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A two-dimensional coupled problem in generalized thermoelasticity for rotating media
under the temperature dependent properties is studied. The problem is in the context of
the Lord-Shulman’s theory with one relaxation time. The normal mode analysis is used
to obtain the expressions for the temperature distribution, displacement components
and thermal stresses. The resulting formulation is applied to two different problems.
The first concerns the case of a heat punch moving across the surface of a semi-infinite
thermoelastic half-space subjected to appropriate boundary conditions. The second deals
with a thick plate subject to a time-dependent heat source on each face. Numerical results
are illustrated graphically for each problem considered. Comparisons are made with the
results obtained predicted by the two theories in case of absence of rotation.
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1. Introduction

In recent years due to the progress in various fields in science and technology the ne-
cessity of taking into consideration the real behavior of the material characteristics
become actual. We have seen a rapid development of thermoelasticity stimulated
by various engineering sciences [1]. Most of investigations were done under the
assumption of the temperature-independent material properties, which limit the
applicability of the solutions obtained to certain ranges of temperature. At high
temperature the material characteristics such as the modulus of elasticity, the Pois-
son’s ratio, the coefficient of thermal expansion and the thermal conductivity are no
longer constants. In some investigations they were taken as functions of coordinates
[2] and [3].
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In this work we consider the modulus of elasticity is the only temperature-
dependent material parameter. The experimental data [4] show that the changes
of Poisson’s ratio and the coefficient of linear thermal expansion due to the high
temperature can be neglected.

The classical uncoupled theory of thermoelasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction of this
theory does not contain any elastic terms contrary to the fact that elastic changes
produce heat effects. Second, the heat equation is of parabolic type predicting
infinite speeds of propagation for heat waves.

Biot [5] introduced the theory of coupled thermoelasticity to overcome the first
shortcoming. The governing equations for this theory are coupled, eliminating the
first paradox of the classical theory. However, both theories share the second short-
coming since heat equation for the coupled theory is also parabolic.

Two generalizations to the coupled theory are introduced. The first is due to
Lord and Shulman [6] who obtained a wave-type heat equation by postulating a new
law of heat conduction to replace the classical Fourier’s law. This new law contains
the heat flux vector as well as its time derivative. It contains also a new constant
that acts as a relaxation time. Since the heat equation of this theory is of the
wave-type, it automatically ensures finite speeds of propagation for heat and elastic
waves. The remaining governing equations for this theory, namely, the equations of
motions and constitutive relations remain the same as those for the coupled and the
uncoupled theories. Following the Lord-Shulman’s theory, several authors including
Puri [7], Ezzat et al. [8] studied the plane thermoelastic wave propagations in a
medium of perfect conductivity. This theory was extended by Dhaliwal and Sherief
[9] to general anisotropic media in the presence of heat sources. Sherief and Dhaliwal
[10] solved a thermal shock problem. Nayfeh and Nasser [11] used Lord-Shulman
theory to study plane thermo-elastic surface waves in a half-space. Ezzat et al.
[12] studied the effect of reference temperature on thermal distribution for one-
dimensional problem. Recently, Othman [13] established the model of equations
of generalized thermo-elasticity based on the Lord-Shulman theory in an isotropic
elastic medium under the dependence of the modulus of elasticity on reference
temperature.

The second generalization to the coupled theory of the thermoelasticity is what
known as the theory of thermoelasticity with two relaxation times or the theory
of temperature-rate-dependent thermoelasticity. Müller [14] in a review of thermo-
dynamic of thermoelastic solids has proposed an entropy production inequality, with
the help of which, he considered restrictions on a class of constitutive equations.

