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The mode of two-dimensional equations of generalized thermo-elasticity with one relax-
ation time under the effect of rotation is studied using the theory of thermo-elasticity
recently proposed by Lord-Shulman. The normal mode analysis is used to obtain the
exact expressions for the temperature distributions, the displacement components and
thermal stresses. The resulting formulation is applied to two different concrete prob-
lems. The first concerns to the case of a heated punch moving across the surface of
a semi-infinite thermo-elastic half-space subjected to appropriate boundary conditions.
The second deals with a thick plate subjected to a time-dependent heat source on each
face. Numerical results are given and illustrated graphically for each problem. Compar-
isons are made with the results predicted by the coupled theory and with the theory of
generalized thermo-elasticity with one relaxation time in the absence of rotation.
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1. Introduction

During the second half of the twentieth century, non-isothermal problems in the the-
ory of elasticity have become increasingly important due to their many applications
in widely diverse fields. The high velocities of modern aircraft give rise to aerody-
namic heating, which produces intense thermal stresses, reducing the strength of
the aircraft structure. In the technology of modern propulsive systems, such as jet
and rocket engines, the high temperatures, associated with combustion processes
are the origins of severe thermal stresses. Similar phenomena are encountered in
the technologies of space vehicles and missiles and in the mechanics of large steam
turbines and even in shipbuilding, where, strangely enough, ship factories are often
attributed to thermal stresses of moderate intensities [1].

The classical uncoupled theory of thermo-elasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction of this
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theory does not contain any elastic terms, contrary to the fact that elastic changes
produce heat effects. Second, the heat equation is of a parabolic type, predicting
infinite speeds of propagation for heat waves.

Biot [2] introduced the theory of coupled thermo-elasticity to overcome the first
shortcoming. The governing equations for this theory are coupled, eliminating the
first paradox of the classical theory. However, both theories share the second short-
coming since the heat equation for the coupled theory is also parabolic.

Two generalizations to the coupled theory were introduced. The first is due to
Lord and Shulman [3], who obtained a wave-type heat equation by postulating a
new law of heat conduction to replace the classical Fourier’s law. This new law
contains the heat flux vector as well as its time derivative. It also contains a new
constant that acts as a relaxation time. Since the heat equation of this theory is
of the wave type , it automatically ensures finite speeds of propagation for heat
and elastic waves. The remaining governing equations for this theory, namely, the
equations of motions and constitutive relations, remain the same as those for the
coupled and the uncoupled theories. This theory was extended by Dhaliwal and
Sherief [4] to generalize an isotropic media in the presence of heat sources. Sherief
and Dhaliwal [5] solved a thermal shock problem, and Sherief [6] solved a spherically
symmetric problem with a point source. Both of these problems are valid for short
times. Recently, Sherief and Ezzat [7] obtained the fundamental solution for this
theory that is valid for all times.

The second generalization to the coupled theory of thermo-elasticity is what is
known as the theory of thermo-elasticity with two relaxation times or the theory of
temperature-rate-dependent thermo-elasticity. Müller [8], in review of the thermo-
dynamics of thermo-elastic solids, proposed an entropy production inequality, with
the help of which he considered restrictions on a class of constitutive equations.

A generalization of this inequality was proposed by Green and Laws [9]. Green
and Lindsay [10] obtained an explicit version of the constitutive equations. These
equations were also obtained independently by Şuhubi [11]. The theory contains two
constants that act as relaxation times and modifies all the equations of the coupled
theory, not only the heat equation. The classical Fourier’s law of heat conduction
is not violated if the medium under consideration has a center of symmetry. Erbay
and Şuhubi [12] studied wave propagation in finite cylinders. Ignaczak [13] studied
a strong discontinuity wave and obtained a decomposition theorem of this theory
[14]. Dhaliwal and Rokne solved a thermal shock problem in [15]. Ezzat [16]
also obtained the fundamental solution for cylindrical region. Othman [17] studied
the dependence of the modulus of elasticity on the reference temperature in two-
dimensional generalized thermo-elasticity with one relaxation time.

