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The analytic expressions for the displacement components, microrotation and stresses at
any point in an infinite micropolar cubic crystal as a result of inclined load of arbitrary
orientation have been obtained. The inclined load is assumed to be a linear combination
of a normal load and a tangential load. The eigenvalue approach using Laplace and
Fourier Transforms has been employed and the transforms has been inverted by using
a numerical technique. The numerical results are illustrated graphically for a particular
material.
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1. Introduction

The classical theory of elasticity does not explain certain discrepancies that occur
in the case of problems involving elastic vibrations of high frequency and short wave
length, that is, vibrations due to the generation of ultrasonic waves. The reason
lies in the microstructure of the material which exerts a special influence at high
frequencies and short wave lengths.

An attempt was made to eliminate these discrepancies by suggesting that the
transmission of interaction between two particles of a body through an elementary
area lying within the material was affected not solely by the action of a force vector
but also by a moment (couple) vector. This led to the existence of couple stress in
elasticity. Polycrystalline materials, materials with fibrous or coarse grain structure
come in this category. The analysis of such materials requires incorporating the
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theories of oriented media. For this reason, micropolar theories were developed by
Eringen(1966a,b) for elastic solids and fluids and are now universally accepted.

Following various methods, the elastic fields of various loadings, inclusion and
inhomogeneity problems, and interaction energy of point defects and dislocation
arrangement have been discussed extensively in the past. Generally all materials
have elastic anisotropic properties which mean the mechanical behavior of an engi-
neering material is characterized by the direction dependence. However the three
dimensional study for an anisotropic material is much more complicated to obtain
than the isotropic one, due to the large number of elastic constants involved in the
calculation.

Because a wide class of crystals such as W, Si, Cu, Ni, Fe, Au, Al etc., which are
some frequent used substances, belong to cubic materials. The cubic materials have
nine planes of symmetry whose normals are on the three coordinate axes and on the
coordinate planes making an angle π/4 with the coordinate axes. With the chosen
coordinate system along the crystalline directions, the mechanical behavior of a
micropolar cubic crystal can be characterized by four independent elastic constants.

To understand the crystal elasticity of a cubic material, Chung and Buessem
(1967) presented a convenient method to describe the degree of the elasticity ani-
sotropy in a given cubic crystal. Later, Lie and Koehler (1968) used a Fourier
expansion scheme to calculate the stress fields caused by a unit force in a cubic
crystal. Steeds (1973) gave a complete discussion on the displacements, stresses
and energy factors of the dislocations for two-dimensional anisotropic materials.
Boulanger and Hayes (2000) investigated inhomogeneous plane waves in cubic elas-
tic materials. Bertram et al. (2000) discussed generation of discrete isotropic ori-
entation distributions for linear elastic cubic crystals. Kobayashi et al. (2001)
investigated anisotropy and curvature effects for growing crystals. Domanski and
Jablonski (2001) studied resonances of nonlinear elastic waves in cubic crystal. De-
strade (2001) considered the explicit secular equation for surface acoustic waves in
monoclinic elastic crystals. Zhou and Ogawa (2002) investigated elastic solutions
for a solid rotating disk with cubic anisotropy. Minagawa et al. (1981) discussed
the propagation of plane harmonic waves in a cubic micropolar medium. Kumar
and Rani (2003) studied time harmonic sources in a thermally conducting cubic
crystal. Recently, Kumar and Ailawalia (2005a, 2005b) discussed source problems
in micropolar cubic crystals.

Kuo (1969) and Garg et.al (2003) discussed the problem of inclined load in the
theory of elastic solids. The deformation due to other sources such as strip loads,
continuous line loads, etc. can also be similarly obtained. The deformation at
any point of the medium is useful to analyze the deformation field around mining
tremors and drilling into the crust of the earth. It can also contribute to the
theoretical consideration of the seismic and volcanic sources since it can account
for the deformation fields in the entire volume surrounding the source region. No
attempt has been made so far to study the response of inclined load in micropolar
theory of elasticity.
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2. Problem Formulation

We consider a homogeneous micropolar cubic crystal of infinite extent with Carte-
sian coordinate system (x, y, z). To analyze displacement and stresses at the interior
of the medium due to inclined load, the continuum is divided into two half-spaces
defined by:

(i) half space I |x| <∞ , −∞ < y ≤ 0 , |z| ≤ ∞ ,

(ii) half space II |x| <∞ , 0 ≤ y <∞ , |z| ≤ ∞ .