A generalization of this inequality was proposed by Green and Laws [15]. Green
and Lindsay have obtained an explicit version of the constitutive equations in [16].
These equations were also obtained independently by Erbay and Şuhubi [17]. This
theory contains two constants that act as relaxation times and modifies all the equa-
tions of the coupled theory not the heat equation only. The classical Fourier’s law
of heat conduction is not violated if the medium under consideration has a center
of symmetry. Using this theory, Agarwal [18], [19] considered, respectively, ther-
moelastic and magneto-thermoelastic plane wave propagation in an infinite elastic
medium. Ezzat and Othman [20] studied the electromagneto-thermoelasticity plane
wave with two relaxation times. Othman [21] applied the Green-Lindsay’s theory
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to study the effect of rotation and relaxation time on plane waves in generalized
thermoelasticity. Ignaczak [22] studied a strong discontinuity wave and obtained a
decomposition theorem for this theory [23].

In the present paper we shall use the normal mode method to problems of
generalized thermoelasticity with thermal relaxation in an isotropic medium when
the modulus of elasticity is taken as a linear function of reference temperature under
the effect of rotation. The resulting formulation is applied in case of two dimensional
to two concrete problems. The exact expressions for temperature, displacement
components and thermal stress are obtained for the two problems considered.

2. Formulation of the problem

We shall consider an infinite isotropic, homogeneous, thermally conducting elastic
medium. The medium is rotating uniformly with an angular velocity Ω = Ωn,
where n is a unit vector representing the direction of the axis of rotation. The dis-
placement equation of motion in the rotating frame of reference has two additional
terms [24]; centripetal acceleration Ω × (Ω × u) due to the time-varying motion
only and the Coriolis acceleration 2Ω × u̇ where u is the dynamic displacement
vector measured from a steady state deformed position and supposed to be small.
These two terms do not appear in the equations for non-rotating media.

The constitutive law for the theory of generalized thermo-elasticity with one
relaxation time is

σij = λeδij + 2µεij − γ (T − T0) δij , (1)

The equation of heat conduction

k∇2T =

(

∂

∂t
+ τ0

∂2

∂t2

)

(ρCET + γT0e) , (2)

The strain-displacement constitutive relations

εij =
1

2
(ui,j + uj,i)

and
εii = e = ui,i (3)

We assume that

E = E0f(T ), λ = E0λ0f(T ), µ = E0µ0f(T ) and γ = E0γ0f(T ) . (4)

where f(T ) is a given non-dimensional function of temperature, in case of temperature-
independent modulus of elasticity f(T ) ≡ 1, and E = E0.

The equations of motion, in the absence of body forces, are

σij,j = ρ [üi + {Ω × (Ω × u)}i + (2Ω × u̇)i] . (5)

where all the terms have the same significance as in [16].
The displacement equation of motion in the rotating frame of reference as

ρ [üi + {Ω × (Ω × u)}i + (2Ω × u̇)i] = E0f [(λ0 + µ0)e,i + µ0∇
2ui − γ0T,i] (6)

+E0f,j [λ0eδij + 2µ0εij − γ0(T − T0)δij ] .
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Now we introduce the following non-dimensional variables

x′ = c0η0x , y′ = c0η0y , u′ = c0η0u , v′ = c0η0v ,

t′ = c2
0η0t , τ ′

0 = c2
0η0τ0 , θ = γ0E0

ρc2

0

(T − T0) , σ′

ij =
σij

ρc2

0

.
(7)

Omitting the dashes for convenience, we have

σij = [(2β − 1)eδij + (1 − β)(ui,j + uj,i) − θδij ] f(θ) , (8)

[üi + {Ω × (Ω × u)}i + (2Ω × u̇)i]

= [βe,i + (1 − β)∇2ui − θ,i]f(θ) (9)

+ [(2β − 1)ef,i + (1 − β)(ui,j + uj,i)f,j − θf,i] .

