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The dynamic response of a homogeneous, isotropic, generalized thermoelastic half- space
with voids subjected to normal, tangential force and thermal source is investigated. The
displacements, stresses, temperature distribution and change in volume fraction field so
obtained in the physical domain are computed numerically and illustrated graphically.
The numerical results of these quantities for magnesium crystal-like material are illus-
trated to depict voids effect in the Lord-Shulman (L-S) theory and Green-Lindsay (G-L)
theory for an insulated boundary and temperature gradient boundary.
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1. Introduction

Theory of linear elastic materials with voids is one of the most important gener-
alizations of the classical theory of elasticity. This theory has practical utility for
investigating various types of geological and biological materials for which elastic
theory is inadequate. This theory is concerned with elastic materials consisting of a
distribution of small pores (voids), in which the void volume is included among the
kinematics variables and in the limiting case of volume tending to zero, the theory
reduces to the classical theory of elasticity.

A nonlinear theory of elastic materials with voids was developed by Nunziato and
Cowin [1]. Later, Cowin and Nunziato [2] developed a theory of linear elastic ma-
terials with voids for the mathematical study of the mechanical behavior of porous
solids. They considered several applications of the linear theory b y investigating
the response of the materials to homogeneous deformations, pure bending of beams
and small amplitudes of acoustic waves. Puri and Cowin [3] studied the behavior of
plane waves in a linear elastic materials with voids. Domain of influence theorem
in the linear theory of elastic materials with voids was discussed by Dhaliwal and
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Wang [ 4]. Scarpetta [5] studied well posedness theorems for linear elastic materi-
als with voids. Birsan [6] established existence and uniqueness of weak solution in
the linear theory of elastic shells with voids. Ciarletta, Iovane and Sumbatyan [7]
studied stress analysis for cracks in elastic materials with voids.

Rusu [8] studied the existence and uniqueness in thermoelastic materials with
voids. Saccomandi [9] presented some remarks about the thermoelastic theory of
materials with voids. Ciarletta and Scalia [10] discussed the nonlinear theory of non
simple thermoelastic materials with voids. Ciarletta and Scarpetta [11] discussed
some results on thermoelasticity for dielectric materials with voids. Dhaliwal and
Wang [12] developed a heat flux dependent theory of thermoelasticity with voids.
Marin [13,14] studied uniqueness and domain of influence results in thermoelastic
bodies with voids. Marin [15] presented the contributions on uniqueness in ther-
moelastodynamics on bodies with voids. Marin and Salca [16] obtained the relation
of Knopoff-de Hoop type in thermoelasticity of dipolar bodies with voids. Chirita
and Scalia [17] studied the spatial and temporal behavior in linear thermoelasticity
of materials with voids. Pompei and Scalia [18] studied the asymptotic spatial be-
havior in linear thermoelasticity of materials with voids. The present investigation
is to determine the components of displacement, stress, temperature distribution
and change in volume fraction field in a homogeneous, isotropic, generalized ther-
moelastic half-space with voids due to normal, tangential force and thermal source.

2. Basic equations

Following Lord-Shulman [19], Green-Lindsay [20] and Iesan [21] the field equations
and constitutive relations in generalized thermoelastic solid with voids without body
forces, heat sources and extrinsic equilibrated body force can be written as

µ∇2−→u + (λ+ µ)∇(∇.−→u ) + b∇φ− β∇(T + δ2kτ1Ṫ ) = ρ−̈→u , (1)

α∇22φ− b(∇.−→u ) − ζ1φ+mT = ρξφ̈ , (2)

K∇2T − βT0(∇.−̈→u + τ0delta1k∇.−̈→u −mT0φ̇ = ρce(Ṫ + τ0T̈ ) . (3)

and

tij = λuk,kδij + µ(ui,juj,i) + bφδij − β(T + δ2kτ1Ṫ )δij , (i, j = x, y, x) . (4)

In equations (1)–(4), we have used the notations: λ, µ – Lame’s constants, α, b,
ζ1, m, ξ - material constants due to presence of voids, T – temperature change,
β = (3λ + 2µ)αt, αt – linear thermal expansion, −→u – displacement vector, tij –
stress tensor, ρ, ce – density and specific heat at constant strain, respectively, K –
thermal conductivity, φ – change in volume fraction field, δij – Kronecker delta, T0

– uniform temperature; a superposed dot represents differentiation with respect to
time variable t, τ0, τ1 are thermal relaxation times. For L-S theory, τ10, δ1k = 1
and for G-L theory τ1 > 0, δ1k = 0 (i.e., k = 1 for L-S theory and k = 2 for G-L
theory). The thermal relaxations satisfy the inequality τ1 ≥ τ0 > 0 for the G-L
theory only,

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
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∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

are the gradient and Laplacian operators respectively.