Suppose that an inclined line load F0 is acting on the z-axis and its inclination
with y-axis is θ.

x

y

0Medium I

Medium II

F
0

Figure 1 Continuum under load F0

If we restrict our analysis to plane strain parallel to x-y plane with displacement

vector −→u = (u1, u2, 0) and microrotation vector
−→
φ = (0, 0, φ3) then the field equa-

tions and constitutive relations for such a medium in the absence of body forces
and body couples can be written by following the equations given by Minagawa et

al.(1981) as
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m23 = B3

∂φ3

∂y
. (6)

In these relations, we have used the following notations: t22, t21 – components
of the force stress tensor, m23 – tangential couple stress, ui – components of dis-
placement vector, φ3 – component of microrotation vector, A1, A2, A3, A4, B3 –
characteristic constants of the material, ρ – the density and j – the microinertia.

Introducing the dimensionless variables defined by the expressions

x′ =
ω∗

c1
x , y′ =

ω∗

c1
y , u′1 =

ω∗

c1
u1 , u′2 =

ω∗

c1
u2 , φ′3 =

A1

A4

φ3 , t′ = ω∗t ,

{t′22, t
′
21} =

{t22, t21}

A1

, m′
23 =

c1
B3ω∗

m23 , {F ′
1, F

′
2} =

{F1, F2}

A1

a′ =
ω∗

c1
a .

(7)
where

ω∗2 =
A4 −A3

ρ j
, c21 =

A1

ρ
(8)

Using (7), the system of equations (1)–(3) reduce to( dropping the primes)

A1

∂2u1

∂x2
+A3

∂2u1

∂y2
+ (A2 +A4)

∂2u2

∂x∂y
+
A4 (A3 −A4)

A1

∂φ3

∂y
= ρc21

∂2u1

∂t2
, (9)
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− 2
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∂2φ3
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(11)
We suppose that initially the medium is at rest in its undeformed state, i.e, we

suppose that the following homogeneous initial conditions hold for t ≥ 0:

ui (x, y, 0) =
∂ui

∂t
= 0 , φ3 (x, y, 0) =

∂φ3

∂t
= 0 ,

Applying Laplace transform with respect to time ‘t′ defined by

{

un (x, y, p) , φ3 (x, y, p)
}

=

∞
∫

0

{un (x, y, t) , φ3 (x, y, t)} e−pt dt , n = 1, 2 (12)

and then Fourier transform with respect to ‘x’ defined by

{

ũn (ξ, y, p) , φ̃3 (ξ, y, p)
}

=

∞
∫

−∞

{

un (x, y, p) , φ3 (x, y, p)
}

eiξx dx , n = 1, 2 (13)

on the equations (9)–(11) with the help of initial conditions, we obtain

D2ũ1 = b11 ũ1 + a12D ũ2 + a13Dφ̃
′
3 , (14)

D2ũ2 = b22 ũ2 + a21Dũ1 + b23 φ̃3 , (15)
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D2φ̃ 3 = b33 φ̃3 + a31D ũ1 + b32 ũ2 , (16)

and

b11 =
ρc21p

2 + ξ2A1

A3

, b22 =
ρc21p

2 + ξ2A3

A1

, b23 = −
iξ A4 (A3 −A4)

A2
1

,
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iξ c21A1 (A3 −A4)

ω∗2A4B3

, b33 =
1

B3

[

ξ2B3 + ρjc21p
2 + 2 (A3 −A4)

c21
ω∗2

]

, (17)
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A1A3
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iξ (A2 +A4)

A1

,
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A1 (A3 −A4) c

2
1

A4B3ω∗2
, a12 =

iξ (A2 +A4)

A3

, D =
d

dy
.

