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Viscous Damping of Surface Waves
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In this article, the viscous damping of surface waves in a layer of constant depth is
determined. A viscous term is included in Bernoulli equation, which agrees with Navier-
Stoke’s equation as proved here. The X dependence of the amplitude of the damped
wave is determined by similarity and Fourier transforms.
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1. Introduction

Surface waves are extensively treated in fluid mechanics [1–4], but no attempt has
been made to include the effect of viscosity, since the solution is based on Bernoulli
equation, which is classically derived for inviscid flow. It, is our intention in this
paper to prove that the viscosity term can be introduced in Bernoulli equation con-
trary to the conception that viscous flow is not irrotational and a velocity potential
cannot be defined. This can be explained in the following analysis.

2. Analysis

Consider the one-dimensional incompressible viscous flow represented by,

W = 0 , u = u(t, x, z) .

The continuity equation gives

∂u

∂x
= 0 ⇒ u = u0(t, z) ,

and Navier-Stoke’s equation will give,

ρ

[

∂u

∂t
+ u

∂u

∂x

]

= −∂p

∂x
+ µ∇2u .
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We can define the velocity potential φ such that,

u =
∂φ

∂x
= u0(t, z) ,

so that i.e.,
φ = xu0(t, y) + φ0 .

φ0 is an arbitrary constant. Accordingly

ρ

[

∂

∂x

∂φ

∂t
+

∂

∂x

p

ρ
− µ

ρ

∂

∂x
∇2φ

]

= 0 .

Accordingly,
∂φ

∂x
+

p

ρ
− ν∇2φ = F (t) ,

which can be chosen as 0. Here, ν is the kinematics viscosity. This simple derivation
can be generalized in cases when w 6= 0 in the existence of gravity, the term gz must
be added accordingly.

2.1. The Model Problem

Consider the vertical layer of fluid with density ρ and viscosity µ extending along
the positive direction from zero to ∞. Bernoulli equation gives for the elevation ?δ
of the free surface.

δ = −1

g

[

∂φ

∂t
− ν∇2φ

]

.

For the vertical velocity at the free surface we have,

∂φ

∂t
=

∂φ

∂z

∣

∣

∣

∣

z=0

at the free surface. Accordingly

∂2φ

∂t2
− ν

∂

∂t
∇2φ + g

∂φ

∂z
= 0 , z ⇒ 0 .

We can restrict ourselves to the case: ∂φ
∂z

= 0.

(φt − νφxx)t = 0 ,

i.e.,
(φt − νφxx)t = F (x) ,

when F (x) = 0, we have φt = νφxx. Similarity based solution gives

φ = φ0 erfc
x

2
√

νt
,

u =
∂φ

∂x
= φ0

exp
(

− x2

4νt

)

2
√

νt
.
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Subjected to
lim

x,t→0
⇒ 1 therefore φ0 = u0 ,

u′ = u0

∂φ

∂x
= φ0

exp
(

− x2

4νt

)

2
√

νt
.

For periodic flow at x = 0

ux=0 = u0 cos Ωt =
∂φ

∂x

∣

∣

∣

∣

x=0

and
φ|x=∞

= 0 .

Taking Fourier cosine transfer in x → ∞

φ̂t + νω2φ̂ = −νu0 cosΩt .

The solution satisfying φ̂
∣

∣

∣

t=0

= 0 is

φ̂ =
νu0

ν2ω4 + Ω2

[

νω2 exp(−νωt) − νω2 cosΩt − Ωsin Ωt
]

.

For sufficiently large νt, the exponential terms vanishes.

φ̂ = − νu0

ν2ω4 + Ω2

[

−νω2 cos Ωt − Ωsin Ωt
]

, ν 6= 0 .

Inverting Fourier transform

φ(x, t) = − 2

π
u0

[

ν cos Ωt

∫

∞

0

ω2 cos ωxdω

ν2ω4 + Ω2
+ Ωsin Ωt

]

,

The integral can be evaluated by residue’s [5].

∫

∞

0

ω2 cos ωxdω

ν2ω4 + Ω2
= − pi

8ν2

√

2ν

Ω
exp

(

−
√

Ω

2ν

)[

sin

√

Ω

2ν
x + cos

√

Ω

2ν
x

]

,

∫

∞

0

cos ωxdω

ν2ω4 + Ω2
=

pi

8ν2

(

2ν

Ω

)
3

2

exp

(

−
√

Ω

2ν

)

sin

√

Ω

2ν
x .

3. Comment

In this proceeding analysis, we have obtained a solution over the free surface for the
(x, t) amplitude of the viscous wave in the case of sufficiently large νt

x2 portraying
the viscous damaging. The relative amplitude is equal to unity for ν

Ω
= 8 unit

length, this is due to the approximation mode. Two waves appear and the wave
functions are:

cos Ωt

[

cos

√

Ω

2ν
x + sin

√

Ω

2ν
x

]
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and

sin Ωt sin

√

Ω

2ν
x ,

And the damping factor is

exp

(

−
√

n

2ν
x

)

.
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