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The stability criterion of a fluid cylinder (density ρ) embedded into a different fluid
(density ρ′) is derived and discussed. The model is capillary unstable in the domain
0 < x < 1 as m = 0 where x and m are the axial and transverse wave numbers, while it
is stable in all other domains. The densities ratio ρ′/ρ decreases the unstable domains but
never suppress them. The streaming increases the unstable domains. Gravitationally,
in m = 0 mode the model is unstable in the domain 0 < x < 1.0668 as ρ′ < ρ, while
as ρ′ = ρ it is marginally stable but when ρ′ > ρ the model is purely unstable for all
short and long wavelengths. In m 6= 0 modes the self-gravitating model is neutrally
stable as ρ = ρ′ and ordinary stable as ρ′ < ρ but it is purely unstable as ρ′ > ρ. The
streaming destabilizing effect makes the self-gravitating instability worse and shrinks
the stable domains. The stability analysis of the model under the combined effect of the
capillary and self-gravitating forces is performed analytically and verified numerically.
When ρ′ < ρ the capillary force and the axial flow have destabilizing influences but the
densities ratio ρ′/ρ has a stabilizing effect on the gravitating instability. If ρ = ρ′ the
streaming is destabilizing but the capillary force is strongly stabilizing and could suppress
the gravitational instability. When ρ′ > ρ the capillary force improved the gravitational
instability and created much domains of stability and moreover the instability of the
self-gravitating force disappeared in several cases of axisymmetric disturbances.
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1. Introduction

The self-gravitating instability of a fluid cylinder dispersed in self-gravitating infi-
nite liquid of different density has been studied by Radwan (1991). However the
investigation of hydrodynamic stability analysis of the interface of two contacted
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fluids has been started little bit earlier than the comprehensive work of Radwan
(1991). Indeed the principle and basic physics of the new type of liquid in air jet
are described by Hertz and Hermanrud (1983). The capillary perturbation analysis
of a liquid with a thin shell is studied by Petryanov and Shutov (1984) and (1985),
see also Mayer and Weihs (1987). For other works see Radwan (2003-2005).

The purpose of the present investigation is elaborating the dynamical oscilla-
tion and instability of a streaming fluid cylinder dispersed in a streaming liquid of
different density upon the capillary, pressure gradient, inertia and self-gravitating
forces of each fluid. Several limiting cases in the literature could be recovered from
the present results upon assuming appropriate simplifications.

2. Formulation of the Problem

We consider a fluid cylinder of (radius a) density ρ dispersed in a liquid of density
ρ′. Each of these fluids is considered to be incompressible, inviscid and streamed
with the uniform velocity.

u0 = (0, 0,W ) . (1)

The components of the unperturbed flow (1) are taken along the cylindrical
polar coordinates (r, φ, z) with the z-axis coinciding with the axis of the fluid core
jet. The system is acted upon the self-gravitating, pressure gradient, inertia and
capillary forces. The basic equations required for describing the motion of such kind
of fluid problems are the combination of the ordinary hydrodynamic equations with
those of gravitating Newtonian’s theory. Under the present circumstances and for
the problem at hand, these basic equations are given by

ρ

(

∂u

∂t
+ (u.∇)u

)

= −∇P − ρ∇V , (2)

∇.u = 0 (3)

∇2V = 4πGρ , (4)

Pc = T (∇.n c) . (5)

Here u, ρ, P and V are the fluid velocity vector, fluid density, fluid kinetic pressure
and self-gravitating potential; G is the self-gravitating constant. Pc is the curvature
pressure due to the surface tension (coefficient T ) acting along the interface of the
two fluids. n

c
is a unit outward vector normal to the common boundary fluid-liquid

interface given by

n
c

=
∇F (r, φ, z; t)

|∇F (r, φ, z; t)|
(6)

where

F (r, φ, z; t) = 0 (7)

is the equation of the fluid–liquid boundary surface. Similar equations like the
system (2)–(4) with dashes over the variables may be written for the liquid outside
the fluid cylinder.
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3. Unperturbed State

