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In this paper the way of transformation of the phase space to obtain the energy space is
presented. This new kind of space allows for a new, geometrical view on energy changes
in vibrating systems.
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1. Introduction

During the motion of vibrating systems, continuous energy changes from the poten-
tial energy into the kinetic one and vice versa occur. There can also exist an energy
flow between some parts of the system, an energy flow through the system, energy
flow synchronization, an energy dissipation, accumulation of energy in the system
or some parts of it. An energy flow modelling still arouses interests in the scien-
tific world. Different methods are applied to solve problems connected with energy
flow: Statistical Energy Analysis [1, 2, 3], Finite Element Method [4, 5]. But these
methods do not allow for a special kind of a geometrical view on energy changes,
which could develop our intuitional knowledge on energy flow phenomenon. This
intuition is very important especially in modelling the systems, where we still can
not measure energy flow, such as telepathy - the problem of energy flow between
two electromagnetic systems, bioenergy (observed thanks to GDV method based on
Kirlian effect [6, 7, 8]), and so on.

Nowadays one of the most important tools used in dynamical system investi-
gations is the phase space. In the case of vibrating mechanical systems, one can
observe the motion of the system, changes of velocities and displacements of some
parts of the system, using the phase space. One can conclude about the character of
the motion, observe the trajectory of the motion, and it allows for the intuitional,
geometrical view on systems dynamics. In this paper the new conception of the
energy space is proposed. It allows for a geometrical view on energy changes in



188 The Energy Space, Energy Flow and Synchronization

mechanical vibrating systems. This space posses all the advantages of the phase
space but it shows also an amount of the energy accumulated in the system, the
energy changes, flow, dissipation, synchronization, energy attractors.

The construction of the energy space is based on the phase space [13]. It would
be better to understand the idea of this construction if we say, that the energy
space is almost squeezed and stretched phase space. It is made in the way that if
the system has the constant energy, then the trajectory of the motion lies on the
multi-dimensional sphere. The radius of this sphere in the proposed energy space
is equal to the square root of the total energy accumulated in the system. Thanks
to that one can conclude about the energy flow, accumulation and dissipation from
the change of the radius of the trajectory.

Some special advantages brings the consideration of the energy planes which are
the equivalents to the phase planes. They are the projections of the trajectory onto
the energy planes. One can consider the plane showing the energy accumulated in
some part of the system. More often it would be the potential energy on the hori-
zontal axis and the kinetic one on the vertical axis. From the image of the trajectory
projection onto that plane, one can see energy changes from kinetic into potential,
whereas the radius of this projection shows the total energy accumulated in that
part of the system. Moreover, one can conclude about all aspects of the motion,
like from the phase plane. It is possible thanks to the fact that the kinetic energy is
the function of velocity and the potential one – the function of displacement. From
that point of view the energy plane is almost the phase plane with displacement on
the horizontal axis and velocity on the vertical one.

In that, simple way one can obtain the energy space, which allows for a new,
geometrical view on energy changes in vibrating systems.

Proposed energy space can be applied to linear and nonlinear vibrating systems.
In the section 2. there are shown the cases of mechanical vibrating systems, with
linear or linearized characteristics of springs, with no restrictions on the nonlinear-
ities and discontinuities of the other types, such as nonlinear damping, impacts,
friction etc. New kind of maps was introduced in section 2.3. In section 3. the ap-
plication of the energy space to the systems with nonlinear characteristics of springs
is discussed.

2. The energy space for the system with linear characteristics of springs

Consider the 2n-dimensional phase space P ⊂ IR2n of a system with n degrees of
freedom. Such a system can be represented by n-masses µi, 1 ≤ i ≤ n connected
by n springs with stiffness coefficients σi, 1 ≤ i ≤ n (Fig. 1). Let xi be the dis-
placement of the mass µi and yi the velocity of this mass. The velocities yi and the
displacements xi are the state variables of the phase space then.

Let us transform this phase space in the following way

1. Instead of the displacement co-ordinates xi of the mass µi, put the spring σi

deflection zi. If the spring σi couples the mass µi and µj , then zi = xi − xj .
Of course, if one of the ends of the spring is motionless, then zi = xi.

2. Depending on the coefficients σi and µi, squeeze and stretch the space in the
directions of zi and yi.
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Figure 1 Representation of the system with n degrees of freedom

In these two steps a new energy space can be obtained.