The heat conduction Eq. (2) can be rewritten by using Eq. (3) as:

∇2θ = (θ̇ + τ0θ̈) + ε1f(θ)δ0(ė + τ0ë) . (10)

We consider a special case when |T − T0| ≪ 1, 0 ≤ δ0 ≤ 1 and f(θ) = (1−α∗T0).
The equations of motion in two-dimension take the form

α

[

∂2u

∂t2
− Ω2u − 2Ωv̇

]

= ∇2u + β
∂2v

∂x∂y
− β

∂2u

∂y2
−

∂θ

∂x
, (11)

α

[

∂2v

∂t2
− Ω2v − 2Ωu̇

]

= ∇2v + β
∂2u

∂x∂y
− β

∂2v

∂x2
−

∂θ

∂y
. (12)

The equation of heat conduction

∇2θ = (θ̇ + τ0θ̈) + ε(ė + τ0ë) . (13)

ασxx =
∂u

∂x
+ (2β − 1)

∂v

∂y
− θ , (14)

ασyy =
∂v

∂y
+ (2β − 1)

∂u

∂x
− θ , (15)

ασxy = (1 − β)(
∂u

∂y
+

∂v

∂x
) , (16)

ασzz = (2β − 1)e − θ . (17)

where

α =
1

1 − α∗T0
, ε = ε1δ0(1 − α∗T0) . (18)

Differentiating Eq. (11) with respect to x, and Eq. (12) with respect to y, then
adding, we arrive at

[

∇2 − α

(

∂2

∂t2
− Ω2

)]

e = ∇2θ + 2Ω
∂ζ

∂t
. (19)
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Differentiating Eq. (11) with respect to y, and Eq. (12) with respect to x, then
subtracting, we arrive at

[

(1 − β)∇2 − α

(

∂2

∂t2
− Ω2

)]

ζ = −2αΩ
∂e

∂t
. (20)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is Laplace’s operator in a two-dimensional space and

ζ =
∂u

∂y
−

∂v

∂x
. (21)

3. Normal mode analysis

The solution of the considered physical variables can be decomposed in terms of
normal mode as the following form

[u, v, e, ζ, θ, σij ] (x, y, t) =
[

u∗(y), v∗(y), e∗(y), ζ∗(y), θ∗(y), σ∗

ij(y)
]

exp(ωt + iax) .
(22)

where ω is the (complex) time constant, i is imaginary unit, a is the wave number in
the x-direction and u∗(y), v∗(y), e∗(y), ζ∗(y), θ∗(y) and σ∗

ij(y) are the amplitudes
of the functions.

Using Eq. (22), we can obtain the following equations from Eqs. (13), (19) and
(20) respectively

[

D2 − a2 − ω(1 + τ0ω)
]

θ∗(y) = εω(1 + τ0ω)e∗(y) , (23)

[

D2 − a2 − α(ω2 − Ω2)
]

e∗(y) = (D2 − a2)θ∗(y) + 2Ωωζ∗ , (24)
[

D2 − a2 − β1(ω
2 − Ω2)

]

ζ∗(y) = −2β1ωΩe∗ . (25)

where

D =
∂

∂y
, β1 =

α

1 − β
. (26)

Eliminating θ∗(y) and ζ∗(y) between Eqs. (23)–(25), we get the following sixth-
order partial differential equation satisfied by e∗(y)

(D6 − a1D
4 + a2D

2 − a3)e
∗(y) = 0 , (27)

where,
a1 = 3a2 + b1 , (28)

a2 = 3a4 + 2a2b1 + b2 , (29)

a3 = a6 + a4b1 + a2b2 + b3 , (30)

b1 = (α + β1)ω2 + (ε + 1)ω1 , (31)

b2 = ω2[ω1(β1 + α + εβ1) + αβ1ω2] + 4ω2Ω2β1 , (32)

b3 = β1ω1[αω2
2 + 4ω2Ω2] , (33)

ω1 = ω(1 + τ0ω) , ω2 = ω2 − Ω2 . (34)
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Equation (27) can be factorized as

(D2 − k2
1)(D

2 − k2
2)(D

2 − k2
3)e

∗(y) = 0 . (35)

where, kj , j = 1, 2, 3 are the roots of the following characteristic equation

k6 − a1k
4 + a2k

2 − a3 = 0 . (36)

The solution of Eq. (35) is given by:

e∗(y) =

3
∑

j=1

e∗j (y) . (37)

where e∗j (y) is the solution of the equation

(D2 − k2
j )e∗j (y) = 0 , j = 1, 2, 3 . (38)