The equations (14)–(16) may be written as

d

dy
W (ξ, y, p) = A (ξ, p) W (ξ, y, p) . (18)

where

W =

[

V
DV

]

, A =

[

O I
A∗

1 A∗
2

]

, V =





ũ1

ũ2

φ̃ 3



 ,

A∗
1 =





b11 0 0
0 b22 b23
0 b32 b33



 , A∗
2 =





0 a12 a13

a21 0 0
a31 0 0



 . (19)

O and I are respectively zero and identity matrix of order 3.
To solve equation (18), we assume

W (ξ, y, p) = X (ξ, p) eqy (20)

which leads to eigenvalue problem. The characteristic equation corresponding to
matrix A is given by

det [A − qI] = 0 (21)

which on expansion provides us

q6 + λ 1q
4 + λ 2q

2 + λ 3 = 0 (22)

where
λ 1 = − (a12a21 + a13a31 + b11 + b22 + b33) ,

λ 2 = a12 (a21b33 − b23a31)+a13 (b22a31 − a21b32)+ b22b33− b23b32 + b11 (b22 + b33) ,

λ3 = b11 (b23b32 − b22b33) . (23)

The eigenvalues of the matrix A are characteristic roots of the equation (22).
The vectors X (ξ, p) corresponding to the eigenvalues qs can be determined by sol-
ving the homogeneous equation

[A − qI] X (ξ, p) = 0 (24)
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The set of eigenvectors Xs (ξ, p) , s = 1, 2, . . . , 6 may be obtained as

Xs (ξ, p) =

[

Xg1 (ξ, p)
Xg2 (ξ, p)

]

(25)

where

Xg1 (ξ, p) =





qg
ag

bg



 ,

Xg2 (ξ, p) =





q2g
agqg
bgqg



 , q = qg ; g = 1, 2, 3 (26)

XR1 (ξ, p) =





−qR
aR

bR



 ,

XR2 (ξ, p) =





q2R
−aRqR
−bRqR



 , R = g + 3 ; q = −qg ; g = 1, 2, 3

and

ag =
b11b23 − q2g (b23 + a21a13)

∇g

,

bg =
q2ga31 + agb32

q2g − b33
,

∇g = q2ga13 + a12b23 − b22a13 . (27)

The solution of equation (20) is given by

W (ξ, y, p) =

3
∑

s=1

[ DsXs (ξ, p) exp (qsy) +Ds+3Xs+3 (ξ, p) exp (−qsy) ] . (28)

3. Application

We consider a normal line load F1 acting in the positive y direction on the interface
y = 0 along the z-axis and a line force F2 acting at the origin in the positive x
direction, then the boundary conditions at the interface of two half spaces (y = 0)
are given by,

u1

(

x, 0+, t
)

− u1

(

x, 0−, t
)

= 0

u2

(

x, 0+, t
)

− u2

(

x, 0−, t
)

= 0

φ3

(

x, 0+, t
)

− φ3

(

x, 0−, t
)

= 0

t22
(

x, 0+, t
)

− t22
(

x, 0−, t
)

= −F1ψ(x)δ(t) (29)

t21
(

x, 0+, t
)

− t21
(

x, 0−, t
)

= −F2ψ(x)δ(t)

m23

(

x, 0+, t
)

−m23

(

x, 0−, t
)

= 0
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Figure 2 Continuum under loads F1 and F2

Using equations (7) and then applying Laplace and Fourier transforms from
equations (12) and (13) on system of equations (29) and with the help of equations
(28), we get the transformed displacement and stresses as,

ũ1 = −
1

∆

[

q1∆1e
−q1y + q2∆2e

−q2y + q3∆3e
−q3y − q1∆4e

q1y − q2∆5e
q2y − q3∆6e

q3y
]

,

(30)

ũ2 =
1

∆

[

a1∆1e
−q1y + a2∆2e

−q2y + a3∆3e
−q3y + a1∆4e

q1y + a2∆5e
q2y + a3∆6e

q3y
]