3. Formulation of the problem

We consider a homogeneous, isotropic, thermally conducting elastic half-space with
voids in the undeformed state at uniform temp erature T0. The rectangular Carte-
sian co-ordinate system (x, y, z) having origin on the plane surface z = 0 with z-axis
pointing vertically into the medium is introduced. A concentrated, uniformly and
linearly distributed normal, tangential force or thermal source, is assumed to be
acting at the origin of the rectangular Cartesian co-ordinates.

For two-dimensional problem, we assume −→u = (u, 0, w) in equations (1)–(4).
The initial and regularity conditions are given by:

u(x, z, 0) = 0 = u̇(x, z, 0) ,

w(x, z, 0) = 0 = ẇ(x, z, 0) ,

φ(x, z, 0) = φ̇(x, z, 0) ,

T (x, z, 0) = Ṫ (x, z, 0) for z ≥ 0 , −∞ < x <∞ , (5)

u(x, z, t) = w(x, z, t) = φ(x, z, t) = T (x, z, t) = 0 for t > 0 , when z → ∞ . (6)

We consider two types of boundary conditions

• Mechanical sources on the surface of half-space.

The boundary conditions in this case are

tzz(x, z, t) = −ψ(x)H(t) , tzx(x, z, t) = −ζ(x)H(t) ,

∂φ

∂z
= 0 ,

∂T

∂z
+ hT = 0 at z = 0 , (7)

where H(t) is the Heaviside unit step function and ψ(x) specify the vertical
and horizontal source distribution functions respectively along the x-axis. h
is the heat transfer coefficient.

• Thermoelastic interactions due to thermal point sources.

The boundary conditions in this case are

tzz = 0 , tzx = 0 ,
∂φ

∂z
= 0 at z = 0 ,

∂T

∂z
(x, z = 0) = r(x, t) at z = 0

for the temperature gradient boundary, or,

T (x, z = 0) = r(x, t) at z = 0 , (8)

for the temperature input boundary, where r(x, t) = η(x)H(t).
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4. Solution of the problem

To transform the equations (1)–(4) to nondimensional form, we define the following
variables

x′ =
ω∗

1

c2
x , z′ =

ω∗
1

c2
z t′ = ω∗

1t ,

u′ =
ω∗

1

c2
u , w′ =

ω∗
1

c2
w T ′ =

T

T0

,

φ′ =
ω∗

1ξ

c22
, ǫ1 =

βc22
Kω∗

1

, τ ′0 = ω∗
1τ0 ,

τ ′1 = ω∗
1τ1 , a′ =

ω∗
1

c2
a , (9)

t′zz =
tzz

βT0

, t′zx =
tzx

βT0

, h′ =
hc2

ω∗
1

. (10)

where

c2 =

(

µ

ρ

)
1

2

and ω∗
1 =

ρcec
2
2

K
.

The displacement components can be written as

u =
∂ψ1

∂x
− ∂ψ2

∂z
, w =

∂ψ1

∂z
+
∂ψ2

∂x
, (11)

where ψ1(x, z, t), and ψ2(x, z, t) are scalar potential functions.

Applying the Laplace and Fourier transforms

f̂(x, z, p) =

∫ ∞

0

e−ptdt

f̃(ξ, z, p) =

∫ ∞

−∞

f̃(x, z, p)eiξxdx . (12)

on equations (1)–(3), after using (9), (11) (suppressing the primes for convenience)
and eliminating ψ̃, φ̃, T̃ and ψ̃2 from the resulting expressions, we obtain

(

d6

dz6
+Q

d4

dz4
+N

d2

dz2
+ I

)

(

ψ̃1, φ̃, T̃
)

= 0 , (13)

and
(

d2

dz2
− λ2

4

)

ψ̃2 = 0 , (14)
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where

Q =
1

b1

[

b1(b3 − b5 − 3ζ2) − p2 + a2a4 − b2b4ǫ1
]

,

N =
1

b1

[

(a6a8p− b3b5 − 2b3ζ
2 + 2b5ζ + 3ζ4)b1 − p2(b3 − b5 − 2ζ2) +

a2(a4b5 − 2a4ζ
2 − a6ǫ1b4) + b2(ǫ1b3b4 − 2ǫ1b4ζ

2 − a4a8p)
]