The solution of Eq. (38), which is bounded as y → ∞, is given by

e∗j (y) = Rj(a, ω)e−kjy . (39)

Substituting from Eq.(39) into the Eq. (37), we obtain:

e∗(y) =

3
∑

j=1

Bj(a, ω)e−kjy . (40)

In a similar manner, we get

θ∗(y) =

3
∑

j=1

B′

j(a, ω)e−kjy , (41)

ζ∗(y) =

3
∑

j=1

B′′

j (a, ω)e−kjy . (42)

where Bj(a, ω), B′

j(a, ω) and B′′

j (a, ω) are parameters depending on a, ω.
Substituting from Eqs. (40)–(42) into Eqs. (23) and (25), we obtain

B′

j(a, ω) =
εω1

k2
j − a2 − ω1

Bj(a, ω) , j = 1, 2, 3 , (43)

B′′

j (a, ω) =
−2ωΩβ1

k2
j − a2 − β1ω2

Bj(a, ω) , j = 1, 2, 3 . (44)

Substituting from Eqs. (43) and (44) into Eqs. (41) and (42), respectively, we
obtain

θ∗(y) =
3

∑

j=1

εω1

k2
j − a2 − ω1

Bj(a, ω)e−kjy , (45)
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ζ∗(y) =

3
∑

j=1

−2ωΩβ1

k2
j − a2 − β1ω2

Bj(a, ω)e−kjy . (46)

Since,

e∗ = iau∗ + Dv∗ , (47)

ζ∗ = Du∗ − iav∗ . (48)

In order to obtain the amplitude of displacement components u∗ and v∗, which
are bounded as y → ∞, in terms of Eq. (22) from Eqs. (40), (46), (47) and (48) we
can obtain

u∗(y) = Ceay +
3

∑

j=1

1

k2
j − a2

[

ia +
2ωΩβ1kj

k2
j − a2 − β1ω2

]

Bj(a, ω)e−kjy , (49)

v∗(y) = −iCeay −

3
∑

j=1

1

k2
j − a2

[

kj −
2iaωΩβ1

k2
j − a2 − β1ω2

]

Bj(a, ω)e−kjy . (50)

where C = 0 to make Eqs. (49) and (50) are bounded as y → ∞.

In terms of Eq. (22), substituting from Eqs. (40), (45), (46), (49) and (50) into
Eqs. (14)–(17), respectively, we obtain the stress components in the form

σ∗

xx(y) =

3
∑

j=1

{[

(2β − 1)k2
j − a2

k2
j − a2

−
εω1

k2
j − a2 − ω1

]

−
4ia(β − 1)ωΩβ1kj

(k2
j − a2)[k2

j − a2 − β1ω2]

}

Bje
−kjy , (51)

σ∗

yy(y) =

3
∑

j=1

{[

k2
j − (2β − 1)a2

k2
j − a2

−
εω1

k2
j − a2 − ω1

]

−
4ia(β − 1)ωΩβ1kj

(k2
j − a2)[k2

j − a2 − β1ω2]

}

Bje
−kjy , (52)

σ∗

xy(y) = (1 − β)

3
∑

j=1

{

2ωΩβ1(k
2
j + a2)

(k2
j − a2)[k2

j − a2 − β1ω2]
+

2iakj

k2
j − a2

}

Bje
−kjy , (53)

σ∗

zz(y) =

3
∑

j=1

{

2β − 1 −
εω1

k2
j − a2 − ω1

}

Bje
−kjy . (54)

The normal mode analysis is, in fact, to look for the solution in Fourier trans-
formed domain. This assumes that all the field quantities are sufficiently smooth
on the real line such that the normal mode analysis of these functions exist.
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4. Applications

4.1. Problem I

A time-dependent heat punch across the surface of semi-infinite thermo-elastic half
space [1].