,

(31)

t̃21 =
1

∆

[

s1∆1e
−q1y + s2∆2e

−q2y + s3∆3e
−q3y − s1∆4e

q1y − s2∆5e
q2y − s3∆6e

q3y
]

,

(32)

t̃22 =
1

∆

[

r1∆1e
−q1y + r2∆2e

−q2y + r3∆3e
−q3y + r1∆4e

q1y + r2∆5e
q2y + r3∆6e

q3y
]

,

(33)

m̃23 = −
A4

A1∆

[

b1q1∆1e
−q1y + b2q2∆2e

−q2y + b3q3∆3e
−q3y − b1q1∆4e

q1y−

b2q2∆5e
q2y − b3q3∆6e

q3y] , (34)

where

∆ = 8GH , G = s1 (a2b3 − a3b2) − s2 (a1b3 − a3b1) + s3 (a1b2 − a2b1) ,

H = r1q2q3 (b3 − b2) − r2q1q3 (b3 − b1) + r3q1q2 (b2 − b1) ,

∆1,4 = −4Gq2q3 (b3 − b2)F1 ψ̃ (x) ± 4H (a2b3 − a3b2)F2ψ̃ (ξ) ,

∆2,5 = 4Gq1q3 (b3 − b1)F1 ψ̃ (x) ∓ 4H (a1b3 − a3b1)F2ψ̃ (ξ) ,

∆3,6 = −4Gq1q2 (b2 − b1)F1 ψ̃ (x) ± 4H (a1b2 − a2b1)F2ψ̃ (ξ) ,

rΘ = qΘ

(

iξ
A2

A1

− aΘ

)

,

sΘ =
1

A1

[

−iξA4aΘ +A3q
2
Θ + (A3 −A4)

A4

A1

bΘ

]

; Θ = 1, 2, 3 . (35)
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3.1. Concentrated load

In order to determine displacements, microrotation and stresses due to concentrated
load described as Dirac delta function ψ(x) = δ(x) must be used when concentrated
force is applied. The Fourier transform of ψ(x) with respect to pair (x, ξ) will be
ψ̃(ξ) = 1.

3.2. Uniformly distributed load

The solution due to distributed load applied is obtained by setting

ψ (x) =

[

1 if |x| ≤ a ,
0 if |x| > a ,

in equations (30). The Fourier transform with respect to the pair (x, ξ) for the case
of a uniform strip load of unit amplitude and width 2a applied at the origin of the
coordinate system (x = y = 0) in dimensionless form after suppressing the primes
becomes

ψ̃ (ξ) =

[

2 Sin

(

ξ c1a

ω∗

)

/ξ

]

, ξ 6= 0 . (36)

3.3. Linearly distributed load

The solution due to linearly distributed load is obtained by substituting

ψ (x) =

[

1 − |x|
a

if |x| ≤ a ,
0 if |x| > a ,

(37)

The Fourier transform in case of linearly distributed loads applied at the origin
of the system in dimensionless form are

ψ̃ (ξ) =
2

[

1 − cos
(

ξ c1a

ω∗

)]

ξ2c1a

ω∗

. (38)

3.4. Inclined line load

For an inclined line load F0 we have (see Figure 1)

F1 = F0 cos θ , F2 = F0 sin θ . (39)

Using (39) and (3.1)–(3.3) in (30)–(34), we obtain the corresponding expressions
for displacement and stress components in case of concentrated, uniformly distrib-
uted and linearly distributed inclined load applied at any point in micropolar cubic
crystal.