I = − 1

b1

{

b1ζ
6 − ζ4(p2 + b1b3 − b1b5 + a2a4 + b2b4) + ζ2

[

b3p
2 + b5p

2+

b1a6a8p− b1b3b5 − a2a4b5 − ǫ1b4(a2a6 − b2b3)} + p2(a6a8p+ b3b5)
]

,

b1 = (1 + a1) , b2 = a3(1 + τ1δ2kω
∗
1p) , b3 = a7p

2 + a5 ,

b4 = (p+ p2τ0δikω
∗
1) , b5 = (p+ p2τ0ω

∗
1) , λ2

4 = ζ2 + p2 ,

a1 =
λ+ µ

µ
, a2 =

bc22
χµω∗

1

, a3 =
βT0

µ
, a4 =

bχ

α
, a5 =

ζ1c
2
2

ω∗2
1 α

,

a6 =
mχT0

α
, a7 =

ρχc22
α

, a8 =
mc42

ω∗3
1 χK

.

The roots of equations (13) and (14) are ±λl, l = 1, 2, 3, 4. Assuming the
regularity condition (6), the solutions of equations (13) and (14) may be written as

ψ̃1 = A1e
λ1z +A2e

λ2z +A3e
λ3z , (15)

φ̃ = d1A1e
λ1z + d2A2e

λ2z + d3A3e
λ3z (16)

T̃ = e1A1e
λ1z + e2A2e

λ2z + e3A3e
λ3z (17)

ψ̃2 = A4e
λ4z (18)

where

el =
U∗λ2

l + V ∗

a2λ
2
l + T ∗

, dl =
P ∗λ2

l +Q∗

R∗λ2
l + S∗

, (l = 1, 2, 3) ,

U∗ = a2b4ǫ1 + pb1a8 , V ∗ = −p∗ − ζ2(b1 + ǫ1a2b4) ,

T ∗ = b2a8p− a2

(

ζ2 + b5
)

, p∗ =
a4

a6

− b1

b2
,

R∗ =
1

a6

, Q∗ =
1

b2
(ζ2b1 + p2) − a4ζ

2

a6

,

S∗ =
a2

b2
+

(

b3 − ζ2

a6

)

,

with Al, l = 1, 2, 3, 4 being arbitrary constants.

5. Applications

5.1. Mechanical sources on the surface of half-space

Applying the Laplace and Fourier transforms defined by (12) to the boundary con-
ditions (7), we get

t̃zz(ξ, z, p) = − ψ̃(ξ)

p
, t̃zx(ξ, z, p) = − ζ̃(ξ)

p
,

dφ̃

dz
= 0 ,

dT̃

dz
= hT̃ = 0 at z = 0 .

(19)
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Making use of equations (4)–(5), (9)–(11), applying the transforms defined by
(12) and substituting the values of ψ̃1, ψ̃2, T̃ , φ̃ from equations (15)–(18) in the
boundary conditions (19), we obtain the expressions for the components of displace-
ment, stress, temperature distribution and change in volume fraction field as

ũ = − iξ

p∆

[

ψ̃(ξ)(∆1e
−λ1z − ∆3e

−λ2z + ∆5e
−λ3z − ∆7e

−λ4z)

+ζ̃(ξ)(∆2e
−λ1z − ∆4e

−λ2z + ∆6e
−λ3z − ∆8e

−λ4z)
]

,

w̃ = − 1

p∆

[

ψ̃(ξ)(λ1∆1e
−λ1z − λ2∆3e

−λ2z + λ3∆5e
−λ3z − iξ∆7e

−λ4z)

+ζ̃(ξ)(λ1∆2e
−λ1z − λ2∆4e

−λ2z + λ3∆6e
−λ3z − iξ∆8e

−λ4z) ,

t̃zz =
1

p∆

[

ψ̃(ξ)(s1∆1e
−λ1z − s2∆3e

−λ2z + s3∆5e
−λ3z − s4∆7e

−λ4z)

+ζ̃(ξ)(s1∆1e
−λ1z − s2∆4e

−λ2z + s3∆6e
−λ3z − s4∆8e

−λ4z) ,

t̃zx =
1

p∆

[

ψ̃(ξ)(λ1∆1e
−λ1z − λ2∆3e

−λ2z + λ3∆5e
−λ3z + n1∆7e

−λ4z)

+ζ̃(ξ)(λ1∆2e
−λ1z − λ2∆4e

−λ2z + λ3∆6e
−λ3z + n1∆8e

−λ4z) ,

T̃ =
1

p∆

[

ψ̃(ξ)(e1∆1e
−λ1z − ∆3e

−λ2z + ∆5e
−λ3z − ∆7e

−λ4z)