We consider a homogeneous isotropic thermoelastic solid occupying the region
G given by G = {(x, y, z)| x, z ∈ R|, y ≥ 0}.

In the physical problem, we should suppress the positive exponentials that are
unbounded at infinity. The constants Bj , j = 1, 2, 3 have to be chosen such that
the boundary conditions on the surface y = 0 take the form

θ(x, y, t) = n(x, t) on y = 0 , (55)

σyy(x, y, t) = P (x, t) on y = 0 , (56)

σxy(x, y, t) = 0 on y = 0 , (57)

where n, P are given functions of x and t.
Eqs. (55)–(57) in the normal mode form together with Eqs. (45), (52) and (53)

respectively, give
L1B1 + L2B2 + L3B3 = n∗(a, ω) , (58)

M1B1 + M2B2 + M3B3 = P ∗(a, ω) , (59)

N1B1 + N2B2 + N3B3 = 0 . (60)

Eqs. (58)–(60) can be solved for the three unknowns B1, B2 and B3.
The solution of these equations can be written as

B1 =
1

∆2
1 + ∆2

2

[(µ1∆1 + µ2∆2) + i(µ2∆1 − µ1∆2)] , (61)

B2 =
1

∆2
1 + ∆2

2

[(µ3∆1 + µ4∆2) + i(µ4∆1 − µ3∆2)] , (62)

B3 =
1

∆2
1 + ∆2

2

[(µ5∆1 + µ6∆2) + i(µ6∆1 − µ5∆2)] , (63)

where
Lj =

εω1

k2
j − a2 − ω1

j = 1, 2, 3 , (64)

Mj = (α1j + iβ1j) , j = 1, 2, 3, (65)

Nj = (α2j + iβ2j) , j = 1, 2, 3, (66)

α1j =

[

k2
j − (2β − 1)a2

k2
j − a2

−
εω1

k2
j − a2 − ω1

]

, j = 1, 2, 3 , (67)

α2j =
2ωΩβ1(k

2
j + a2)

(k2
j − a2)[k2

j − a2 − β1ω2]
, j = 1, 2, 3 , (68)

β1j =
4a(β − 1)ωΩβ1kj

(k2
j − a2)[k2

j − a2 − β1ω2]
, j = 1, 2, 3. (69)
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β2j =
2akj

k2
j − a2

, j = 1, 2, 3 , (70)

λ1 = α12α23 − β12β23 − α13α22 + β13β22 , (71)

λ2 = α12β23 + α23β12 − α13β22 − α22β13 , (72)

λ3 = α11α23 − β11β23 − α13α21 + β13β21 , (73)

λ4 = α11β23 + α23β11 − α13β21 − α21β13 , (74)

λ5 = α11α22 − β11β22 − α12α21 + β12β21 , (75)

λ6 = α11β22 + α22β11 − α12β21 − α21β12 , (76)

µ1 = n∗λ1 − P ∗(L2α23 − L3α22) , (77)

µ2 = n∗λ2 − P ∗(L2β23 − L3β22) , (78)

µ3 = −n∗λ3 + P ∗(L1α23 − L3α21) , (79)

µ4 = −n∗λ4 + P ∗(L1β23 − L3β21) , (80)

µ5 = n∗λ5 − P ∗(L1α22 − L2α21) , (81)

µ6 = n∗λ6 + P ∗(L1β22 − L2β21) , (82)

∆1 = L1λ1 − L2λ3 + L3λ5 , (83)

∆2 = L1λ2 − L2λ4 + L3λ6 . (84)

4.2. Problem II

A plate subjected to time-dependent heat sources on both sides [25].
We shall consider a homogeneous isotropic thermo-elastic infinite conductivity

thick flat plate of a finite thickness 2L occupying the region G∗ given by:

G∗ = {(x, y, z) |x, z ∈ R , −L ≤ y ≤ L}

with the middle surface of the plate coinciding with the plane y = 0.
The boundary conditions of the problem are taken as:

(i) The normal and tangential stress components are zero on both surfaces of the
plate; thus,

