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The hydro magnetic capillary stability of a streaming gas cylinder pervaded by an az-
imuthally varying magnetic field, surrounded by bounded fluid has been investigated
for all kinds of perturbations. The problem is formulated, solved and upon applying
appropriate boundary conditions, the dispersion relation is derived and discussed. The
uniform magnetic field pervaded in the fluid is strongly stabilizing and that indepen-
dently on the kind of perturbation. The azimuthally varying magnetic field in the gas
region is purely destabilizing in the symmetric perturbation while it is so or otherwise
in the asymmetric perturbation according to restriction. The radii ratio of the fluid-gas
cylinder has a stabilizing tendency. The streaming has strong destabilizing influence for
all short and long wavelengths. The capillary force is purely stabilizing in the asym-
metric perturbation while it is so or not in the symmetric perturbation based on the
wavelength is being shorter or longer than the gas cylinder circumference. Upon certain
restrictions the destabilizing effect of the model could be suppressed and stability sets
in.
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1. Introduction

Here we investigate the magnetohydrodynamic capillary stability of a streaming gas
cylinder penetrated by azimuthal varying magnetic field, surrounded by bounded
fluid for all symmetric and asymmetric perturbations.

The response of discovering the ordinary hollow jet (a gas cylinder surrounded
by infinite liquid) is being by Chandrasekhar (1981). That in discussing its sta-
bility in symmetric perturbation in comparing its stability results with its mirror
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case of a full liquid cylinder surrounded by a gas medium of negligible inertia (vac-
uum) documented by Lord Rayleigh (1945). Later on, the dispersion relation of
this ordinary hollow cylinder is given by Drazin and Reid (1980). Cheng (1985)
discussed the hydrodynamic capillary instability of ordinary hollow jet. In (1986)
Kendall, starting the real realm of studying this model, performed very neat and
accurate experiments for discussing the stability of hollow jet under the capillary
force. Moreover, he (1986) attracted the attention for discussing the stability of
this model for its important application that he did write about it. Following the
same restrictions of Kendall (1986), the hydrodynamic stability of capillary viscous
hollow jet has been analytically investigated for symmetric perturbation by Radwan
and Elazab (1987). The effect of the inertia force on the capillary instability of an
ordinary hollow cylinder is studied by Radwan (1990). Several works concerning
the stability of this model under different acting forces have been carried out, e.g
see Radwan, et.al. (2002).

2. Formulation of the problem

We consider a gas cylinder of radius R0 surrounded by a finite fluid of radius qR0

where 1 < q < ∞. The bounded fluid is assumed to be incompressible, non-viscous
and perfectly conducting. The fluid is assumed to be pervaded by homogeneous
axial magnetic field

H0 = (0, 0,H0) . (1)

The gas cylinder of constant pressure P g
0 is pervaded by the azimuthally varying

magnetic field

Hg
0 =

(

0,
βH0r

R0
, 0

)

, (2)

where β is parameter, H0 is the intensity of the magnetic field in the fluid. The
fluid is supposed to be streaming in the equilibrium state with

u0 = (0, 0, U) . (3)

The components of H0, Hg
0 and u0 are considered along the utilized cylindrical

polar coordinates (r, ϕ, z) with z-axis coinciding with the axis of the coaxial cylin-
ders. The fluid is acted by the capillary, pressure gradient, electromagnetic and
inertia forces. The gas matter is acted by the capillary, electromagnetic and inertia
forces, with the fluid inertia force is predominate over that of the gas matter.

Under these circumstances the magnetohydrodynamic basic equations required
for present investigation are the combination of the ordinary hydrodynamic equa-
tions and those of Maxwell’s concerning the electrodynamic theory. They are given
by

ρ

(

∂

∂t
+ u.∇

)

u − µ(H.∇)H = −∇P +
µ

2
∇ (H.H) , (4)

∇.u = 0 , (5)
(

∂

∂t
+ u.∇

)

H = (H.∇)u , (6)

∇.H = 0 , (7)
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∇.Hg = 0 , (8)

∇∧ Hg = 0 , (9)

P1s = T (∇.N) , (10)

N = ∇f/ |∇f | . (11)

Here ρ, u and P are the fluid density, velocity vector and kinetic pressure, H and
Hg are magnetic field intensities in the fluid and gas regions, µ the magnetic field
permeability, T the surface tension coefficient and N is the unit outward normal
vector to the gas-fluid interface indicated as r does, where f(r, ϕ, z, t) = 0 is the
equation of the fluid boundary surface.