The main objective of this work is to investigate the effect of rotation on the
temperature, displacement components and stresses with one relaxation time. The
resulting formulation is applied to two concrete problems. The exact expressions
for temperature distribution, displacement components and thermal stresses are
obtained for each problem.
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2. Formulation of the problem

We shall consider an infinite isotropic, homogeneous, thermally conducting elastic
medium. The medium is rotating uniformly with an angular velocity Ω = Ωn,
where n is a unit vector representing the direction of the axis of rotation. The dis-
placement equation of motion in the rotating frame of reference has two additional
terms [18]:

(i) Centripetal acceleration Ω ∧ (Ω ∧ u) due to the time-varying motion only;

(ii) The Coriolis acceleration 2Ω ∧ u̇.

Here, u is the dynamic displacement vector measured from a steady state de-
formed position and supposed to be small. These two terms do not appear in the
equations for non-rotating media.

The fundamental equations of the generalized thermo-elasticity are:

• The constitutive law for the theory of generalized thermo-elasticity

σij = λeδij + 2µεij − γ (T − T0) δij , (1)

• The heat conduction equation

kT,ii = ρCE

(

Ṫ + τ T̈
)

+ γT0 (ė + τ ë) , (2)

• The strain-displacement constitutive relations

εij =
1

2
(ui,j + uj,i) and εii = e = ui,i . (3)

The equations of motion, in the absence of body forces, are

σij,j = ρ [üi + {Ω ∧ (Ω ∧ u)}i + (2Ω ∧ u̇)i] . (4)

where all the terms have the same significance as in [3].
Combining Eqs. (1), (3) and (3), we obtain the displacement equation of motion

in the rotating frame of reference as

ρ [ü + {Ω ∧ (Ω ∧ u)} + (2Ω ∧ u̇)] = (λ + µ)∇(∇.u) + µ∇2u − γ∇T . (5)

From Eqs. (1) and (3) the stress components are given by

σxx = λe + 2µu,x − γ(T − T0) , (6)

σyy = λe + 2µv,y − γ(T − T0) , (7)

σxy = µ (u,y + v,x) , (8)

σzz = λe − γ(T − T0) . (9)

From Eq. (4)

ρ

[

∂2u

∂t2
− Ω2u − 2Ωv̇

]

= (λ + µ)
∂e

∂x
+ µ∇2u − γ

∂T

∂x
, (10)
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ρ

[

∂2v

∂t2
− Ω2v + 2Ωu̇

]

= (λ + µ)
∂e

∂y
+ µ∇2v − γ

∂T

∂y
(11)

Now we introduce the following non-dimensional variables:

x′

i = c0η0x
′

i, u′

i = c0η0ui, t′ = c2
0η0t, τ = c2

0η0τ
′, θ =

γ (T − T0)

λ + 2µ
,

σ′

ij =
σij

µ
Ω′ =

Ω

c2
0η0

. (12)

where the dashed quantities denote the dimensional variables.
In order to examine the effect of rotation and relaxation time on coupled elastic

dilatational, shear and thermal waves, we get

Ω = (0, 0,Ω) ,

u = (u(x, y, t), v(x, y, t), 0) ,

where Ω is a constant and

e = u,x + v,y εxy =
1

2
(u,y + v,x) εxz = εyz

= εzz = 0 . (13)

In terms of the non-dimensional quantities defined in Eq. (11), the above governing
equations reduce to (dropping the dashes for convenience)

β2

[

∂2u

∂t2
− Ω2u − 2Ωv̇

]

= (β2 − 1)
∂e

∂x
+ ∇2u − β2 ∂θ

∂x
(14)

β2

[

∂2v

∂t2
− Ω2v + 2Ωu̇

]

= (β2 − 1)
∂e

∂y
+ ∇2v − β2 ∂θ

∂y
, (15)

∇2θ =

(

∂θ

∂t
+ τ

∂2θ

∂t2

)

+ ε(
∂e

∂t
+ τ

∂2e

∂t2
) . (16)

and the components of the stress are

σxx = 2u,x +
(

β2 − 2
)

e − β2θ , (17)

σyy = (β2 − 2)e + 2v,y − β2θ , (18)

σxy = u,y + v,x , (19)

σzz = (β2 − 2)e − β2θ . (20)

Differentiating Eq. (13) with respect to x, and Eq. (14) with respect to y, then
adding, we arrive at

[

∇2 − ∂2

∂t2
+ Ω2

]

e = ∇2θ + 2Ω
∂ζ

∂t
. (21)

Differentiating Eq. (13) with respect to y, and Eq. (14) with respect to x, then
subtracting, we arrive at