1. In the first step one obtains a new space V with the basis E

E = (e1x, e1y, e2x, e2y, . . . , enx, eny) , (1)

where:

eix =



0, ..., 0, 1
↑

2i−1

, 0, . . . , 0





T

, (2)

eiy =



0, . . . , 0, 1
↑

2i

, 0, . . . , 0





T

. (3)

Let v be an element of the energy space V , with the components

z1, y1, z2, y2, . . . , zn, yn

with respect to the basis E.

v = [z1, y1, z2, y2, . . . , zn, yn]
T

. (4)

Each vector of the space V can be obtained from the linear combination of the
basis vectors then

v = z1e1xz + y1e1y + z2e2xz + y2e2y + ... + znenxz + yneny =

[e1x, e1y, e2x, e2y, ..., enx, eny][z1, y1, z2, y2, ..., zn, yn]
T

. (5)



190 The Energy Space, Energy Flow and Synchronization

2. One can see the second step as a transformation of the space V or a change
of the basis vectors of the space V . Let the second step be a change of the
basis vectors of the space V . Then the new energy basis EN of this space is

EN = (b1z, b1y, b2z, b2y, . . . , bnz, bny) (6)

where:

biy = (
√

σi)
−1 · eiz =

[

2i
↓

0, . . . , 0,
(√

σi

)−1
0, . . . , 0,

]T

, (7)

biy = (
√

µi)
−1 · eiy =

[

0, . . . , 0,
(√

µi

)−1
0, . . . , 0,

↓
2i

]T

. (8)

It is easy to prove that the basis vectors are independent linearly.

Let AEN←E be the transition matrix from the basis E to EN . Then

AEN←E =





















√
σ1 0 0 ... ... 0

0
√

µ1 0 ... ... 0
0 0

√
σ2 0 ... 0

0 0 0
√

µ2 ... ...

... ... ... ... ... ...

... ... ... ...
√

σn ...

0 0 0 ... ...
√

µn





















. (9)

Let ve be the vector of V with respect to the energy basis EN . The ve vec-
tor components can be obtained from the components of the vector v, using the
transition matrix in the following way:

ve = AEN←E · v . (10)

Then
ve = [

√
σ1z1,

√
µ1y1,

√
σ2z2,

√
µ2y2, . . . ,

√
σnzn,

√
µnyn,]

T

EN

, (11)

u = [u1z, u1y, u2z, u2y, . . . , unz, uny]T , (12)

w = [w1z, w1y, w2z, w2y, . . . , wnz, wny]T , (13)

The energy product of the vectors u and w is defined as follows:

〈u,w〉 =
1

2
(u1zw1z + u1yw1y + u2zw2z + u2yw2y + . . . + unzwnz + unywny) . (14)

It is easy to prove that it satisfies three product conditions

1. Linearity 〈u′ + u”, w〉 = 〈u′, w〉 +
〈

u”, w
〉

;

2. Symmetry 〈a · u,w〉 = a 〈u,w〉 ;

3. Positiveness 〈v, v〉 6= 0 for v 6= 0 , and 0·0=0 ;
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for all vectors u′,u”,w, u of the space V .

In such an energy space with the energy product, the norm of the vector ve

where:

ve = [
√

σ1z1,
√

µ1y1,
√

σ2z2,
√

µ2y2, . . . ,
√

σnzn,
√

µnyn]
T

EN

(15)

can be obtained in the following way:

|ve| =
√

〈ve, ve〉

=

√

1

2

[

(
√

σ1z1)
2

+ (
√

µ1y1)
2

+ + . . . + (
√

σnzn)
2

+ (
√

µnyn)
2
]

(16)

=

√

σ1z
2
1

2
+

µ1y
2
1

2
+

σ2z
2
2

2
+

µ2y
2
2

2
+ . . . +

σnz2
n

2
+

µny2
n

2

=
√

Ep1 + Ek1 + Ep2 + Ek2 + . . . + Epn + Ekn =

√

√

√

√

n
∑

i=1

Epi
+ Eki

,

where:

Epi – the potential energy accumulated in the i-spring,

Eki – the kinetic energy of the i-mass.