+ζ̃(ξ)
[

ψ̃(ζ)(e1∆2e
−λ1z − e2∆4e

−λ2z + e3∆6e
−λ3z)

φ̃ =
1

p∆

[

ψ̃(ξ)(d1∆1e
−λ1z − d2∆3e

−λ2z + d3∆5e
−λ3z)

+ζ̃(ξ)(d1∆2e
−λ1z − d2∆4e

−λ2z + d3∆6e
−λ3z)

]

, (20)

where

∆ = ∆∗
1 + d∆∗

2 ,

∆∗
1 = λ2λ3(s4λ1 − n1s1)(d3e2 − d2e3)λ1λ3(s4λ2 + n1s2)(d1e3 + e1d3) +

λ1λ2(s4λ3 + n1s3)(d1e2 − e1d2) ,

∆∗
2 = (s4λ1 − n1s1)(e3λ2d2 − e2d3λ3) + (e3λ1d1 − e1λ3d3)(s4λ2 + n1s2) −

(s4λ3 + n1s3)(e1λ2d2 − e2λ1d1) ,

∆1,2 = (n1, s4)∆10 , ∆3,4 = (−n1, s4)∆20 , ∆5,6 = (−n1, s4)∆30 ,

∆7 = {λ1λ2λ3[e3(d1 − d2) + e2(d3 − d1) − e1(d3 − d2)] + h [λ1(e3d2λ2 − e2d3λ3)−
[λ2(e3λ1d1 − e2λ3d3) + λ3(λ1d1e2 − e1λ2d2)]} (d1e2 − e1d2) ,

∆8 = {[s2λ1λ3(d1e3 − e1d2) + s1λ2λ3(e2d3 − e3d2) − s3λ2λ1(e1d2 − e2d1)]+

h[s1(e3d2λ2 − e2d3λ3) − s2(e3λ1d1 − e1λ3d3) + s3(λ1d1e2 − e1λ2d2)]} ,
∆10 = (e2d3 − d2e3)λ2λ3 + h(e3λ2d2 − λ3d3e2) ,

∆20 = (e1d3 − d1e3)λ1λ3 + h(e3λ1d1 − e1λ3d3) ,
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sl =
−iξλ
βT0

, s′20 =
−(λ+ 2µ)

βT0

, s′30 =
bc22

βT0ω
∗
1χ

,

s′40 = (1 + pτ1δ2k) , n1 =
λ2

4 + ξ2

2iξ
.

5.1.1. Case: Concentrated force

In this case

ψ(x) = Pδ(x) , ζ(x)Pδ(x) ,

with

ψ̃(ξ) = P , ζ̃(ξ)P , (21)

where P is the magnitude of the force and δ(x) is Dirac delta function.

5.1.2. Case: Uniformly distributed force

The solution due to uniformly distributed force applied on the half-space surface is
obtained by setting

{ψ(x), ζ(x)} =

{

1 if |x| ≤ a ,

0 if |x| > a .

in equation (7). The Laplace and Fourier transforms with respect to the pair (x, ξ)
for the case of a uniform strip load of unit amplitude and width 2a applied at origin
of the coordinate system (x = z = 0) in dimensionless form after suppressing the
primes becomes

{ψ(x), ζ(x)} =

[

2 sin

( ξc2a

ω∗

1

ξ

)]

, ξ 6= 0 . (22)

5.1.3. Case: Linearly distributed force

The solution due to linearly distributed force applied on the half-space surface is
obtained by setting

{ψ(x), ζ(x)} =

{

1 − |x|
a

if |x| ≤ a ,

0 if |x| > a .

in equation (7), where 2a is the width of strip load. Using equations (9)–(10) (after
suppressing the primes) and applying the transforms defined by equation (12), we
get

{

ψ̃(ξ), ζ̃(ξ)
}

=
2
[

1 − cos
(

ξc2a

ω∗

1

)]

ξ2c2a

ω∗

1

(23)

The expressions for displacements, stresses, temperature distribution and change
in volume fraction field can be obtained for concentrated, uniformly and linearly
distributed force by replacing ψ̃(ξ), ζ̃(ξ) from equations (21)–(23), respectively, in
equation (20).
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5.1.4. Particular case [ 5.1.1]

If we neglect the voids effect i.e., (α = b = ξ1 = m = χ = 0) in equation (20),
we obtain the components of displacement, stress and temperature distribution in
generalized thermoelastic half-space as