3. Analysis of the problem

For small departures, from the initial state, based on the linear perturbation analy-
sis, the variables of the problem may be expressed as

u = u0 + ε0u1 + . . . Ps = Pos + ε0P1s + . . . ,

P = P0 + ε0P1 + . . . N = N0 + ε0N + . . . , (12)

H = H0 + ε0H1 + . . . Hg = Hg
0 + ε0H

g
1 + . . . .

Here the symbols with subscripts 0 represent unperturbed quantities while those
with index 1 are small increments due to perturbation. ε0 is the initial amplitude
of perturbation at t = 0 while the amplitude at time t is given by

ε = ε0 exp(σt) . (13)

where σ is the growth rate, note that ε0 = ε at t = 0.
By the use of expansions (12) for the basic equations (4)–(11) and equating

the coefficients in both sides, two systems of equations are obtained, which are the
perturbed and unperturbed systems.

The unperturbed system of equations is solved, and the required boundary con-
ditions are applied at the boundary surfaces of the model. Consequently, the kinetic
pressure of the fluid is given by

P0 = P g
0 − T

R0
+

µH2
0

2

(

β2 − 1
)

. (14)

It is remarkable as β = 1, that the constant gas pressure P g
0 must be greater

than the contribution of the surface tension (T/R0) otherwise the hollow jet model
collapses.

Based on the expansion (12), the radial distance of the gas-fluid interface may
be written as

r = R0 + ε0R1 + . . . (15)

with
R1 = exp [i (kz + mϕ) + σt] (16)

is the elevation of the surface wave measured from the unperturbed position where
k and m are the longitudinal and azimuthal wavenumbers.
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The perturbed system of equations is given by

∂u1

∂t
−

(

µ

ρ

)

(H0.∇)H1 = −∇Π1 , (17)

ρΠ1 = P1 +
µ

2
(2H0.H1) , (18)

∇.u1 = 0 , (19)

∇.H1 = 0 , (20)

∂H1

∂t
+ (u0.∇)H1 + (u1.∇)H0 = (H0.∇)u1 + (H1.∇)u0 , (21)

∇.Hg
1 = 0 , (22)

∇∧ Hg
1 = 0 , (23)

P1s =
T

R2
0

(

R1 +
∂2R1

∂ϕ2
+ R2

0

∂2R1

∂z2

)

. (24)

One has to refer here that ρΠ1 = P1 + (µ/2) (2H0.H1) is the total magneto-
hydrodynamic pressure which is the sum of the kinetic pressure of the fluid and
magnetic pressure.

Based on the linear perturbation technique, upon considering a single Fourier
term, the perturbed terms Q1(r, ϕ, z, t) could be expressed as

Q1(r, ϕ, z, t) = Q1(r) exp [i (kz + mϕ) + σt] , (25)

where Q1(r, ϕ, z, t) stands for u1, Π1, H1, Hg
1 and P1.

The linear perturbation equations (17)–(24) are combined and solved with taking
into account the time-space dependence (25).

Apart from the singular solutions, we obtained

u1 =
−(σ + ikU)

ρ
(

(σ + ikU)
2

+ Ω2
A

)∇Π1 , (26)

H1 =
−H0

ρ
(

(σ + ikU)
2

+ Ω2
A

)∇
(

∂Π1

∂z

)

, (27)

Π1 = (AIm (kr) + BKm(kr))R1 , (28)

Hg
1 = C∇Im(kr)R1 , (29)

P1s =
T

R2
0

(1 − m2 − k2R2
0)R1 . (30)

Here Im(kr)and Km(kr) are the modified Bessel functions of first and second
kind of order m. The Alfven wave frequency ΩA is defined by

ΩA = (µH2
0k2/ρ)

1
2 . (31)

A, B and C are constants of integration to be determined upon applying appro-
priate boundary conditions.
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4. Dispersion relation

The solution of the basic equations (4)–(11) in the unperturbed and perturbed
states given by (14) and (26)–(31) must satisfy appropriate boundary conditions
across the fluids interfaces at r = R0 and r = qR0.