Finally,

|ve|2 =

n
∑

i=1

Epi
+ Eki

= 〈ve, ve〉 . (17)

It can be seen that the phase space is transformed in a special way. The energy
product of the vector ve by itself equals the total energy accumulated in the system.
In other words, the norm of the vector ve is equal to the square root of the total
energy accumulated in the system. Thus, the end of the vector of the system with
constant energy moves on the surface of the sphere with the radius equal to the
square root of the total energy.

The consideration of the projections of the vector on the energy planes brings
some practical advantages of the energy space. As in standard phase space planes
all aspects of the kind of the motion can be concluded about from them but these
projections also show the amount of the energy accumulated in some parts of the
system and the directions of the energy flow between some parts of the system. To
make it clearer, consider the system shown in Fig. 2.

2.1. The application of the energy space in the system with impacts

The system shown in Fig. 2 has its special application. For some ranges of the
system parameters, it works as an impact damper of the motion of the main mass µ

(references[8, 9]). The system consists of three oscillators. The external harmonic
force excites the main oscillator µ. It is joined with the classical dynamical absorber
µ1. This absorber is allowed to collide with the third oscillator µ2 which will be
called an impact absorber.
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Figure 2 The physical model of the system

In the periods between the impacts the mathematical model of the system is
given by six differential equations of the first order:

ẋ = y

ẏ = (F sin ητ − cy − c1 (y − y1) − σx − σ1 (x − x1)) ·
1

µ

ẋ1 = y1

ẏ1 = (−c1 (y1 − y) − σ1 (x1 − x)) · 1

µ1

ẋ2 = y2

ẏ2 = (−c2y2 − σ2x2) ·
1

µ2

(18)

where: µ, µ1, µ2 – masses (Fig. 2),
σ, σ1, σ2 – stiffness coefficients of the springs(Fig. 2),
c, c1, c2 – damping coefficients (Fig. 2),
F – amplitude of the external excitation force,
ω – frequency of the external excitation force.

η =
ω

α
; τ = αt ; α =

√

σ

µ
; (19)
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The impact between the dynamical and impact absorbers is put into the math-
ematical model of the system over the restitution coefficient.

The phase vector in the standard phase space IR6 is represented by six compo-
nents:

x; y; x1; y1; x2; y2 . (20)

Transform the phase space as follows:

1. Instead of the displacement coordinates x, x1, x2, take the deflections of the
springs.

z = x; z1 = x1 − x; z2 = x2 . (21)

2. Depending on the coefficients σi and µi squeeze and stretch the space in
directions of zi and yi.

In these two steps a new energy space can be obtained.
In the first step, one obtains a new space V with the basis E:

E = (ez, ey, e1z, e1y, e2z, e2y) (22)

where:

ex = [1, 0, 0, 0, 0, 0]T , ey = [0, 1, 0, 0, 0, 0]T ,

e1x = [0, 0, 1, 0, 0, 0]T , e1y = [0, 0, 0, 1, 0, 0]T , (23)

e2x = [0, 0, 0, 0, 1, 0]T , e2y = [0, 0, 0, 0, 0, 1]T .

Change the basis vectors of the space V . Then, the new energy basis EN of this
space is:

EN = (bz, by, b1z, b1y, b2z, b2y) (24)

where:

bz =
[

(√
σ
)−1

, 0, 0, 0, 0, 0
]T

, by =
[

0, (
√

µ)
−1

, 0, 0, 0, 0
]T

,

b1z =
[

0, 0, (
√

σ1)
−1

, 0, 0, 0
]T

, b1y =
[

0, 0, 0, (
√

µ1)
−1

, 0, 0
]T

, (25)

b2z =
[

0, 0, 0, 0, (
√

σ2)
−1

, 0
]T

, b2y =
[

0, 0, 0, 0, 0, (
√

µ2)
−1

]T

.

The transition matrix AEN←E from the basis E to the basis EN of the energy
space takes the form:

AEN←E =

















√
σ 0 0 0 0 0

0
√

µ 0 0 0 0
0 0

√
σ1 0 0 0

0 0 0
√

µ1 0 0
0 0 0 0

√
σ2 0

0 0 0 0 0
√

µ2

















. (26)

The coordinates of the vector ve = [ze, ye, z1e, y1e, z2e, y2e]
T

EN with respect to
the energy basis EN can be obtained from the vector v with respect to the basis E,
using the transition matrix

ve = AEN←Ev . (27)
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Then

ve =
[√

σz,
√

µy,
√

σ1z1,
√

µ1y1,
√

σ2z2,
√

µ2y2

]T

EN

. (28)