In the unperturbed state the self-gravitating potentials interior and exterior the
fluid cylinder, respectively, satisfy

∇2V int

0 = 4πGρ , (8)

∇2V ext

0 = 4πGρ′ , (9)

where the subscript o characterizes the unperturbed quantities and later those with
index 1 are being perturbed quantities. Integrating equations (8) and (9) and
identifying the constants of integration upon applying the boundary conditions
that the gravitational potential V0 and its derivative must be continuous across
the boundary surface at r = a. Apart from the singular solutions we finally obtain

V int

0 = πGρ r2 , (10)

V ext

0 = πGa2
[(

ρ′/a2
)

r2 + 2 (ρ′ − ρ) ln (a/r) − (ρ′ − ρ)
]

. (11)

It is worthwhile to mention here that if we suppose that ρ′ = 0, then the solutions
(10) and (11) lead to the same results obtained by Chandrasekhar and Fermi (1953).

Now, returning to equation (2) and to the similar one for the liquid outside
the fluid cylinder and integrating them, the kinetic pressures of the fluids in the
unperturbed state are given by

P int

0 = −ρV int

0 + C1 , (12)

P ext

0 = −ρ′V ext

0 + C2 , (13)

where C1 and C2 are arbitrary constants of integration to be determined. By the
use of equations (10) and (11) and apply the condition that the pressures must be
balanced at r = a, we finally obtain

P int

0 = −πGρ2r2 + C , (14)

P ext

0 =
T

a
+ πGa2

(

ρ′2 − ρ2
)

− 2πGa2ρ′ (ρ′ − ρ) − ln
(a

r

)

− πGρ′2r2 + C , (15)

where C(= C1) is an arbitrary constants with which we need not be further con-
cerned.

One has to mention here that both P int

0 and P ext

0 are variables, in contrast to
the case in which a fluid cylinder (cf. Chandrasekhar 1981) or other models (see
Radwan 1995 and 1996) acted by the capillary force or/and other forces rather than
the self-gravitating force where it is found there that such pressures are constants.

4. Perturbation Analysis

For small departure from the unperturbed state, every variable quantity Q(r, φ, z; t)
can be expanded as

Q (r, φ, z; t) = Q(r) + εQ1 (r, φ, z) (16)

where Q stands for P , P ′, V , V ′, u, u′ and Pc.
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Here ε is an infinitesimal amplitude of the perturbation at any instant of time
t, given by

ε = ε0 exp(σt) (17)

where ε0(= ε at t = 0) is the initial amplitude and σ is the temporal amplifications

of the perturbation. If σ(= iω, i = (−1)
1

2 ) is imaginary then ω/2π is the oscillation
frequency.

Based on the expansions (16), the deformation of the two fluids interface, as-
suming sinusoidal wave could be described by

r = a + R1, |R1| << a , (18)

with
R1 = εa cos kz cos mφ (19)

here R1 is the elevation of the surface wave measured from the unperturbed position,
m (integer number) is the transverse wave number and k (a real number) is the
longitudinal wave number.

By an appeal to the expansions (16) and (18), the basic equations (2)–(5) yield
the following perturbation equations

(

∂

∂t
+ W

∂

∂z

)

u 1 = −∇Π1 , (20)

Π1 =
P1

ρ
+ V1 , (21)

∇.u1 = 0 , (22)

∇2V1 = 0 , (23)

P1c = −
T

a2

(

R1 +
∂2R1

∂φ2
+ a2 ∂2R1

∂z2

)

. (24)

Similar system of equations like (20)–(24), but with dashes over the variables,
may be written for the liquid exterior the fluid cylinder. based on the linear per-
turbation technique and in view of the φ and z dependence (19), any perturbed
quantity Q1(r, φ, z; t) may be expressed as an amplitude function of (r) times
cos(kz) cos(mφ), viz.,