4. Particular case

Taking

A1 = λ+ 2µ+K , A2 = λ , A3 = µ+K , A4 = µ , B3 = γ ,

we obtain the corresponding expressions for the micropolar isotropic medium. These
results tally with the one if we solve the problem in micropolar isotropic medium.
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5. Inversion of the transform

The transformed displacements and stresses are functions of y, the parameters of
Laplace and Fourier transforms p and ξ respectively, and hence are of the form
f̃ (ξ, y, p). To get the function in the physical domain, first we invert the Fourier
transform using

f (x, y, p) =
1

2π

∞
∫

−∞

e−iξxf̃ (ξ, y, p) dξ ,

=
1

π

∞
∫

0

{cos (ξx) fe − i sin (ξx) fo} dξ , (40)

where fe and fo are even and odd parts of the function f̃ (ξ, y, p) respectively. Thus,
expressions (31)–(33) give us the transform f (x, y, p) of the function f (x, y, t).

Following Honig and Hirdes (1984) the Laplace transform function f (x, y, p) can
be inverted to f (x, y, t).

The last step is to evaluate the integral in equation (38). The method for evalu-
ating this integral by Press et al. (1986) and which involves the use of Rhomberg’s
integration with adaptive step size. This, also uses the results from successive re-
finement of the extended trapezoidal rule followed by extrapolation of the results
to the limit when the step size tends to zero.

6. Numerical results and discussions

For numerical computations, we take the following values of relevant parameters for
micropolar cubic crystal as,

A1 = 13.97 × 1010 dyne/cm
2

A3 = 3.2 × 1010 dyne/cm
2
, A2 = 13.75 × 1010 dyne/cm

2
,

A4 = 2.2 × 1010 dyne/cm
2
, B3 = 0.056 × 1010dynes .

For the comparison with micropolar isotropic solid, following Gauthier(1982),
we take the following values of relevant parameters for the case of Aluminium epoxy
composite as:

ρ = 2.19 gm/cm
3
, λ = 7.59 × 1010 dyne/cm

2
, µ = 1.89 × 1010 dyne/cm

2
,

K = 0.0149 × 1010 dyne/cm
2
, γ = 0.0268 × 1010 dyne , j = 0.00196 cm2 .

The values of tangential displacement U1 = (u1/F0), normal displacement U2 =
(u2/F0), tangential force stress T21 = (t21/F0) normal force stress T22 = (t22/F0)
and tangential couple stress M23 = (m23/F0) for a micropolar cubic crystal (MCC)
and micropolar isotropic solid (MIS) have been studied and the variations of these
components with distance x have been shown by

• solid line ( ) for MCC and θ = 00 ,

• dashed line ( ) for MIS and θ = 00 ,
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• solid line with centered symbol (x x x x) for MCC and θ = 300 ,

• dashed line with centered symbol(x x x) for MIS and θ = 300 ,

• solid line with centered symbol (o o o o) for MCC and θ = 600 ,

• dashed line with centered symbol(o—o—o) for MIS and θ = 600 ,

• solid line with centered symbol (∗ − − ∗ − − ∗ − −∗) for MCC and θ = 900 ,

• dashed line with centered symbol(∗—∗—∗) for MIS and θ = 900 .

These variations are shown in Figures 3–17. The computations are carried out
for y = 1.0 in the range 0 ≤ x ≤ 10.0 and a = 1.0 at t = 0.1.

7. Discussions

7.1. Concentrated Load

The variations of normal components of displacement and force stress are more
oscillatory as compared to their tangential counterparts. Also for a particular incli-
nation of load, the values of displacement components(both normal and tangential),
near the point of application of source, are more for MIS as compared to the values
for MCC. But the same is not true in case of force stress where the values are more
for MCC in comparison to the values for MIS, close to the point of application
of source. Also it is interesting to observe that the magnitude of oscillations of
all the quantities decreases with increase in angle of inclination of the source with
normal direction. The variations of tangential displacement, normal displacement,
tangential force stress and normal force stress for MCC and MIS and for different
inclinations are shown in Figures 3–6 respectively.

The variations of tangential couple stress for both MCC and MIS rises initially
and then oscillates with increase in distance x. However the magnitude of these
oscillations decreases with increase in angle of inclination of the source with normal
direction. These variations of tangential couple stress are shown in Figure 7.