ũ = − 1

p∆∗∗

[

ψ̃(ξ)(−iξ[∆∗∗
3 e

−λ∗

1
z − ∆∗∗

4 e
−λ∗

2
z) + ∆∗∗

5 λ4e
−λ4z]+

+ζ̃(ξ)(iξ(∆∗∗
6 e

−λ∗

1
z + ∆∗∗

7 e
−λ∗

2
z) − ∆∗∗

8 e
−λ4z)

]

,

w̃ = − 1

p∆∗∗

[

ψ̃(ξ)(λ∗1∆
∗∗
3 e

−λ∗

1
z + λ2∆

∗∗
4 e

−λ∗

2
z + iξ∆∗∗

5 e
−λ4z)−

+ζ̃(ξ)(λ∗1∆
∗∗
6 e

−λ∗

1
z + λ∗2∆

∗∗
7 e

−λ∗

2
z − iξ∆∗∗

8 e
−λ4z) ,

t̃zz =
1

p∆∗∗

[

ψ̃(ξ)(s∗1∆
∗∗
3 e

−λ∗

1
z + s∗2∆

∗∗
4 e

−λ∗

2
z + s3∆

∗∗
5 e

−λ4z)−

+ζ̃(ξ)(s∗1∆
∗∗
6 e

−λ∗

1
z + s∗2∆

∗∗
7 e

−λ∗

2
z + s∗3∆

∗∗
8 e

−λ4z) ,

t̃zx =
1

p∆∗∗

[

ψ̃(ξ)(λ∗1∆
∗∗
3 e

−λ∗

1
z + λ∗2∆

∗∗
4 e

−λ∗

2
z − n1∆

∗∗
5 e

−λ4z)

+ζ̃(ξ)(λ∗1∆
∗∗
6 e

−λ∗

1
z + λ∗2∆

∗∗
7 e

−λ∗

2
z − n1∆

∗∗
8 e

−λ4z) ,

T̃ =
1

p∆∗∗

[

ψ̃(ξ)(e∗1∆
∗∗
3 e

−λ∗

1
z + e∗2∆

∗∗
4 e

−λ∗

2
z)

+ζ̃(ξ)
[

ψ̃(ζ)(e∗1∆
∗∗
6 e

−λ∗

1
z + e∗2∆

∗∗
7 e

−λ∗

2
z) . (24)

where

∆∗∗ = ∆∗∗
1 + d∆∗∗

2 ,

∆∗∗
1 = −(s∗1e

∗
2λ2 − s∗2e

∗
1λ1)n1(s

∗
3e

∗
2 − e∗1)λ

∗
1λ

∗
2 ,

∆∗∗
2 = (s∗1e

∗
2 − s∗2e

∗
1)n1 + s∗3e

∗
2λ

∗
1 − e∗1λ

∗
2 ,

∆∗∗
3 = −(λ∗2 − h)e∗2n1 , ∆∗∗

4 = −(λ∗1 + h)e∗1n1 ,

∆∗∗
5 = (e∗1 − e∗2)λ

∗
1λ

∗
2 + h(e∗2λ

∗
1 − e∗1λ

∗
2) , ∆∗∗

6 = (λ∗2 − h)e∗2s
∗
3 ,

∆∗∗
7 = (λ∗1 + h)e1s3 , ∆8 = −(e∗1s

∗
2λ

∗
1 − e∗2s

∗
1λ

∗
2) + h(e2s3 − s2e1) ,

λ∗2l =
−A+ (−1)l+1

√
A2 − 4B

2
; l = 1, 2

A =
p2 + (2ξ2 + b5)b1 + ǫ1b2b4

b1
, B =

(p2 + ξ2b1)(ξ
2 + b5) + ǫ1b2b4ξ

2

b1
,

s∗l = −iξs′10 − λ∗2l s
′
20 − e∗l , l = 1, 2 , s∗3 = s′10 − iξs′20)λ4 ,

e∗l =
b1λ

∗2
l − p2 − b1ξ

2

b2
, l = 1, 2 .

The expressions for displacements, stresses and temperature distribution can be
obtained for concentrated, uniformly and linearly distributed force by replacing
ψ̃(ξ, ζ̃(ξ) from equations (21)–(23), respectively, in equation (24).
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5.2. Thermoelastic interactions due to thermal source

Applying the Laplace and Fourier transforms defined by (12), to the boundary
conditions (8) we get

t̃zz = 0 , t̃zx = 0 , at z = 0 ,

or
dT̃

dz
(ξ.z = 0) = r(ξ, p) at z = 0 ,

for the temperature gradient boundary,

T̃ (ξ, z = 0) = r(ξ, p) at z = 0 , (25)

for the temperature input boundary, where

r(ξ, p) =
η̃(ξ)

p
.