The norm of the vector ve in the energy space with the energy product is as
follows:

|ve| =
√

〈ve, ve〉

=

√

1

2

[√
σ (z)

2
+ (

√
µy)

2
+ (

√
σ1z1)

2
+ (

√
µ1y1)

2
+ (

√
σ2z2)

2
+ (

√
µ2y2)

2
]

=

√

σz2

2
+

µy2

2
+

σ1z
2
1

2
+

µ1y
2
1

2
+

σ2z
2
2

2
+

µ2y
2
2

2

=
√

Ep + Ek + Ep1 + Ek1 + Ep2 + Ek2 , (29)

where:
Ep – the potential energy accumulated in the spring σ,
Ek – the kinetic energy of the mass µ,
Ep1 – the potential energy accumulated in the spring σ1,
Ek1 – the kinetic energy of the mass µ1,
Ep2 – the potential energy accumulated in the spring σ2,
Ek2 – the kinetic energy of the mass µ2.























































ż e =
√

σ
µ
ye

ẏ e = − c
µ
ye − c1

µ
ye + c1√

µµ1

y1e −
√

σ
µ
ze +

√

σ1

µ
z1e + F

µ
sin ητ

ż1e = −
√

σ1

µ1

y1e −
√

σ1

µ
ye

ẏ1e = −
√

σ1

µ1

z1e − c1

µ1

y1e + c1√
µµ1

ye

ż2e =
√

σ2

µ2

z2e

ẏ2e = −
√

σ2

µ2

y2e − c2

µ2

y2e ,

where
z e = sign x

√

Ep

y e = sign y
√

Ek

z1e = sign x1

√

Ep1

y1e = sign y1

√
Ek1

z2e = sign x2

√

Ep2

y2e = sign y2

√
Ek2 .

2.2. Energy flow and synchronization

As has been mentioned, the consideration of the energy subspaces brings some
special advantages. These subspaces are the equivalents of the phase planes of the
phase space. In our case there are four interesting planes.

The first one is the plane which is determined by the basis vectors

bz =
[

(√
σ
)−1

, 0, 0, 0, 0, 0
]T

, (30)
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Figure 3 a) The energy plane of the main mass m system; b) The energy plane of the absorber
m1 system ; c), d), e) Differences of the energies in dt intervals f) Total energy of the system.
h = 1.168, m = 1 kg, m1 = 0.1 kg, s = 100 N/m, s1 = 100 N/m, c = 2 Ns/m, c1 = 0.001 Ns/m,
F = 10 N

by =
[

0, (
√

µ)
−1

, 0, 0, 0, 0
]T

. (31)

It can be seen from the first two rows of the transition matrix AEN←E that this
plane is the squeezed or stretched phase plane x − ẋ in the directions given by the
basis vectors. The basis vectors bz and by can be considered as the eigenvectors of
AEN←E with eigenvalues

√
σ and

√
µ, respectively. The norm of the vector in that

plane gives the energy accumulated in the main mass µ system. In Fig. 3a such a
plane can be seen. It shows the motion of the system in the case where impacts
do not occur. The value of ze shows the potential energy of the spring σ and the
value of ye – the kinetic energy of the mass µ, and by means of these coordinates
the energies can be calculated. You can see the changes from the potential energy
into the kinetic one and vice versa. But see also that the total amount of the energy
accumulated in the main mass µ system is not constant. There exists an energy
flow between the mass µ and the dynamical absorber µ1.
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In Fig. 3b you can see the energy plane which is determined by the basis vectors

b1z =
[

0, 0, (
√

σ1)
−1

, 0, 0, 0
]T

, (32)

b1y =
[

0, 0, 0, (
√

µ1)
−1

, 0, 0
]T

. (33)

There exist transformations of two kinds which were made on the phase plane
x1 − ẋ1to obtain this energy plane. The first one is such that instead of the state
variable x1 we have the spring σ deflection: z1 = x1 − x. The second kind of trans-
formation is such that the vector which lies on that plane is squeezed or stretched in
the directions given by the basis vectors. The basis vectors b1z and b1y can be con-
sidered as the eigenvectors of AEN←E with eigenvalues

√
σ1 and

√
µ1, respectively.