[

∇2 − β2 ∂2

∂t2
− Ω2)

]

ζ = −2Ωβ2 ∂e

∂t
. (22)
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where ∇2 = ∂2

∂x2 + ∂2

∂y2 is Laplace’s operator in a two-dimensional space and

ζ =
∂u

∂y
− ∂v

∂x
(23)

3. Normal mode analysis

Equations (15), (20) and (21) are simplified in the usual manner by decomposing
the solution of normal modes so that

[u, v, e, ζ, θ, σij ] (x, y, t) =
[

u∗(y), v∗(y), e∗(y), ζ∗(y), θ∗(y), σ∗

ij(y)
]

exp(ωt+iax) .
(24)

where ω is the (complex) time constant, i =
√
−1, a is the wave number in the

x-direction and u∗(y), v∗(y), e∗(y), ζ∗(y), θ∗(y) and σ∗

ij(y) are the amplitude of the
functions.

Eqs. (15), (20) and (21) after using Eq. (22) take the form

[

D2 − a2 − ω(1 + τω)
]

θ∗(y) = εω(1 + τω)e∗(y) , (25)

[

D2 − a2 − ω2 + Ω2
]

e∗(y) = (D2 − a2)θ∗(y) + 2Ωωζ∗ , (26)

[

D2 − a2 − β2(ω2 − Ω2)
]

ζ∗(y) = −2β2ωΩe∗ . (27)

where D = ∂
∂y

.

Eliminating θ∗(y) and ζ∗(y) between Eqs. (23)–(25), we get the following sixth-
order partial differential equation satisfied by e∗(y)

(

D6 − a1D
4 + a2D

2 − a3

)

e∗(y) = 0 . (28)

where,

a1 = 3a2 + b1 , (29)

a2 = 3a4 + 2a2b1 + b2 , (30)

a3 = a6 + a4b1 + a2b2 + b3 , (31)

b1 = (β2 + 1)ω2 + (ε + 1)ω1 , (32)

b2 = β2ω2(ω1 + ω2 + εω1) + ω1ω2 + 4ω2Ω2β2 , (33)

b3 = β2ω1(ω
2
2 + 4ω2Ω2) , (34)

ω1 = ω(1 + τω), ω2 = ω2 − Ω2 . (35)

Equation (26) can be factorized as

(

D2 − k2
1

) (

D2 − k2
2

) (

D2 − k2
3

)

e∗(y) = 0 . (36)

where kj , j = 1, 2, 3 are the roots of the following characteristic equation

k6 − a1k
4 + a2k

2 − a3 = 0 . (37)
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The solution of Eq. (34) is given by:

e∗(y) =
3

∑

j=1

e∗j (y) . (38)

where e∗j (y) is the solution of the equation

(

D2 − k2
j

)

e∗j (y) = 0 j = 1, 2, 3 . (39)

The solution of Eq. (37), which is bounded as y → ∞, is given by

e∗j (y) = Rj(a, ω)e−kj y . (40)

Substituting from Eq.(38) into the Eq. (36), we obtain:

e∗(y) =
3

∑

j=1

Rj(a, ω)e−kjy . (41)

In a similar manner, we get

θ∗(y) =
3

∑

j=1

R′

j(a, ω)e−kjy , (42)

ζ∗(y) =

3
∑

j=1

R′′

j (a, ω)e−kjy . (43)

where Rj(a, ω), R′

j(a, ω), and R′′

j (a, ω) are parameters depending on a and ω.
Substituting from Eqs. (39)-(41) into Eqs. (23) and (25), we obtain

R′

j(a, ω) =
εω1

k2
j − a2 − ω1

Rj(a, ω), j = 1, 2, 3 , (44)

R′′

j (a, ω) =
−2ωΩβ2

k2
j − a2 − β2ω2

Rj(a, ω) j = 1, 2, 3 . (45)

Substituting from Eqs. (42) and (43) into Eqs. (40) and (41), respectively, we
obtain

θ∗(y) =
3

∑

j=1

εω1

k2
j − a2 − ω1

Rj(a, ω)e−kjy , (46)

ζ∗(y) =

3
∑

j=1

−2ωΩβ2

k2
j − a2 − β2ω2

Rj(a, ω)e−kjy . (47)

Since,
e∗ = iau∗ + Dv∗ , (48)