σyy = 0 on y = ±L , (85)

σxy = 0 on y = ±L . (86)

(ii) The thermal boundary condition

qn + h0θ0 = r(x, t) ony = ±L . (87)

where qn denotes the normal component of the heat flux vector, h0 is Biot’s
number and r(x, t) represents the intensity of the applied heat sources.
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We now make use of the generalized Fourier’s law of heat conduction in the
non-dimensional form, namely,

qn + τ0
∂qn

∂t
= −

∂θ

∂y
. (88)

Eq. (88) in the normal mode form

q∗n = −
1

(1 + τ0ω)

∂θ∗

∂y
. (89)

Combining Eqs. (45), (87) and (89) we arrive at

H1B1 cosh(k1L) + H2B2 cosh(k2L) + H3B3 cosh(k3L) = (1 + τ0ω)r∗ . (90)

Equations (85) and (86) in the normal mode form together with Eqs. (52) and
(53) respectively give:

M1B1 cosh(k1L) + M2B2 cosh(k2L) + M3B3 cosh(k3L) = 0 , (91)

N1B1 sinh(k1L) + N2B2 sinh(k2L) + N3B3 sinh(k3L) = 0 . (92)

Equation (90), (91) and (92) can be solved for the three unknowns B1, B2 and
B3.

B1 =
(1 + τ0ω)r∗

(∆2
3 + ∆2

4) cosh(k1L)
[(λ7∆3 + λ8∆4) + i(λ7∆4 − λ8∆3)] , (93)

B2 =
−(1 + τ0ω)r∗

(∆2
3 + ∆2

4) cosh(k2L)
[(λ9∆3 + λ10∆4) + i(λ9∆4 − λ10∆3)] , (94)

B3 =
(1 + τ0ω)r∗

(∆2
3 + ∆2

4) cosh(k3L)
[(λ11∆3 + λ12∆4) + i(λ11∆4 − λ12∆3)] , (95)

where

Hj =
εω1

k2
j − a2 − ω1

[−kj tanh(kjL) + h0(1 + τ0ω)] , j = 1, 2, 3 , (96)

λ7 = (α21α23 − β12β23) tanh(k3L) − (α13α22 − β13β22) tanh(k2L) , (97)

λ8 = (α12β23 + α23β12) tanh(k3L) − (α13β22 + α22β13) tanh(k2L) , (98)

λ9 = (α11α23 − β12β23) tanh(k3L) − (α13α21 − β13β21) tanh(k1L) , (99)

λ10 = (α11β23 + α23β11) tanh(k3L) − (α13β21 + α21β13) tanh(k1L) , (100)

λ11 = (α11α22 − β11β22) tanh(k2L) − (α12α21 − β12β21) tanh(k1L) , (101)

λ12 = (α11β22 + α22β11) tanh(k2L) − (α12β21 + α21β12) tanh(k1L) , (102)

∆3 = H1λ7 − H2λ9 + H3λ11 , (103)

∆4 = H1λ8 − H2λ10 + H3λ12 . (104)
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5. Numerical results

The copper material was chosen for the purpose of numerical evaluations. Since
we have ω = ω0 + iζ, eωt = eω0t(cos ζt + i sin ζt) and for small values of time, we
can take ω = ω0 (real). The numerical constants of the problems were takes as:
ε = 0.003; δ0 = 0.0199; ρ = 8954; τ0 = 0.03; n∗ = 500; P ∗ = 100; h0 = 100;
r∗ = 1000; a = 1.2; ω = 1; α = 1.8; α∗ = 0.001517; (1/K) and T0 = 293 K.
The computations were carried out for a value of time t = 0.0001. The numerical
technique, outlined above, was used for the real part of the thermal temperature
θ distribution, the displacement components u, v and the stress components σxx,
σyy and σxy for each problem, for Problem I on the plane y = 5 and for Problem II
on surface at y = 2 and on the middle plane y = 0, where L = 4 for two different
values of Ω = 0 and Ω = 0.01. The results are shown in Figs. 1–16.