7.2. Uniformly distributed load

It is observed that the normal components of displacement and force stress are more
oscillatory as compared to tangential components. Moreover the values of all the
quantities are more for MIS and hence to compare the variations among both solids,
the values of all the quantities for MIS have been demagnified by 100. The values of
tangential and normal components of displacement and force stress, very close to the
point of application of source, increases with increase in angle of inclination of the
applied source to the normal direction. These variations of tangential displacement,
normal displacement, tangential force stress and normal force stress are shown in
Figures 8-11 respectively.

The values of tangential couple stress for MCC lie in a short range as compared
to the values for MIS. Also the variations of tangential couple stress for MIS traces
a bell shaped region and the area under the region decreases with increase in orien-
tation of applied source. The values of tangential couple stress for MIS have been
demagnified by 100 and these variations are shown in Figure 12.
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Figure 3 Variation of tangential displacement U1 = u1

F0
with distance

x for concentrated load at t = 0.1

Figure 4 Variation of normal displacement U2 = u2

F0
with distance x

for concentrated load at t = 0.1
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Figure 5 Variation of tangential force stress T21 = t21

F0
with distance

x for concentrated load at t = 0.1

Figure 6 Variation of normal force stress T22 = t22

F0
with distance x

for concentrated load at t = 0.1
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Figure 7 Variation of tangential couple stress M23 = m23

F0
with dis-

tance x for concentrated load at t = 0.1

Figure 8 Variation of tangential displacement U1 = u1

F0
with distance

x for uniformly distributed load at t = 0.1
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Figure 9 Variation of normal displacement U2 = u2

F0
with distance x

for concentrated load at t = 0.1

Figure 10 Variation of tangential force stress T21 = t21

F0
with distance

x for uniformly distributed load at t = 0.1
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Figure 11 Variation of normal force stress T22 = t22

F0
with distance

x for uniformly distributed load at t = 0.1

Figure 12 Variation of tangential couple stress M23 = m23

F0
with

distance x for uniformly distributed load at t = 0.1
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Figure 13 Variation of tangential displacement U1 = u1

F0
with dis-

tance x for linearly distributed load at t = 0.1

Figure 14 Variation of normal displacement U3 = u3

F0
with distance

x for linearly distributed load at t = 0.1
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Figure 15 Variation of tangential force stress T31 = t31

F0
with distance

x for linearly distributed load at t = 0.1

Figure 16 Variation of normal force stress T22 = t22

F0
with distance

x for linearly distributed load at t = 0.1
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Figure 17 Variation of tangential couple stress M23 = m23

F0
with distance x for linearly distributed

load at t = 0.1

7.3. Linearly distributed load

The variations of tangential displacement for both MCC and MIS are opposite in
nature. While the variation increases with horizontal distance for MCC, it decreases
for MIS. These variations are shown in Figure 13. The variations of normal dis-
placement are quite similar to the variations of tangential displacement with the
exception that while the values of normal displacement decreases with increase in
distance x, it remains constant (to some extent) in the range 0 ≤ x ≤ 4.0 for
MIS(for different orientations). These variations of normal displacement are shown
in Figure 14.

It is observed that the values of tangential and normal force stress increases with
increase in distance x for both MCC and MIS but this rise is more sharp and more
uniform for tangential force stress. Moreover the intensity of sharpness decreases as
the source moves from normal to tangential direction. These variations of tangential
and normal force stress are shown in Figures 15 and 16 respectively.

The values of tangential couple stress for both MCC and MIS decreases sharply
with horizontal distance. Also these values are less for MCC as compared to the
values for MIS. The values of tangential couple stress for MIS have been demagnified
by 10 in order to compare the results among both the solids. The variations of
tangential couple stress have been shown in Figure 17.

8. Conclusion

The properties of a body depend largely on the direction of symmetry. The normal
components of displacement and force stress are more oscillatory as compared to
their tangential counterparts. Also the magnitude of oscillations for both MCC and
MIS decreases as the applied source moves from normal to tangential direction. It
is observed that the body is deformed to a more extent on the application of strip
loading particularly when linearly distributed load is applied.
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