ζ∗ = Du∗ − iav∗ . (49)
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In order to obtain the amplitude of displacement components u∗ and v∗, which
are bounded as y → ∞, from Eqs. (39), (41), (46) and (47) we can obtain

u∗(y) =

3
∑

j=1

1

k2
j − a2

[

ia +
2ωΩβ2kj

k2
j − a2 − β2ω2

]

Rj(a, ω)e−kjy , (50)

v∗(y) = −
3

∑

j=1

1

k2
j − a2

[

kj −
2iaωΩβ2

k2
j − a2 − β2ω2

]

Rj(a, ω)e−kjy . (51)

In terms of Eq. (22), substituting from Eqs. (39), (44), (45), (48) and (49) into
Eqs. (16)–(19), respectively, we obtain the stress components in the form

σ∗

xx(y) =

3
∑

j=1

{[

β2 − 2 − 2a2

k2
j − a2

− εω1β
2

k2
j − a2 − ω1

]

+i
4aωΩβ2kj

(k2
j − a2)[k2

j − a2 − β2ω2]

}

Rje
−kjy , (52)

σ∗

yy(y) =

3
∑

j=1

{

−4iaωΩβ2kj

(k2
j − a2)[k2

j − a2 − β2ω2]
+ β2 − 2 +

2k2
j

k2
j − a2

− εω1β
2

k2
j − a2 − ω1

}

Rje
−kjy , (53)

σ∗

xy(y) = −
3

∑

j=1

{

2ωΩβ2(k2
j + a2)

(k2
j − a2)[k2

j − a2 − β2ω2]
+

2iakj

(k2
j − a2)

}

Rje
−kjy , (54)

σ∗

zz(y) =

3
∑

j=1

{

β2 − 2 − εω1β
2

k2
j − a2 − ω1

}

Rje
−kjy . (55)

The normal mode analysis is, in fact, to look for the solution in Fourier transformed
domain. This assumes that all the field quantities are sufficiently smooth on the
real line such that the normal mode analysis of these functions exist.

4. Applications

4.1. Problem I: A time-dependent heat punch across the surface of
semi-infinite thermo-elastic half space [19]

.
We consider a homogeneous isotropic thermo-elastic solid occupying the region

G given by

G = {(x, y, z) | −∞ < x < ∞ , 0 ≥ y, −∞ < z < ∞} .

The constants R1, R2 and R3 have to be chosen such that the boundary conditions
on the surface y = 0 take the form

θ(x, y, t) = n(x, t) on y = 0 , (56)
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σyy(x, y, t) = P (x, t) y = 0 , (57)

σxy(x, y, t) = 0 on y = 0 , (58)

where n, P are given functions of x and t.
Eqs. (56)–(58) in the normal mode form together with Eqs. (46), (53) and (54)

respectively, give
L1R1 + L2R2 + L3R3 = n∗(a, ω) , (59)

M1R1 + M2R2 + M3L3 = P ∗(a, ω) , (60)

N1R1 + N2R2 + N3R3 = 0 . (61)

Eqs. (59)–(61) can be solved for the three unknowns R1, R2 and R3 one obtains

R1 =
1

∆
[(λ1∆1 + λ2∆2) + i(λ2∆1 − λ1∆2)] , (62)

R2 =
1

∆
[(λ3∆1 + λ4∆2) + i(λ4∆1 − λ3∆2)] , (63)

R3 =
1

∆
[(λ5∆1 + λ6∆2) + i(λ6∆1 − λ5∆2)] . (64)

Lj =
εω1

αj

, j = 1, 2, 3 , (65)

αj =
[

k2
j − a2 − ω1

]

, βj =
[

k2
j − a2 − β2ω2

]

, j = 1, 2, 3 , (66)

Mj = (αj1 − iβj1) , j = 1, 2, 3 , (67)

Nj = (αj2 + iβj2) , j = 1, 2, 3 , (68)

αj1 =

[

β2 − 2 +
2k2

j

k2
j − a2

− εω1β
2

αj

]

, j = 1, 2, 3 , (69)

βj1 =
4aωΩβ2kj

(k2
j − a2)βj

, j = 1, 2, 3 , (70)

αj2 =
2ωΩβ2(k2

j + a2)

(k2
j − a2)βj

, j = 1, 2, 3 (71)

βj2 =
2akj

k2
j − a2

, j = 1, 2, 3 , (72)