Under the present circumstances, these boundary conditions are given as follows.

(i) The normal component of the magnetic field across the gas-fluid interface
must be continuous at r = R0. Mathematically, this condition read

N0.H1 + N1.H0 = N0.H
g
1 + N1.H

g
0 (32)

with
N0 = (1, 0, 0) , (33)

N1 =

(

0,
−im

R0
,−ik

)

R1 . (34)

By substituting from equations (1), (2), (27)–(29), (33) and (34) into the
magnetic field continuity condition (equation (32)), we get

C =
iH0

xI ′m(x)
(mβ + α.x) , (35)

where
x = kR0 (36)

is the dimensionless longitudinal wavenumber.

(ii) The normal component of the fluid velocity must vanish at r = qR0,

N0.u1 + N1.u0 = 0 . (37)

This yields
AI ′m(y) + BK ′

m(y) = 0 , (38)

where
y = qx (39)

is the dimensionless longitudinal wavenumber.

(iii) The normal component of the velocity must be compatible with the velocity
of the boundary surface (15) at r = R0

N0.u1 + N1.u0 =
∂r

∂t
at r = R0 . (40)

This condition is given by

u1r = (σ + ikU)R1 , (41)

from which

AI ′m(x) + BK ′

m(x) = −
ρ0

(

(σ + ikU)
2

+ Ω2
A

)

R0

x
. (42)
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By solving (38) and (41) for A and B, we get

B = −A
I ′m(y)

K ′

m(y)
(43)

and

A =
R0

(

(σ + ikU)
2

+ Ω2
A

)

K ′

m(y)

x [I ′m(x)K ′

m(y) − I ′m(y)K ′

m(x)]
. (44)

Up to now we have determined the constants of integrations A , B and C so
the solution (26)–(30) becomes more clear. We have to go one step more to
apply some compatibility condition at r = R0 as follows.

(iv) The normal component of the total stress tensor must be continuous across
the perturbed gas–fluid interface (15) at r = R0. Mathematically, this reads

Π1 + R1
∂Π0

∂r
− µ(Hg

0.H
g
1) −

µ

2

∂

∂r
(Hg

0.H
g
0) = P1s . (45)

Upon substitution in this equation about different variables with taking into
account that Π0(=

p0

ρ + µ
2ρ (H0.H0))is constant, following dispersion relation

is obtained

(σ + ikU)
2

=
−T

ρR3
0

(1 − m2 − x2)
xLm

x,y

Lm
y

= +
µH2

0

ρR2
0

{

−x2 +

[

−β2 + m2β2 Im(x)

xI ′m(x)

]}

xLm
x,y

Lm
y

(46)

with
Lm

x,y = I ′m(x)K ′

m(y) − I ′m(y)K ′

m(x) , (47)

Lm
y = Im(x)K ′

m(y) − I ′m(y)Km(x) , (48)

x = kR0 , y = qx and 1 < q < ∞ . (49)

5. General discussions

Equation (45) is the required dispersion of a gas cylinder pervaded by azimuthal
varying magnetic field surrounded by bounded fluid of radius qR0 subjected to
the capillary and electromagnetic forces. It is a linear combination of dispersion
relations of a bounded hollow jet subjected to the capillary force only and that one
acted by the electromagnetic force. Equation (45) relates the growth rate σ with the
wave numbers m, x and y, the modified Bessel functions of first and second kind,
their derivatives and their combinations Lm

y and Lm
x,y; the magnetic field parameters

α and β, and with the parameters T ,ρ, R0,H0 and µ of the problem.
Since this problem is somewhat more general several reported works may recov-

ered from the present work as limiting cases.
If we assume that q → ∞, U = 0, H0 = 0 and m = 0, the relation (45) reduces

to

σ2 =
T

ρR3
0

(1 − x2)
xK1(x)