The projection of the vector on that energy plane shows the energy accumulated
in the dynamical absorber µ1 system. The value of z1e shows the potential energy
of the spring σ1 and the value of y1e – the kinetic energy of the mass µ1, and by
means of these coordinates the energies can be calculated.

The energy flow between the main mass µ and the dynamical absorber µ1 can
be seen if you compare Fig. 3a and Fig. 3b. The position of the vector projections
on these two energy planes at the same moment of time is marked by a small circle.
See that at the same moment the spring σ and spring σ1 have the maximum of the
potential energy, and the same concerns the kinetic energies. Note also that the
maximum of the potential energy of the mass µ system equals the maximum of the
kinetic energy of the mass µ1 system and vice versa. The direction of the energy
flow can be seen in Fig. 3 (c, d, e), where:

dEp – the difference of the potential energy of the spring σ in dτ interval,
dEk – the difference of the kinetic energy of the mass µ in dτ interval,
dEp1 – the difference of the potential energy of the spring σ1 in dτ interval,
dEk1 – the difference of the kinetic energy of the mass µ1 in dτ interval,
dτ – 1/1000 of the excitation period,
dE = dEp + dEk,
dE1 = dEp1 + dEk1.

It can be seen, that in each case the dependence is linear. Approximations by
the linear function

y = αx + β .

give following results:
c) α = −1.03 and β = 1.0e−7,
d) α = −1.03 and β = 1.0e−7,
e) α = −1.03 and β = 9.0e−13.
It shows some interesting aspects of the continuous energy flow between mass

µ system and µ1 system. All the energy, that flows out the mass µ system is
intercepted by µ1 system, and vice versa (Fig. 3e). The potential energy of the
spring σ transforms into kinetic energy of the mass and vice versa (Fig.3c). The
same situation takes place with the potential energy of the spring σ1 and the kinetic
energy of the mass µ (Fig. 3d). Additionally, the energy of the whole system is
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Figure 4 The impact map: h = 0.618, m = 1 kg, m1 = m2 = 0.1 kg, s = 1000 N/m, s1 = 110.25
N/m, s2 = 90.25 N/m, c = 6.3 Ns/m, c1 = 0 Ns/m, c2 = 4 Ns/m, F = 10 N, d = 0.012 m, r = 0.7

constant, what can be seen in Fig. 3f. The energy accumulated in the system flows
only between the masses µ and µ1 systems and the excitation energy is dissipated
in the damper c. This energy flow synchronization is possible just only for specially
selected parameters. In our case the excitation frequency is equal to the resonance
frequency of the system, and the damping coefficient c1 is close to zero.

2.3. Energy flow and dissipation during the impact – impact map

Let π be the plane determined by the basis vectors – Fig. 4. It is better to conclude
about all these aspects of impacts from the fourth energy plane (Fig. 5). Let π be
the plane determined by the basis vectors:

b1y =
[

0, 0, 0, (
√

µ1)
−1

, 0, 0
]T

, (34)

b2y =
[

0, 0, 0, 0, 0, (
√

µ2)
−1

]T

. (35)

The vectors y1e and y2e correspond to the kinetic energies of the masses µ1 and
µ2 respectively. The position of the vector is marked on this plane just before and
after impact. Thus, this plane is a special kind of the impact map. In order to make
this map clearer, note that it represents only the points for different types of impact.
As the choice criterion, y1e < y2e has been applied. It is possible because impacts
in both the absorber stops are symmetrical. The consideration of the position and
norm of the vector on this map allows one to conclude about the energy flow between
the dynamical and impact absorbers and also about the energy dissipation during
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each collision. The energy dissipation is included into the mathematical model of
the system over the restitution coefficient.

Let veπ be the projection of the ve on the plane π just before the impact, and
v′eπ after it.