Q1(r, φ, z; t) = εq1(r) cos(kz +
nπ

2
) cos(mφ +

nπ

2
) (25)

where n is an integer and q1 is function in r only. By the use of (r, φ, z; t) dependence
(25), equation (23) turned, to a total second order differential equation in q1(r)
whose solution is given in terms of the ordinary Bessel functions with imaginary
argument. Therefore, the non-singular solution of (23) and the similar one interior
and exterior the fluid cylinder are given by

V int

1 = AintIm(kr) cos(kz) cos(mφ) , (26)

V ext

1 = AextKm(kr) cos(kz) cos(mφ) . (27)
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Here Im(kr) and Km(kr) are the modified Bessel functions of first and second
kind of order m while Aint and Aext are arbitrary constants. The latter may be
determined upon applying the boundary conditions that V (= V0 + εV1) and its
derivative must be continuous across the perturbed interface (18) at r = a. These
boundary conditions yield

Aint Im (x) = Aext km (x) , (28)

X(AintI ′
m

(x) − AextK ′

m
(x)) = 4πGa2(ρ′ − ρ) , (29)

where x(= ka) is the dimensionless wave number. Equations (28) and (29) give
Aint and Aext, so that the change in Vint and Vext due to the deformation (16) is
given by

V int

1 = 4πGa2(ρ′ − ρ)Km(x)Im(kr) cos(kz) cos(mφ) , (30)

V ext

1 = 4πGa2(ρ′ − ρ)Im(x)Km(kr) cos(kz) cos(mφ) . (31)

By combining equations (20)–(22) and using the expansion (25), we get

r−1 d

dr

(

r
dΠ1

dr

)

−

(

m2

r2
+ k2

)

Π1 = 0 . (32)

Therefore the non-singular solution of equation (23) interior and exterior the
fluid cylinder are given by

Πint

1 = BintIm(kr) cos(kz) cos(mφ) , (33)

Πext

1 = BextKm(kr) cos(kz) cos(mφ) , (34)

where Bint and Bext are unspecified constants of integration to be determined.
These constants may be determined by applying the boundary conditions that the
normal component of the velocity vector must be continuous and compatible with
the velocity of the deformed fluid-liquid interface (18) at the unperturbed position
at r = a. Finally, Apart from the singular solution, we obtain for the interior fluid
cylinder

uint

1 =
(σ + ikW )a2

xI ′
m

(x)
∇ [Im(kr) cos(kz) cos(mφ)] , (35)

P int

1 = ρ

(

−
(

σ + ikW )2a2
)

xI ′
m

(x)
+ 4πGa2(ρ − ρ′)Km(x)

)

Im(kr) cos(kz) cos(mφ) .

(36)
While in the liquid region surrounding the fluid cylinder we have

uext

1 =
(σ + i kW ) a2

xK ′

m
(x)

∇ [Km (kr) cos (kz) cos (mφ)] , (37)

P ext

1 = ρ′

[

−
(

σ + i kW )2 a2
)

xK ′

m
(x)

+ 4πGa2 (ρ − ρ′) Im (x)

]

Km (kr) cos(kz) cos (mφ) .

(38)
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And along the fluid-liquid interface (see equation (24)), we get

P1c =
−T

a
(1 − m2 − x2) cos kz cos mφ . (39)

Moreover, upon applying the condition that the normal component of the total
stress must be continuous across the interface (3.18) at the unperturbed position
r = a, following eigenvalue relation is obtained

(σ + i kW )
2

= 4πG (ρ + ρ′)

(

1 − S

1 + S

)

ξm (x)

[

(1 − S)Im (x)Km (x) −
1

2

]

+
T

a3(ρ + ρ′)
(1 + S)ξm(x)(1 − m2 − x2) (40)

with

ξm(x) = xI ′
m

(x)K ′

m
(x) [Im(x)K ′

m
(x) − SI ′

m
(x)Km(x)]