K0(x)
, where K ′

0(x) = −K1(x) . (50)
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That coincides with the dispersion relation indicated by Chandrasekhar (1981).
If we assume that H0 = 0, U = 0, q → ∞, m ≥ 0, the relation (45), yields

σ2 =
−T

ρR3
0

(1 − m2 − x2)
xK ′

m(x)

Km(x)
, (51)

which coincides with the dispersion relation given by Drazin and Reid (1980).
If U = 0, m ≥ 0, β = 0 and q → ∞, the relation (45) generates to

σ2 =
−T

ρR3
0

(1 − m2 − x2)
xK ′

m(x)

Km(x)
+

µH2
0

ρR2
0

.
{

−x2
}

(52)

This relation represent the effect of electromagnetic force on the capillary insta-
bility of a hollow jet pervaded by an axial magnetic field.

If we suppose that H0 = 0, the relation (45) becomes

(σ + ikU)
2

=
−T

ρR3
0

(1 − m2 − x2)
xLm

x,y

Lm
y

. (53)

This relation has been obtained earlier by Radwan (1990 ) in discussing the
capillary stability of bounded hollow jet in streaming fluid.

If we assume that T = 0 and U = 0, the relation (45) gives

σ2 =
µH2

0

ρR2
0

{

−x2 +

[

−β2 + m2β2 Im(x)

xI ′m(x)

]

xLm
x,y

Lm
y

}

. (54)

This recovers the dispersion relation established recently by Radwan et.al. (2002)
as we put α = 0 there.

6. Stability discussions

In order to discuss the stability of the present problem, we need to write down
about the relations between the modified Bessel functions and their characters for
different values of x 6= 0 and y 6= 0.

Consider the recurrence relations (cf. Abramowitz and Stegun 1970)

2I ′m(x) = Im−1(x) + Im+1(x) , (55)

2K ′

m(x) = −Km−1(x) − Km+1(x) . (56)

Upon using the relations (55) and (56) and the fact for non-zero real values of x,
that

Im(x) > 0 (57)

is positively definite and monotonic increasing while

Km(x) > 0 (58)

is monotonically decreasing but never negative, we may show that

I ′m(x) > 0 (59)
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and
K ′

m(x) < 0 . (60)

Also since y > x (see relation (49), we have

Im(x) < Im(y) , (61)

Km(x) > Km(y) . (62)

Therefore, for non-zero real values of x, we have

Lm
y = Im(x)K ′

m(y) − I ′m(y)Km(x) < 0 , (63)

Lm
x,y = I ′m(x)K ′

m(y) − I ′m(y)K ′

m(x) =

−I ′m(x) |K ′

m(y)| + I ′m(y) |K ′

m(x)| > 0 . (64)

Consequently, for x 6= 0, we obtain

xLm
x,y

Lm
y

< 0 . (65)

Now, let us return to our main task the investigation of the stability of the
present model.

The capillary instability of the present model of a streaming bounded hollow
cylinder may be discussed via the relation (53). From the viewpoint of the relations
(53) and (54) and the inequalities (56)–(63), the sign of σ2 in the relation (53)
depends on the sign of (1−m2 − x2) for different values of m and x. In general, as
U = 0, we have

σ2

(T/ρR3
0)

> 0 for m = 0 as 0 < x < 1 , (66)

σ2

(T/ρR3
0)

< 0 for m = 0 as 1 < x < ∞ , (67)

σ2

(T/ρR3
0)

= 0 for m = 0 as x = 1 , (68)

σ2

(T/ρR3
0)

< 0 for m 6= 0 as x 6= 0 . (69)

This means that the stationary (U = 0) capillary bounded hollow jet is purely
stable in the asymmetric modes m 6= 0 of perturbation for all non-zero values of x
and in the symmetric mode m = 0 as 1 < x < ∞. It is marginally stable in m = 0
for x = 1, i.e. as the perturbed wavelength λ = 2πR0. But it is unstable in small
region 0 < x < 1 for m = 0 i.e. as the perturbed wavelength is longer than the
circumference 2πR0 of the gas cylinder.