Making use of equations (4)–(5), (9)–(11) applying the transforms defined by
(12) and substituting the values of ψ̃1, ψ̃2, T̃ , φ̃ from equations (15)–(18) in the
boundary conditions (25), we obtain the expressions for the components of displace-
ment, stress, temperature distribution and change in volume fraction field as

ũ = −η1
[

iξ(∆′
1e

−λ1z − ∆′
2e

−λ2z + ∆′
3e

λ3z) − ∆′
4λ4e

−λ4z
]

w̃ = −η1
(

λ1∆
′
1e

−λ1z − λ2∆
′
2e

−λ2z + λ3∆
′
3e

−λ3z − iξ∆′
4e

−λ4z
)

,

t̃zz = −η1
(

s1∆
′
1e

−λ∗

1
z − s2∆

′
2e

−λ2z + s3∆
′
3e

−λ3z − s4∆
′
4e

−λ4z
)

,

t̃zx = −η1
(

λ1∆
′
1e

−λ1z − λ2∆
′
2e

−λ2z + λ3∆
′
3e

−λ3z + n1∆
′
4e

−λ4z
)

,

T̃ = −η1
(

e1∆
′
1e

−λ1z − e2∆
′
2e

−λ2z + e3∆
′
3e

−λ3z
)

,

φ̃ = −η1
(

d1∆
′
1e

−λ1z − d2∆
′
2e

−λ2z + d3∆
′
3e

−λ3z
)

, (26)

where

∆′
1 = s4λ2λ3(d3 − d2) + n1(s2λ3d3 − s3λ2d2) ,

∆′
2 = s4λ1λ3(d3 − d1) + n1(s1λ3d3 − s3λ1d1) ,

∆′
3 = s4λ1λ2(d2 − d1) + n1(s1λ2d2 − s2λ1d1) ,

∆′
4 = s1λ2λ3(d3 − d2) + s2λ1λ3(d1 − d3) + s3λ1λ2(d2 − d1)) ,

η1 =
η̃(ξ)

p∆
.

On replacing ∆, by ∆∗
1 and ∆∗

2 respectively, we obtain the expressions for temper-
ature gradient boundary and temperature input boundary.

5.2.1. Case: Thermal point source

In this case
η(x) = pη(x) ,

with
η̃(ξ) = P , (27)

where P is the magnitude of constant temperature applied on the boundary.
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5.2.2. Case: Uniformly distributed thermal source

In this case

η(x) =

{

1 if |x| ≤ a ,

0 if |x| > a .

with

{η̃(ξ) =

[

2 sin

( ξc2a

ω∗

1

ξ

)]

, ξ 6= 0 . (28)

5.2.3. Case: Linearly distributed thermal source

In this case

η(x) =

{

1 − |x|
a

if |x| ≤ a ,

0 if |x| > a .

with

η̃(ξ) =
2
[

1 − cos
(

ξc2a

ω∗

1

)]

ξ2c2a

ω∗

1

. (29)

Replacing η̃(ξ) from (27)–(29) in (26), we obtain the corresponding expressions for
thermal point source, uniformly and linearly distributed, respectively.

5.2.4. Particular case [ 5.2.1]

Neglecting the voids effect, the expressions for displacement components, stresses
and temperature distribution in a generalized thermoelastic half-space are obtained
by replacing ∆∗∗

i with ∆∗∗∗
i , (i = 6, 7, 8), ζ̃(ξ) with η̃(ξ) and ∆∗∗

3 = ∆∗∗
4 = ∆∗∗

5 = 0
equation (24) respectively, where

∆∗∗∗
6 = s∗2n1 + s∗3λ

∗
2 , ∆∗∗∗

7 = s∗1n1 + s∗3λ
∗
1 , ∆∗∗∗

8 = s∗1λ
∗
2 + s∗2λ

∗
1 .

On replacing ∆∗∗ by ∆∗∗
1 and ∆∗∗

2 in equation (24), we obtain the expressions for
temperature gradient boundary and temperature input boundary respectively.

Sub-case 1: If h → 0 in eq. (20), we obtain the corresponding expressions of dis-
placements, stresses, temperature distribution and change in volume fraction field
for the insulated boundary.

Sub-case 2: If h → ∞ in eq. (20), we recover the corresponding expressions of dis-
placements, stresses, temperature distribution and change in volume fraction field
for the isothermal boundary.

Special case 1: By putting k = 1 and τ1 = 0 in eqs (20),(24) and (26), we obtain
the corresponding expressions of thermoelastic half-space with and without voids,
respectively, for L-S theory.