The transformation of the vector veπ during each impact is given by the matrix

AEN
: v′eπ = AENveπ ,

where:

AEN
=

[

µ−r
µ+1

1+r
µ+1

µ+µr
µ+1

1−µr
µ+1

]

(36)

µ =
µ1

µ2

and r is the restitution coefficient.
In the case when µ = 1, which means that the masses of the dynamical and

impact absorbers are equal, the eigenvalues of the AEN
matrix are:

λ1 = −rλ2 = 1 , (37)

and the eigenvectors are:

w1 = [−1, 1]
T

w2 = [1, 1]
T

, (38)

respectively.
The directions of the eigenvectors are shown in Fig. 4. Note that during impact

the vector veπ is transformed only in the direction given by the eigenvector w1.
The energy dissipation in time of each collision can be found from the change of

the norm of the energy space vector:

|veπ| − |v′eπ| (39)

The maximum dissipation of the energy takes place when the vector veπ has the
same direction as the eigenvector w1. Then

v′eπ = λ1 · veπ (40)

Taking in the consideration that

|veπ| =
√

EK1 + EK2 (41)

where:
EK1 – the kinetic energy of the mass µ1 before impact,
EK2 – the kinetic energy of the mass µ2 before impact,

and

|v′eπ| =
√

E′K1
+ E′K2

. (42)

where:
E′K1 – the kinetic energy of the mass µ1 after impact,
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Figure 5 The impact map; η = 1.165, µ = 1 kg, µ1 = µ2 = 0.1 kg, σ = 1 N/m, σ1 = 0.1 N/m,
σ2 = 0.1 N/m, c = 0.04 Ns/m, c1 = 0.01 Ns/m, c2 = 0.02 Ns/m, F = 0.002 N, δ = 0.0216 m,
r = 0.5

E′K2 – the kinetic energy of the mass µ2 after impact,

one can find easily that the energy relation after and before impact assumes the
form:

E′K1 + E′K2

EK1 + EK2

= λ2
1 = r2 . (43)

The closer the direction of the vector veπ is to the second eigenvector w2, the
less energy dissipation occurs. In the case when the directions of veπ and w2 are
the same, there is no energy dissipation during the collision. The velocities of the
masses µ1 and µ2 are equal then and in practice we do not know if impact occurs or
not. It is the so called grazing collision and it causes chaotic motion of the system
(Fig. 5).

The transformation matrix AEN
allows one also to divide the impact map into

two kinds of fields: the first one for the case when the energy flows during impact
from the dynamical to impact absorber and the second when the energy flows in
the opposite direction.

Consider the matrix AEN
in the case µ1 = µ2:

AEN
=

[

1−r
2

1+r
2

1+r
2

1−r
2

]

(44)

Let:
veπ = [v1, v2]T and v′eπ = [v′1, v

′
2]

T
. (45)

Then
v′eπ = AEN

· veπ, (46)

so
[

v′1
v′2

]

=

[

1−r
2

1+r
2

1+r
2

1−r
2

] [

v1

v2

]

. (47)
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The energy flow from the dynamical to impact absorber is given by the condition:

−v1 ≤ v′1 ≤ v1 . (48)

Consider :

1. v′1 = v1

The condition is satisfied when the directions of veπ and the eigenvector w2are
the same.

2. v′1 = −v1 . then

−v1 =
1 − r

2
v1 +

1 + r

2
v2 ,

and we obtain

v2 = −3 − r

1 + r
· v1 . (49)

For the case shown in Fig. 4 r = 0.5 and then

v2 = −5

3
· v1 . (50)

As a result, the energy flow from the dynamical to the impact absorber occurs:
if v1 > 0

−5

3
v1 ≤ v2 ≤ v1 ; (51)

if v1 < 0

v1 ≤ v2 ≤ −5

3
v1. (52)

The field of energy flow in this direction is marked in Fig. 4 by the grey colour.
Note that it is just for y1e < y2e, which was the criterion of the impact choice.
It can be seen that during both impacts the energy flows from the dynamical to
impact absorber.

3. The energy space for the system with nonlinear characteristic of

spring

Consider the system shown in Fig. 6 with nonlinear spring of the mass µ system.
The mathematical model of the system is given by four differential equations of the
first order:















ẋ = y

ẏ =
(

F sin ητ − cy − c1 (y − y1) − σx3 − σ1 (x − x1)
)

· 1

µ

ẋ1 = y1

ẏ1 = (c1 (y − y1) + σ1 (x − x1)) · 1

µ1

.

(53)

Because of nonlinearity of the spring σ the transformation of the phase space, to
obtain the energy space, in direction of x is nonlinear. Thus the description given in
paragraph 2 can be applied only after linearization of the system, in neighbourhood
of selected points, such as a critical points. In general case we have to show the
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c
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c1

m

m1

Fsin( t)w

x1

x

s

Figure 6 The physical model of the system

transformation of the space, as function f : R4 → R4, that transforms the phase
space the following way:

f (x, y, x1, y1) =















√

σ
2
x2sign (x) = ze

√

µ
2
y = ye

√

σ1

2
(x1 − x) = z1e

√

µ1

2
y1 = y1e .