As U 6= 0 it is found with increasing U values, that the unstable region 0 < x < 1
for m = 0 is increasing while the stable regions (1 ≤ x < ∞ for m = 0) and
(1 < x < ∞ for m > 0) are decreasing. This means that the streaming has a
destabilizing effect on the capillary stability of hollow jet.
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It is found with increasing q-values (1 < q < ∞) that the capillary stable regions
are increasing while those of instability are decreasing. This means that the ratio
q of the fluid-gas radii has stabilizing influence. Under certain restrictions the
capillary instability could be suppressed and stability sets in.

The magneto dynamic instability of the present model of a streaming bounded
hollow jet pervaded by azimuthally varying magnetic field could be identified upon
investigating the dispersion relation (45) as T = 0. Here we have to get out the
effect of different penetrating magnetic fields in the gas and fluid regions separately.
Through which we could decide whether the electromagnetic forces are stabilizing or
not. The effect of the axial magnetic field pervaded in the outer fluid is represented
by the term (−x2) following the natural quantity

(

µH2
0

/

ρR2
0

)

in equation (54). It
has always a stabilizing effect which is independent of the kind of perturbation. The
azimuthally magnetic field pervaded into the interior gas cylinder of the hollow jet
is represented by the terms including β following the natural quantity

(

µH2
0

/

ρR2
0

)

in equation (45) as U = 0, which are

µH2
0

ρR2
0

{[

−β2 + m2β2 Im(x)

xI ′m(x)

]

xLm
x,y

Lm
y

}

. (70)

In view of the inequality (65), in the symmetric mode m = 0, the azimuthally
magnetic field effect represented by the term

µH2
0

ρR2
0

{

−β2
xLo

x,y

Lo
y

}

(71)

has always a destabilizing effect for all short and long wavelengths. In the asym-
metric mode of perturbation, the azimuthally magnetic field is destabilizing in the
term

(

µH2
0

/

ρR2
0

) (

−β2
) (

xLm
x,y

/

Lm
y

)

while it is strongly stabilizing in the term
µH2

0

ρR2

0

{

m2β2 Im(x)
xI′

m
(x)

}

xLm

x,y

Lm
y

for all values of m > 0 for all short and long wavelengths.

To sum up, the azimuthally magnetic field pervaded in the gas region is purely
destabilizing in the symmetric mode m = 0 while it is stabilizing or not in the
asymmetric mode m > 0 under some restrictions.

In examining the effect of the streaming on the magneto dynamic stability of
the present model of hollow jet, it is found as U values are increasing, the magneto
dynamic stable regions are decreasing while the unstable regions are increasing.
This means that the streaming has a strong destabilizing effect on the magneto
dynamic stability of the present model of bounded hollow jet.

Also as q-values (q is the fluid-gas radii ratio) are increased it is found that the
stable regions are increasing but the unstable regions are decreasing. From which
we deduce that the radii ratio of the fluid-gas cylinders has strong stabilizing effect.

Under certain restrictions the magneto dynamic instability behavior of the bo-
unded hollow jet may be suppressed and stability sets in.
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7. Numerical discussions

The dispersion relation (45) has been formulated for m = 0 in the non-dimension
form

(σ∗ + U∗)
2

=
(

1 − x2
) x [I1(x)K1(y) − I1(y)K1(x)]

[I0(x)K1(y) + I1(y)K0(x)]
(72)

+

(

Ho

Hs

)2 {

−x2 + β2 x [I1(x)K1(y) − I1(y)K1(x)]

(I0(x)K1(y) + I1(y)K0)

}

with

σ∗ = σ/(T/ρR3
0)

1/2, U∗ = ikU/(T/ρR3
0)

1/2 and Hs = (µR0/T )1/2

where use has been made of I ′0 = I1, K ′

0 = −K1 and H2
0 = (µR0/T ) noting that

Hs(MR0/T )1/2 has a unit of magnetic field.
The numerical analysis has been carried out by utilizing the normalized dimen-

sionless relation (72) in the computer simulation. This is to verify the analytical
discussions and in order to identify the effect of the streaming speed U∗ and also the
influence of the basic magnetic field H0. Relative to Hs on the capillary instability
of the bounded hollow cylinder. The numerical investigations of the relation (71)
has been carried out in the axisymmetric disturbance mode m = 0 for all short and
long wavelengths in the range 0 ≤ x ≤ 3.0. The corresponding values of the tempo-
ral amplification σ∗ and the oscillation frequency ω∗ (with ω = iσ where i =