Special case 2: For G-L theory, we recover the corresponding expressions of ther-
moelastic half-space with and without voids, respectively, by substituting k = 2 in



Rajneesh, K and Leena, R 39

eqs (20),(24) and (26).

Special case 3: In case of coupled theory of thermoelasticity, the thermal relaxation
times vanish i.e. τ0 = τ1 = 0 and consequently, we obtain the corresponding expres-
sions of thermoelastic half-space with and without voids, respectively, with following
changed values in eqs (20), (24) and (26)

Q =
1

b1

[

b1(b3 − p− 3ξ2) − p2 + a2a4 − a3pǫ1
]

,

N =
1

b1

[

(a6a8p− b3p− 2b3ξ
2 + 2pξ2 + 3ξ4)b1 − p2(b3 − p− 2ξ2) +

a2(a4p− 2a4ξ
2 − a6ǫ1p) + a3p(ǫ1b3 − 2ǫ1ξ

2 − a4a8)
]

,

I = − 1

b1

{

b1ξ
6 − ξ4(p2 + b1b3 − b1p+ a2a4 + a3p) + ξ2

[

b3p
2 + p3+

b1a6a8p− b1b3p− a2a4p− ǫ1p(a2a6 − a3b3)} + p3(a6a8 + b3)
]

,

b2 = a3 , b4 = b5 = p , U∗ = p(a2ǫ1 + b1a8) ,

V ∗ = −p2 − ξ2(b1 + ǫ1a2p) , T ∗ = a3a8p− a2(ξ
2 + p) , P ∗ =

a4

a6

− b1

a3

,

Q∗ =
1

a3

(ξ2b1 + p2) − a4ξ
2

a6

, S∗ =
a2

a3

+
b3 − ξ2

a6

, (30)

sl = −iξs′10 − λ2
l s

′
30 + el , l = 1, 2, 3 ,

λ∗2l =
−A+ (−1)l+1

√
A2 − 4B

2
, l = 1, 2 , (31)

A = −p
2 + (2ξ2 + p)b1 + ǫ1a3p

b1
, B =

(p2 + ξ2b1)(ξ
2 + p) + ǫ1a3pξ

2

b1
. (32)

Special case 4: Taking ǫ1 = 0 in (30), we recover the corresponding expressions of
thermoelastic half-space with and without voids, respectively, for uncoupled theory
of thermoelasticity.

6. Inversion of the transforms

To obtain the solution of the problem in the physical domain, we must invert the
transforms in equations (20), (24) and (26), for the two theories, i.e., L-S and G-
L. These expressions are functions of z, the parameters of Laplace and Fourier
transforms p and ξ, respectively, and hence are of the form f̃(ξ, z, p) in the physical
domain, first we invert the Fourier transform using

f̂(x, z, p) =
1

2π

∫ ∞

−∞

e−iξxf̃(ξ, z, p)dξ =
1

π

∫ ∞

0

(cos(ξx)fe − i sin(ξx)f0) dξ , (33)

where fe and f0 are, respectively, even and odd parts of the function f̃(ξ, z, p)

Thus, expression (31) gives us the Laplace transform f̂(x, z, p) of the function

f(x, z, t). Following Honig and Hirdes [22], the Laplace transform function f̂(x, z, p)
can be inverted to f(x, z, t). The last step is to calculate the integral in equation
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(31). The method for evaluating this integral is described by Press et al. [23], which
involves the use of Romberg’s integration with adaptive step size. This, also uses
the results from successive refinements of the extended trapezoidal rule followed by
extrapolation of the results to the limit when the step size tends to zero.

7. Numerical results and discussion

Following Dhaliwal and Singh [24] we take the case of magnesium crystal-like ma-
terial for numerical calculations. The physical constants used are:

λ = 2.17 × 1010 Nm−2 µ = 3.278 × 1010 Nm−2 ρ = 1.74 × 103 kgm−3,

ce = 1.04 × 103 Jkg−1deg−1 ω∗
1 = 3.58 × 1011 s−1 P = 1

K = 1.7 × 102 Wm−1deg−1 β = 2.68 × 106 Nm−2 deg−1 T0 = 298 K

and void parameters are:

ξ = 1.753 × 10−15 m2 α = 3.688 × 10−5 N ξ1 = 1.475 × 1010 Nm−2

b = 1.13849 × 1010 m = 2 × 106 Nm−2deg−1 .