The graphs shows the four curves predicted by different theories of thermoelas-
ticity. In these figures, the solid lines represent the solution corresponding to using
the Coupled theory of heat conduction (τ0 = 0), the dashed lines represent the so-
lution for the Lord-Shulman’s theory (τ0 = 0.03). It can be seen from these figures
that the rotation acts to decrease the magnitude of the real part of the temperature,
displacement and the stress components.

We notice also that the results for the temperature, displacement and stress
components when the relaxation time is appeared in the heat equation are distinctly
different from those the relaxation time is not mentioned in the heat equation.
This is due to the fact that thermal waves in the Fourier theory of heat equation
travel with an infinite speed of propagation as opposed to finite speed in the non-
Fourier case. This demonstrates clearly the difference between the coupled and the
generalized theory of thermoelasticity.

Figs. 1–6 demonstrate the effect of rotation for Problem I on the plane y = 5.
Figs. 7-12 represent the effect of rotation on the surface of Problem II at y = 2 and
Figs. 13–16 represent the effect of rotation on the middle plane at y = 0, where
L = 4.

6. Conclusion

We can obtain the following conclusions according to the analysis above and the
illustrated figures

1. It is clear that the rotation has decreasing effect with the modulus of elasticity
being dependent on the reference temperature.

2. The horizontal component of displacement is vanishes on the surface and
middle plane of problem II when the rotation equal to zero.

3. We note that since the vertical component of displacement v and the stress
component σxy are odd function of y there values on the middle plane of
Problem II are always zero.
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Nomenclature

Symbol Description
λ, µ Lamé’s constants
ρ density
CE specific heat at constant strain
E(T ) Temperature dependent modulus of elasticity
α∗ empirical material constant

[

1
K

]

η0 = ρCE

k

c2
0 = (λ0+2µ0)E0

ρ

ε1 = γ0E0

ρCE

E0 const. modulus of elasticity at α∗ = 0
ν Poisson’s ratio
t time
T absolute temperature
αT coefficient of linear thermal expansion
δ0 non-dimensional constant
µ0 = 1

2(1+ν)

f(θ) is a given nondimensional function of temperature
ε = ε1δ0f(θ)

β = E0(λ0+µ0)
ρc2

0

= 1
2(1−ν)

λ0 = ν
(1+ν)(1−2ν)

γ0 = αT

1−2ν

T0 =
δ0ρc2

0

γ0E0

= δ0

αT

(

1−ν
1+ν

)

reference temperature

σij components of stress tensor
εij components of strain tensor
e = εii dilatation
ui components of displacement vector
k thermal conductivity
τ0 one relaxation time
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Figure 1 Temperature distribution θ for Problem I at α = 1.8
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Figure 2 Horizontal displacement distribution u for Problem I at α = 1.8
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Figure 3 Vertical displacement distribution v for Problem I at α = 1.8
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Figure 4 The distribution of stress component σxx for Problem I at α = 1.8
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Figure 5 The distribution of stress component σyy for Problem I at α = 1.8
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Figure 6 The distribution of stress component σxy for Problem I at α = 1.8
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Figure 7 Temperature distribution θ for Problem II at α = 1.8
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Figure 8 Horizontal displacement distribution u for Problem II on the surface at α = 1.8
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Figure 9 Vertical displacement distribution v for Problem II on the surface at α = 1.8
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Figure 10 The distribution of stress component σxx for Problem II on the surface at α = 1.8
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Figure 11 The distribution of stress component σyy for Problem II on the surface at α = 1.8
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Figure 12 The distribution of stress component σxy for Problem II on the surface at α = 1.8
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Figure 13 Temperature distribution θ for Problem II on the middle plane at α = 1.8
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Figure 14 Horizontal displacement distribution u for Problem II on the middle plane at α = 1.8
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Figure 15 The distribution of stress component σxx for Problem II on the middle plane at α = 1.8
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Figure 16 The distribution of stress component σyy for Problem II on the middle plane at α = 1.8