√
−1

is the imaginary factor) are collected, tabulated and represented graphically. Such
calculations have been elaborated for different values of

U∗ = 0, 0.1, 0.4, 0.7, 1.0, 1.3, 1.5 and 2.0 ,

H0/H = 0, 0.3, 0.5, 0.8, 1.0, 3.0, and 5.0 ,

β = 0.0, 0.25, 0.50, 0.75, 1.0, 1.5 and 2.0 ,

and

q = 1.1, 1.3, 1.5, 2.0 and 3.0

for regular values of x. The numerical data are plotted, see Figures 1–10 from which
we may deduce the following.

For (U∗ = 0, (H0/Hs) = 0.3 and β = 0.25) corresponding to

q = 1.1, 1.3, 1.5, 2.0 and 3.0

it is found that the unstable domains are given by

0 ≤ x < 1.35300 ,
0 ≤ x < 1.12614 ,
0 ≤ x < 1.07631 ,
0 ≤ x < 1.04187 ,
0 ≤ x < 1.03322 .
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While the stable domains are

1.35300 ≤ x < ∞ ,
1.12614 ≤ x < ∞ ,
1.07631 ≤ x < ∞ ,
1.04187 ≤ x < ∞ ,
1.03322 ≤ x < ∞ ,

where the equalities correspond to marginal stability. See Figure 1.
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Figure 1 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for H0/Hs = 0.3, β = 0.25, U∗ = 0

For U∗ = 0, H0/Hs = 0.5 and β = 0.25 corresponding to

q = 1.1, 1.3, 1.5, 2.0 and 3.0

it is found that the unstable domains are

0 ≤ x < 1.84733 ,
0 ≤ x < 1.33400 ,
0 ≤ x < 1.27200 ,
0 ≤ x < 1.14900 ,
0 ≤ x < 1.10361 ,
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with maximum modes of instability

σ∗

max = 0.55091, 0.50834, 0.548726, 0.662741 and 0.794921

at xmax = 1.3, 0.9, 0.8, 0.8 and 0.7. While the neighboring stable domains are given
by

1.84733 ≤ x < ∞ ,
1.33400 ≤ x < ∞ ,
1.27200 ≤ x < ∞ ,
1.14900 ≤ x < ∞ ,
1.10361 ≤ x < ∞ ,

where the equalities correspond to marginal stability. See Figure 2.
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Figure 2 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for H0/Hs = 0.5, β = 0.25, U∗ = 0

For U∗ = 0, H0/Hs = 0.8 and β = 0.25 corresponding to

q = 1.1, 1.3, 1.5, 2.0 and 3.0
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it is found that the unstable domains are

0 ≤ x < 2.699700 ,
0 ≤ x < 1.753920 ,
0 ≤ x < 1.513540 ,
0 ≤ x < 1.336269 ,
0 ≤ x < 1.288330 ,

with maximum modes of instability

σ∗

max = 1.161189, 0.855652, 0.81407, 0.85034 and 0.924651
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Figure 3 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for H0/Hs = 0.8, β = 0.25, U∗ = 0

while the neighboring stable domains are

2.699700 ≤ x < ∞ ,
1.753920 ≤ x < ∞ ,
1.513540 ≤ x < ∞ ,
1.336269 ≤ x < ∞ ,
1.288330 ≤ x < ∞ ,
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where the equalities correspond to marginal stability states. See Figure 3.