−1
, (41)

S =
ρ′

ρ
. (42)

5. Discussions

5.1. General Discussions

The eigenvalue relation (39) is a simple linear combination of capillary eigenvalue
relation of a streaming fluid-core liquid cylinder and self-gravitating eigenvalue re-
lation of a streaming fluid-core liquid jet. Indeed this behavior of the simple linear
combination has been expected as obtained before by Radwan (1996) and (1997) for
different ideal fluid models acted by the electromagnetic or electro-dynamic force in
addition to the capillary forces. But this behavior is not true as the fluid is viscous
or/and resistive, see Radwan (1991) or/and (1992) respectively.

By means of the relation (39) the characteristics of the present model could be
determined. The relation (39) relates the temporal amplification σ or rather the
oscillation frequency ω (as ω = iσ is imaginary) with the cylindrical functions Im(x),
Km(x) and their derivatives and the compound function ξm(x), the wave numbers
m and x, the densities ratio S(= ρ′/ρ) of fluid-liquid media, the natural parameters

W , ρ, ρ′, a, G and T and with the fundamental natural quantities 4πG(ρ + ρ′)
−1

2

and T/(a3(ρ + ρ′))
−1

2 as a unit of time.

5.2. Limiting cases

The present problem belongs a lot of natural parameters since it is two fluids with
separating interface. Also the model is acted by different forces, inertia forces,
pressure gradient forces and self-gravitating forces.

Some previous published works may be recovered as limiting cases from the
present general result.

A lot of approximation (G = 0, ρ′ = 0, m = 0 and W = 0) are required to
obtain

σ2 =
T

ρa3

xI1(x)

I0(x)
(1 − x2) , I ′0(x) = I1(x) (43)
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This relation has been derived by plateau (1897) upon utilizing simple concepts
and methods. If we suppose that (G = 0, ρ′ = 0, m ≥ 0 and W = 0), the relation
(40) reduces to

σ2 =
T

ρa3

xI ′
m

(x)

Im(x)
(1 − m2 − x2) . (44)

This is classical capillary dispersion relation of a full fluid cylinder embedded
into a vacuum which is derived analytically for first time by Rayleigh (1945). If we
suppose that T = 0, W = 0, ρ′ = 0 and simultaneously m = 0, the relation (40)
degenerates to

σ2 = 4πGρ
xI1(x)

I0(x)

(

I0(x)K0(x) −
1

2

)

. (45)

This is the dispersion relation of a self-gravitating fluid cylinder derived, for first
time, by Chandrasekhar and Fermi (1953). The latter authors have used a totally
different technique rather than used here. In fact they have used the technique of
representing the solenoidal vectors in terms of poloidal and toroidal vector fields in
the axisymmetric disturbances.

If we put T = 0, ρ′ = 0, W = 0 and at the same time m ≥ 0, the relation (40)
reduces to

σ2 = 4πGρ
xIi

m
(x)

Im(x)

(

Im(x)km(x) −
1

2

)

. (46)

This relation, coincides with the self-gravitating dispersion relation of a fluid cylin-
der surrounded by a self gravitating tenuous medium valid for all axisymmetric
m = 0 and non-axisymmetric m 6= 0 modes of perturbation, is derived by Chan-
drasekhar (1981).

If we put T = 0, G = 0, W ≥ 0 and m ≥ 0 the relation (40) yields

(ρ + ikW )2 = 0 . (47)

This means that there is no dispersion and consequently there is no self-gravitating
hollow jet in reality.

If we postulate that G = 0, ρ = 0, W = 0 and m = 0, the stability criterion (40)
becomes

σ2 =
I

ρ′a3

xK1(x)

K0(x)
(1 − x2) (48)

where use has been made of the relation K ′

0(x) = −K1(x).
The relation (48) coincides with the capillary dispersion relation of a hollow

cylinder, valid for axisymmetric mode m = 0 only, given for the first time by
Chandrasekhar (1981).