λ1 = n∗(α21α32 + β21β32 − α31α22 − β31β22) − P ∗(L2α32 − L3α22) , (73)

λ2 = n∗(α21β32 − α32β21 + α22β31 − α31β22) − P ∗(L2β32 − L3β22) , (74)

λ3 = P ∗(L1α32 − L3α12) − n∗(α11α32 + β11β32 − α31α12 − β31β12) , (75)

λ4 = P ∗(L1β32 − L2β12) − n∗(α11β32 − α32β11 + α12β31 − α31β12) , (76)

λ5 = n∗(α11α22 + β11β22 − α21α12 − β21β12) − P ∗(L1α22 − L2α12) , (77)

λ6 = n∗(α11β22 − α22β11 − α21β12 + α12β21) − P ∗(L1β22 − L2β12) , (78)
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∆1 = L1 (α21α32 + β21β32 − α31α22 − β31β22) − L2(α11α32 − β11β32

−α31α12 − β31β12) + L3(α11α22 + β11β22 − α21α12 − β21β12) , (79)

∆2 = L1 (α21β32 − α32β21 + α22β31 − α31β22) − L2(α11β32 − α32β11

+α12β31 − α31β12) + L3(α11β22 + α22β11 − α21β12 + α12β21) , (80)

∆ = ∆2
1 + ∆2

2 . (81)

4.2. Problem II: A plate subjected to time-dependent heat sources on
both sides [20]

We shall consider a homogeneous isotropic thermo-elastic infinite conductivity thick
flat plate of a finite thickness 2L occupying the region G∗ given by:

G∗ = {(x, y, z) | −∞ < x < ∞ , −L ≤ y ≤ L , −∞ < z < ∞}

with the middle surface of the plate coinciding with the plane y = 0.
The boundary conditions of the problem are taken as:

(i) The thermal boundary condition

qn + h0θ0 = r(x, t) on y = ±L , (82)

where qn denotes the normal component of the heat flux vector, h0 is Biot’s
number and r(x, t) represents the intensity of the applied heat sources. We
now make use of the generalized Fourier’s law of heat conduction in the non-
dimensional form, namely,

qn + τ
∂qn

∂t
= − ∂θ

∂n
(83)

Eq. (83) in the normal mode form

q∗n = − 1

1 + τω

∂θ∗

∂n
. (84)

Combining Eqs. (46), (83) and (84) we arrive at

S1R1 + S2R2 + S3R3 = (1 + τω)r∗ . (85)

(ii) The normal and tangential stress components are zero on both surfaces of the
plate; thus,

σyy = 0 on y = ±L , (86)

σxy = 0 on y = ±L . (87)

Equations (86) and (87) in the normal mode form together with Eqs. (53) and
(55) respectively give:

M1R1 cosh(k1L) + M2R2 cosh(k2L) + M3R3 cosh(k3L) = 0 , (88)
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N1R1 sinh(k1L) + N2R2 sinh(k2L) + N3R3 sinh(k3L) = 0 . (89)

Equations (85), (88) and (89) can be solved for the three unknowns R1, R2

and R3.

R1 =
(1 + τω)r∗

εω1∆∗ cosh(k1L)
[(λ7∆3 + λ8∆4) + i(λ8∆3 − λ7∆4)] , (90)

R2 = − (1 + τω)r∗

∆∗ cosh(k1L)
[(λ9∆3 + λ10∆4) + i(λ10∆3 − λ9∆4)] , (91)

R3 =
(1 + τω)r∗

∆∗ cosh(k1L)
[(λ11∆3 + λ12∆4) + i(λ12∆3 − λ11∆4)] , (92)

where

Sj =
εω1

αj

[−kj sinh(kjL) + h0(1 + τω) cosh(kjL)] , j = 1, 2, 3 , (93)

λ7 = (α21α32 + β21β32) tanh(k3L) − (α31α22 + β31β22) tanh(k2L) , (94)

λ8 = (α21β32 − α32β21) tanh(k3L) − (α31β22 − α22β31) tanh(k2L) , (95)

λ9 =

[

k3α22

α3

− k2α32

α2

]

tanh(k2L) tanh(k3L)

+h0(1 + τω)

[

α32

α2

tanh(k3L) − α22

α3

tanh(k2L)

]

, (96)

λ10 =

[

k3β22

α3

− k2β32

α2

]

tanh(k2L) tanh(k3L)