For U∗ = 0, H0/Hs = 3.0 and β = 0.25 corresponding to

q = 1.1, 1.3, 1.5, 2.0 and 3.0

it found that the model is completely stable not only for short wavelengths but also
for long perturbed wavelengths. All the stable domains ranged in 0 ≤ x < ∞. See
Figure 4.
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Figure 4 Relation between the dimensionless wavenumber x and the oscillation frequency ω∗) for
H0/Hs = 3, β = 0.25, U∗ = 0

For U∗ = 0, H0/Hs = 0.3 and β = 0.5 corresponding to

q = 1.1, 1.3, 1.5, 2.0 and 3.0

it is found that the unstable domains are

0 ≤ x < 1.369280 ,
0 ≤ x < 1.133103 ,
0 ≤ x < 1.085419 ,
0 ≤ x < 1.050069 ,
0 ≤ x < 1.041380 ,
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with maximum modes of instability

σ∗

max = 0.303891, 0.37450, 0.448642, 0.602968 and 0.755831

while the neighboring stable domains are

1.369280 ≤ x < ∞ ,
1.133103 ≤ x < ∞ ,
1.085419 ≤ x < ∞ ,
1.050069 ≤ x < ∞ ,
1.041380 ≤ x < ∞ .

See Figure 5.
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Figure 5 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for H0/Hs = 0.3, β = 0.5, U∗ = 0

For U∗ = 0, H0/Hs = 0.3 and β = 0.75 corresponding to

q = 1.1, 1.3, 1.5, 2.0 and 3.0
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it is found that the unstable domains are

0 ≤ x < 1.380570 ,
0 ≤ x < 1.145078 ,
0 ≤ x < 1.100798 ,
0 ≤ x < 1.064120 ,
0 ≤ x < 1.055259 ,

with maximum modes of instability

σ∗

max = 0.308702, 0.382518, 0.460272, 0.616798 and 0.770818 .
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Figure 6 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for H0/Hs = 0.3, β = 0.75, U∗ = 0

While the stable domains are

1.380570 ≤ x < ∞ ,
1.145078 ≤ x < ∞ ,
1.100798 ≤ x < ∞ ,
1.064120 ≤ x < ∞ ,
1.055259 ≤ x < ∞ ,

where the equalities correspond to marginal stability states. See Figure 6.
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For U∗ = 0, H0/Hs = 0.3 and β = 0 corresponding to

q = 1.1, 1.3, 1.5, 2.0 and 3.0

it is found that the unstable domains are

0 ≤ x < 1.360510 ,
0 ≤ x < 1.123860 ,
0 ≤ x < 1.073339 ,
0 ≤ x < 1.060540 ,
0 ≤ x < 1.043940 ,

with maximum modes of instability

σ∗

max = 0.300, 0.36794, 0.439181, 0.59166714 and 0.743626

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3
x

s*

q=1.1

q=1.3

q=1.5

q=2

q=3

Figure 7 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for H0/Hs = 0.3, β = 0.0, U∗ = 0

while the neighboring stable domains are

1.360510 ≤ x < ∞ ,
1.123860 ≤ x < ∞ ,
1.073339 ≤ x < ∞ ,
1.060540 ≤ x < ∞ ,
1.043940 ≤ x < ∞ ,
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where the equalities correspond to marginal stability states. See Figure 7.
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Figure 8 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for q = 1.1, β = 0.25, U∗ = 0

For U∗ = 0, q = 1.1 and β = 0.25 corresponding to

H0/H = 0.3, 0.5, 0.8 and 3.0

it is found that the unstable domains are

0 ≤ x < 1.36260 ,
0 ≤ x < 1.84733 ,
0 ≤ x < 2.69990 ,

0 ≤ x < ∞ .

Here for U∗ = 0, q = 1.1, β = 0.25 and (H0/Hs) = 0.3 the model is completely
unstable for all short and long wavelengths. The maximum modes of instability as
H0/Hs = 0.3, 0.5 and 0.8 are

σ∗

max = 0.300965, 0.550908 and 1.161189 .
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While the stable domains are given by

1.36260 ≤ x < ∞ ,
1.84733 ≤ x < ∞ ,
2.69997 ≤ x < ∞ ,

where the equalities correspond to marginal stability states. See Figure 8.
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Figure 9 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for q = 1.5, β = 0.25, U∗ = 0