However, if G = 0, ρ = 0, W = 0 and m ≥ 0, the relation (40) gives

σ2 =
T

ρ′a3

xK ′

m
(x)

Km(x)
(1 − m2 − x2) (49)

which is, the same capillary eigenvalue relation of a hollow cylinder valid for all kind
of disturbances, given by Drazin and Reid (1980). Also it coincides with Radwan,
dispersion relation (1988) if we neglect the magnetic field influence there.
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If G = 0 and W = 0, the relation (40) degenerates the capillary dispersion
relation of a fluid core liquid cylinder in the form

σ2 =
T

a3(ρ + ρ′)
(1 + S) .ξm(x)(1 − m2 − x2) (50)

Also the self-gravitating eigenvalue relation of a fluid-core liquid cylinder could
be obtained from (40), as T = 0 and W = 0, in the form

σ2 = 4πG(ρ + ρ′)
1 − S

1 + S
ξm(x)

[

(1 − S)Im(x)Km(x) −
1

2

]

. (51)

The capillary dispersion relation of a streaming fluid-core liquid cylinder could
be obtained from (40) as G = 0, in the form

(ρ + ikW )2 =
T

a3(ρ + ρ′)
(1 + S)ξm(x)(1 − m2 − x2) . (52)

Similarly the dispersion relation of a self-gravitating streaming fluid-core liquid
cylinder is given from (40), as T = 0, in the form

(σ + ikW )2 = 4πG(ρ + ρ′)ξm(x)
1 − S

1 + S

[

(1 − S)Im(x)Km(x) −
1

2

]

. (53)

6. Stability analysis

In order to investigate the oscillation and instability states of the present problem
we have to identify the influence of

(i) the capillary force on using equation (52),

(ii) the self-gravitating force on using (53), and,

(iii) the combined effect of both the capillary and self-gravitating force on using
equation (40).

To do so we need to write down about the behavior of the modified Bessel functions
and their derivatives. By the use of the recurrence relation (see Abramowitz and
Stegun, 1970)

2ℓ′
m

(x) = ℓm−1(x) + ℓm+1(x) , (54)

where ℓm(x) stands for Im(x) and (−Km(x)) while ℓ′
m

(x) stands for I ′
m

(x) and
K ′

m
(x), and using the facts for x 6= 0 that

Im(x) > 0 , Km(x) > 0 . (55)

We observe that
I ′
m

(x) > 0 , K ′

m
(x) < 0 . (56)

Therefore, on utilizing the relations (54) and the inequalities (55) and (56) for the
relation (41) we deduce that

ξm(x) > 0 . (57)

for every non-zero real value of x in all axisymmetric m = 0 and non-axisymmetric
m ≥ 1 modes of perturbation.
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6.1. Capillary Instability

The dispersion relation (52) is discussed analytically, taking into account the in-
equalities (55)–(57). These discussions reveal that the non-streaming fluid-core
liquid jet is capillary unstable in the axisymmetric disturbance m = 0 in the do-
main 0 ≤ x < 1. While it is stable in the domains (m = 0 as 1 ≤ x < ∞ and m ≥ 1
as 0 < x < ∞), moreover, it is found that the area under the instability curves
in the domain 0 < x < 1 decreases with increasing S(= ρ′/ρ) values but never be
suppressed whatever is the large value of S. Since the streaming has a destabiliz-
ing influence and that influence is independent of the kind of perturbation. Then
the streaming has the influence of increasing the unstable domain 0 < x < 1 but
decreasing the stable domains (m = 0 as 1 ≤ x < ∞) and (m ≥ 1 as 0 < x < ∞).
Therefore, we conclude that the streaming fluid-core liquid jet is capillary unstable
not only in the mode m = 0 but also in the modes m ≥ 1 of perturbation.