The comparison of dimensionless normal stress tzz, boundary temperature field
T and change in volume fraction field φ with distance x for Lord-Shulman theory
with void (LSV), Green-Lindsay theory with void (GLV) and Lord-Shulman theory
without void (LSWV), Green-Lindsay theory without void (GLWV) for concen-
trated source (CS) uniformly distributed source (UDS) linearly distributed source
(LDS) are shown graphically in Figures 1–6, for non-dimensional relaxation times
τ0 = 0.02 τ1 = 0.05, The computations were carried out for time t = 0.5 at z = 1.0
in the range 0 ≤ x ≤ 10. The solid and dashed lines with center symbols are de-
noted by LSWV and GLWV, without center symbol are denoted by LSV and GLV.
In Figures 7 and 14 the solid and dashed lines without center symbols corresponds
to L-S theory and with center symbol corresponds to G-L theory for all the three
sources. The results for a distributed source (mechanical) and distributed thermal
source are presented for dimensionless width a = 1. The Figures are depicted for
normal force and thermal source respectively.

7.1. Normal force on the boundary of half-space(Insulated boundary)

7.1.1. Concentrated Normal force

Figure 1 depicts the variation of normal stress tZZ with distance x. Near the source
application due to the presence of voids the values of tZZ for LSV and GLV are
greater than LSWV and GLWV. The values of tZZ for LSV and GLV decrease
sharply and then become oscillatory in the whole range.

Figure 2 shows the variation of temperature distribution T with distance x. Due
to voids effect the values of T for LSV and GLV decrease in the ranges: 0 ≤ x ≤ 2,
4 ≤ x ≤ 5, 7 ≤ x ≤ 8 and increase in rest of the ranges. The values of T for GLV
are greater than LSV in the whole range. For LSWV and GLWV the values of T
decrease in the range 0.5 ≤ x ≤ 6 and increase in rest of the range.

The variations of normal stress and temperature distribution for uniformly and
linearly distributed force are same as those of concentrated force with difference in
their magnitudes for both the theories.
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Figure 1 Variation of normal stress tzz with distance x at time t = 1.0 due to concentrated force
along normal direction (insulated boundary)

Figure 2 Variation of temperature T with distance x at time t = 0.5 due to concentrated force
along normal direction (insulated boundary)
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Figure 3 Variation of change in volume fraction field with distance x

Figure 3 depicts the variation of change in volume fraction field φ with distance
x. Initially, the values of φ for linearly distributed force is smaller than those
for concentrated force and uniformly distributed force for both the theories. For
fixed time t = 0.5, the values of φ for uniformly distributed force are less than
concentrated force and greater than linearly distributed force in the ranges 0 ≤ x ≤
1 and 3 ≤ x ≤ 10 and reveals reverse pattern in rest of the range for both the
theories.

7.2. Thermoelastic interactions due to thermal source (Temperature
gradient boundary)

7.2.1. Thermal point source

Figure 4 shows the variations of normal stress tzz with distance x. Due to voids
effect, the values of tzz for LSV and GLV increase in range 0 ≤ x ≤ 6 and then
decrease steadily. For LSWV and GLWV the values of tzz decrease slowly in the
whole range.

Figure 5 depicts the variation of temperature distribution T with distance x.
Near the source application, the values of T for LSWV and GLWV increase sharply
and then become oscillatory in the whole range. If we fix the point of observation
i.e., the value of distance x, the values of T increase or decrease with reference to
x for LSWV and GLWV. Due to voids effect for LSV and GLV the values of T
decrease slowly in the whole range.

The variations of normal stress and temperature distribution for uniformly and
linearly distributed thermal source are same as those of thermal point source with
a difference in their magnitudes.



Rajneesh, K and Leena, R 43

Figure 4 Variation of normal stress tzz with distance x at time t = 0.5 due to thermal point
source (temperature gradient boundary)

Figure 5 Variation of temperature T with distance x at time t = 0.5 due to thermal point source
(temperature gradient boundary)
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Figure 6 Variation of change in volume fraction field with distance x

Figure 6 shows the variation of change in volume fraction field φ with distance
x. At the point of application of source the values of f for uniformly distributed
source is larger than linearly distributed source and less than concentrated source
for both the theories. The values of f decrease slowly in the range 0 ≤ x ≤ 10 for
both the theories and for the three sources.

8. Conclusions

1. The Laplace and Fourier transform technique is used to derive the components
of stress, temperature distribution and change in volume fraction field.

2. As x diverses from the point of application of source the components of tem-
perature distribution, stress and change in volume fraction field are observed
to follow oscillatory pattern.

3. The variations of normal stress and temperature distribution for uniformly
and linearly distributed source are same as those of concentrated source with
a difference in their magnitudes.
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