For U∗ = 0, q = 1.5 and β = 0.25 corresponding to

H0/H = 0.3, 0.5, 0.8 and 3.0

it is found that the unstable domains are

0 ≤ x < 1.07631 ,
0 ≤ x < 1.21225 ,
0 ≤ x < 1.51354 ,

0 ≤ x < ∞ .
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The maximum modes of instability for the cases with (H0/H = 0.3, 0.5 and 0.8 are
given by

σ∗

max = 0.44152, 0.548726 and 0.81407

while that as H0/Hs = 0.3 is very large and may be tends to infinity. The model is
completely unstable as H0/Hs = 0.3 while there are stable domains:

1.07631 ≤ x < ∞ ,
1.21225 ≤ x < ∞ ,
1.51354 ≤ x < ∞ ,

as H0/Hs = 0.3, 0.5 and 0.8 where the equalities correspond to marginal stability
states. See Figure 9.
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Figure 10 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for q = 3.0, β = 0.25, U∗ = 0

For U∗ = 0, q = 3.0 and β = 0.25 corresponding to

H0/Hs = 0.3, 0.5, 0.8 and 3.0
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it is found that the unstable domains are

0 ≤ x < 1.03322 ,
0 ≤ x < 1.10361 ,
0 ≤ x < 1.28833 ,

0 ≤ x < ∞ .

The maximum mode of instability as H0/Hs = 0.3 in this case is much large and
may be tends to infinity while the maximum modes of instability as

H0/Hs = 0.3, 0.5 and 0.8

are found to be
σ∗

max = 0.746693, 0.794921 and 0.924651 .

The stable domains are given by

1.03322 ≤ x < ∞ ,
1.10361 ≤ x < ∞ ,
1.28833 ≤ x < ∞ ,

where the equalities correspond to the marginal stability states. See Figure 10.
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Figure 11 Relation between the dimensionless wavenumber x and the temporal amplification σ∗

(or the oscillation frequency ω∗) for H0/Hs = 0.3, β = 0.25, U∗ = 0.1
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Figure 12 Relation between the dimensionless wavenumber x and
the temporal amplification σ∗ (or the oscillation frequency ω∗) for
H0/Hs = 0.3, β = 0.25, U∗ = 0.4
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Figure 13 Relation between the dimensionless wavenumber x and
the temporal amplification σ∗ (or the oscillation frequency ω∗) for
H0/Hs = 0.3, β = 0.25, U∗ = 1.0
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Figure 14 Relation between the dimensionless wavenumber x and
the temporal amplification σ∗ (or the oscillation frequency ω∗) for
H0/Hs = 0.3, β = 0.25, U∗ = 1.1
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Figure 15 Relation between the dimensionless wavenumber x and
the temporal amplification σ∗ (or the oscillation frequency ω∗) for
H0/Hs = 0.3, β = 0.25, U∗ = 1.5
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Figure 16 Relation between the dimensionless wavenumber x and
the temporal amplification σ∗ (or the oscillation frequency ω∗) for
H0/Hs = 0.3, β = 0.25, U∗ = 2.0

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3
x

U*=0.0

U*=0.1

U*=0.4

U*=1.0

s*

Figure 17 Relation between the dimensionless wavenumber x and
the temporal amplification σ∗ (or the oscillation frequency ω∗) for
H0/Hs = 0.3, β = 0.25, U∗ = 3.0
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8. Conclusions

From the discussions of the foregoing numerical analysis, see Figures 1–17 we may
write down the following conclusions which verify the analytical results.

(i) The streaming has a destabilizing effect on the present model.

(ii) The magnetic field intensity has a strong stabilizing effect on the capillary
instability of the present model.

(iii) The geometrical factor q which is the ratio of the liquid- gas radii has strong
stabilizing effect. In fact as q tends to infinity i.e., we have an infinite liquid
(radically) and as H0 = −0 we found the same results which are given by
Kendall (1986) experimentally.

(iv) The azimuthally varying magnetic field as m = 0 has strong stabilizing influ-
ence.

(v) In the axisymmetric perturbations, the capillary force is stabilizing for all
short wavelength, but it is destabilizing for the long wavelengths λ as:

λ > 2πR0 .

While it is stabilizing in the non-axisymmetric modes m > 0 for all short and
long wavelengths.
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