(54)

To simplify the description note, that in the energy space there are square roots
of the potential or kinetic energies on each axis.































ż e = 2
4
√

σ√
µ
z0.5
e ye

ẏ e = − c
µ
ye − c1

µ
ye + c1√

µµ1

y1e − 4

√

4σ
µ2 z1.5

e +
√

σ1

µ
z1e + F√

2µ
sin ητ

ż1e = −
√

σ1

µ1

y1e −
√

σ1

µ
ye

ẏ1e = −
√

σ1

µ1

z1e − c1

µ1

y1e + c1√
µµ1

ye .

3.1. Energy flow and synchronization

To simplify description of the energy flow analysis for system with nonlinear spring,
let us to say, that considered case is similar to the one shown in Section 2.2. All
the energy, that flows out the mass µ system is intercepted by µ1 system, and vice
versa (Fig. 7e) In that case approximations by the linear function

y = αx + β

give results:
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Figure 7 a) The energy plane of the main mass m system; b) The energy plane of the absorber
m1 system ; c), d), e) Differences of the energies in dt intervals f) Total energy of the system.
h = 1.057, m = 1 kg, m1 = 0.1 kg, s = 100 N/m, s1 = 100 N/m, c = 2 Ns/m, c1 = 0.001 Ns/m,
F = 10 N

e) α = −1.01 and β = 0.002.

The energy accumulated in the system flows only between the masses µ and µ1

systems and the excitation energy is dissipated in the damper c. The energy of the
whole system is constant, what can be seen in Fig. 7f.

What differs linear and nonlinear case is the energy flow synchronization. In
nonlinear system there exists different type of the energy flow between the main
mass µ and the dynamical absorber µ1. what can be seen in Fig. 7c, 7d. Each
dependence is not linear. What is interesting the energy of the dynamical absorber
µ1 is constant what can be seen in Fig. 7b (circle).
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Figure 8 The example of the coupling

4. The application of the energy space in the system with more com-

plicated coupling

In case of the more complicated coupling between the masses, especially when the
number of the springs is bigger than the number of the masses (Fig. 8), the dimen-
sion of the energy space is different from the dimension of the phase space. It results
from the first step of transformation of the phase space to obtain the energy one.
In case which is shown in Fig. 8 one should consider the potential energy of three
springs. Thus the displacement coordinates x, x1 of the phase space change into
three springs deflections coordinates z = x, z1 = x1 − x, z2 = x1. After this step of
the transformation coordinates of the vector v are as follows:

v = [z, y, z1, z2, y1]
T

, (55)

where:

y – velocity of the mass µ,

y1 – velocity of the mass µ1.

In that way the dimension of the energy space is five not four. In the case which
is considered the second step of the transformation to obtain the energy space is
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Figure 9 The example of the coupling

given by the following matrix:

AEN←E =













√
σ 0 0 0 0

0
√

µ 0 0 0
0 0

√
σ1 0 0

0 0 0
√

σ2 0
0 0 0 0

√
µ1













. (56)

The coordinates of the vector ve = [ze, ye, z1e, y1e, z2e, y2e]
T
EN

with respect to
the energy basis EN can be obtained from the vector v with respect to the basis E,
using this transition matrix

ve = AEN←E v . (57)

In case of the coupling which is shown in Fig. 9 one should at first calculate
the reduced stiffness of the springs σ2 and σ3 (σr = σ2 + σ3) and then follow the
pattern given above.

5. Conclusions

The way of transformation of the phase space to obtain the energy space has been
shown. It has been proved that this new kind of space allows for concluding about
the energy state of a vibrating system. The norm of the vector in that space
is equal to the square root of the total energy accumulated in the system. The
projection of the vector space on energy subspaces show the amount of the energy
that accumulates in some parts of the system. It has been shown that using this
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kind of spaces, all aspects of the kind of motion can be concluded about, like from
the phase space and, moreover, the energy state, accumulation, flow and dissipation
can be observed. Different types of the energy flow synchronization were shown.
New kind of maps was introduced. It was shown, that the energy space allows for
a new, geometrical view on energy changes in vibrating systems.
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