 3 and 4, 5 and 6, 7 and 8 present the variation of the
steady state temperature T at y = 0, the Nusselt number at the lower and upper
plates for various values of the parameters a and b and, respectively, for Ha=0 and
Ha=3. It is clear from Tables 3, 5, and 7 that increasing a increases T , NuL, and
the magnitude of NuU for all values of b. On the other hand, for large values of Ha,
as shown in Tables 4, 6, and 8, increasing a decreases T , NuL, and the magnitude
of NuU for all values of b. Tables 3, 5, and 7 indicate that increasing b decreases
T and the magnitude of NuU while increases NuL for all values of a. Tables 4, 6,
and 8 show that, for large values of Ha, increasing b decreases T , NuL, and the
magnitude of NuU for all values of a. Tables 3 and 4, 5 and 6, and, 7 and 8 indicate
that the effect of a or b on T is more pronounced for smaller values of Ha. Also,
the effect of a and b on the heat transfer at the upper plate NuU is more apparent
than that at the lower plate.

4. Conclusion

The unsteady Couette-Poiseulle flow of a conducting fluid under the influence of
an applied uniform magnetic field has been studied with temperature dependent
viscosity and thermal conductivity in the presence of an external uniform magnetic
field. It was found that the magnetic field or the viscosity exponent has a damping
effect on the velocity component u while the effect of the parameter b on u can
be entirely neglected. It is also shown that increasing the magnetic field increases
the temperature T , however, increasing the viscosity exponent decreases T . It is of
interest to find that the effect of the parameter b on the temperature T depends
on time. The magnetic field or viscosity exponent has a marked effect on the axial
skin friction coefficients and the Nusselt number at both walls of the channel. The
parameter a or b has a marked effect on the Nusselt number at the upper plate
more than the lower plate which becomes more pronounced for smaller values of
the magnetic field.
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