+h0(1 + τω)

[

β32

α2

tanh(k3L) − β22

α3

tanh(k2L)

]

, (97)

λ11 =
k3α21

α3

tanh(k3L)−k2α31

α2

tanh(k2L)+h0 (1 + τω)

(

α31

α2

− α21

α3

)

, (98)

λ12 =
k2β31

α2

tanh(k2L)− k3β21

α3

tanh(k3L)+h0 (1 + τω)

(

β21

α1

− β31

α2

)

, (99)

∆3 =
λ1

α1

[−k1 tanh(k1L) + h0(1 + τω)] − α11λ3 + α12λ5 tanh(k1L)

−β11λ4 − β12λ6 tanh(k1L) , (100)

∆4 =
λ2

α1

[−k1 tanh(k1L) + h0(1 + τω)] − α11λ4 + α12λ6 tanh(k1L)

−β11λ3 − β12λ5 tanh(k1L) , (101)

∆∗ = ∆2
3 + ∆2

4 . (102)
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5. Numerical results

The copper material was chosen for the purpose of numerical evaluations. Since
we have ω = ω0 + iζ, where i is imaginary unit, eωt = eω0t(cos ζt + i sin ζt) and
for small values of time, we can take ω = ω0 (real). The numerical constants of
the problems were taken as: ε = 0.0168, β = 3.5, ρ = 8954, τ = 0.05, n∗ = 100,
P ∗ = 10, h0 = 50, r∗ = 10, a = 0.5, ω = 0.5. The computations were carried out for
a value of time t = 0.3. The numerical technique, outlined above, was used for the
real part of the thermal temperature θ distribution, the displacement distribution
u and the stress distribution σxx for each problem, for problem I on the plane y = 6
and for problem II on plane y = 2, where L = 4 and on the middle plane y = 0 for
two different values of Ω = 0 and Ω = 0.01. The results are shown in Figs. 1–9.

The graph shows the four curves predicted by different theories of thermo-
elasticity. In these figures, the solid lines represent the solution corresponding to
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Figure 4 Temperature distribution θ on the surface for the Problem II

using the Coupled theory (CD) of heat conduction (τ = 0) the dashed lines repre-
sent the solution for Lord-Shulman’s theory (τ = 0.05). It can be seen from these
figures that the rotation acts to decrease the magnitude of the real part of the
temperature, displacement and the stress component.

We notice also, that results for the temperature, the components of displacement
and stress distributions when the relaxation time is appeared in the heat equation
are distinctly different from those the relaxation time is not mentioned in the heat
equation. This due to the fact that thermal waves in the Fourier theory of heat
equation travel with an infinite speed of propagation as opposed to finite speed in
the non-Fourier case. This demonstrates clearly the difference between the coupled
and the generalized theories of thermo-elasticity.
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Figure 9 Stress distribution σxx on the middle plane for the Problem II

6. Concluding remarks

Due to the complicated nature of the governing equations for generalized thermo-
elasticity, with thermal relaxation, few attempts have been made to solve problems
in this field [21]; these attempts utilized an approximate method that is valid only
for a specific range of some parameters.

In this work the method of normal mode analysis is introduced in the field of
thermo-elasticity and applied to two specific problems in which the temperature,
displacement and stress are coupled. This method gives exact solutions without
any assumed restrictions on temperature, displacement and stress distributions.

The normal mode analysis is applied to a wide range of problems in different
branches [17, 22]. It can be applied to boundary-layer problems, which are described
by the linearized Navier-Stokes equations in hydrodynamic [23, 25].
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Nomenclature

λ, µ Lame’s constants
ρ density
CE specific heat at constant strain
t time
T absolute temperature

T0 reference temperature chosen so that:
∣

∣

∣

T−T0

T0

∣

∣

∣
≪ 1

σij components of stress tensor
εij components of strain tensor
ui components of displacement vector
Ω the rotation
k thermal conductivity

c2
0

λ+2µ
ρ

c2

√

µ
ρ

velocity of transverse waves

β2 c2

0

c2

2

τ one relaxation time

e
(

∂u
∂x

)

+
(

∂v
∂y

)

, the dilatation

αt coefficient of linear thermal expansion
γ (3λ + 2µ)αt

ε γ2T0/ρCE (λ + 2µ)
η0 ρCE/k