6.2. Self-gravitating Instability

The dispersion relation (53) has been discussed analytically, taking into account the
identities (55)–(57). It is found that the self-gravitating stable domains of the non-
streaming fluid-core liquid jet could be identified through the determining the sign
of the quantity (1−S)[(1−S)Im(x)Km(x)− 1

2
]. This in fact, has to be carried out

not in axisymmetric mode m = 0 but also in the non-axisymmetric modes m ≥ 1
for different cases S < 1, S = 1 and S > 1 because the densities ratio S(= ρ′/ρ)
plays an important role in the stability theory of the present self-gravitating model.

(i) Axisymmetric mode m = 0
As S < 1, it is found numerically that the model is unstable in the domain 0 <
x < 1.0668 as S = 0. However, the area under the instability curves decreases
with increasing S (in the range 0 < S < 1) values but never be suppressed.
The oscillation domains depend on the values of S and all these domains are
larger than the smallest domain 1.0668 < x < ∞ which corresponds to the
case S = 0. As S = 1 we have a neutral stability state and this kind of
stability is independent of: the kind of perturbation, the values of the axial
wave number and of the acting forces.

As 1 < S < ∞, it is found that the fluid-core liquid jet is unstable not only for
long wavelengths but also for very short wavelengths. Since the streaming has
a strong destabilizing effect. We found that the destabilizing influence of the
streaming will produce unstable states as S = 1, increasing the all unstable
domains as S > 1 and also increasing the unstable domains of the case S < 1,
and decreasing the stable states as S < 1.

We conclude that the streaming fluid-core liquid jet is self-gravitating unstable
for all S(= ρ′/ρ) values in the axisymmetric disturbance mode m = 0.

(ii) Non-axisymmetric modes m ≥ 1
In such a case of non axisymmetric perturbation, it is found numerically that

Im(x)Km(x) <
1

2
(58)
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For each non-zero real value of x. Therefore we have the following different
cases. As S < 1, it is found that the stationary model is purely stable for
all x 6= 0 values. As S = 1 we found that σ = 0. This mean that there
is no dispersion and so the stationary model is marginally stable and this
is physically clear since in such a case we have an homogeneous medium of
uniform density. As S > 1 it is found that non-streaming model is purely
unstable for each non-zero real value of x in all non-axisymmetric modes
m ≥ 1. Now, since the streaming has a strong destabilizing influence the
streaming has the effect of decreasing the stable domain. In the case 0 < S ≤ 1
and increasing the unstable domain in the case 1 < S < ∞. We conclude that
the streaming fluid-core liquid jet is self-gravitational unstable for all values
of the densities ratio S(= ρ′/ρ) in the non-axisymmetric modes m ≥ 1.

6.3. Hydro-gravitational Instability

In this section we intend to investigate the stability of a streaming surrounded
by a stream liquid under the combined effects of inertia, pressure gradient, self-
gravitating and capillary forces. In order to do so we have to use the dispersion
relation (40) in its general form.

By the aid of the previous results available to the capillary instability which
comes out from the investigating the relation (52) and those from the relation (53)
concerning the self-gravitating instability, we may deduce the following results for
the present case. In non-axisymmetric modes of perturbation m = 1, 2, 3 . . . etc, the
model is stable or unstable according to certain restrictions whether it is streaming
or not.

In the axisymmetric mode m = 0 of perturbation, it is found that the analytical
discussions of the relation (40) are not enough to describe the dynamical oscillation
and instability states in this important modes.

Keep in mind that there were some cases in which ρ′/ρ, the model of the fluid-
core liquid jet is purely self-gravitational unstable not only for long wavelengths but
also for very short wavelengths. Therefore, in order to complete and clarify such
analysis of (in-)stability as m = 0, the dimensionless form of the relation (40)

(σ + ikW )2

4πG(ρ′ + ρ)
=

1 − S

1 + S

[

(1 − S) Im(x)Km(x) −
1

2

]

ξm(x)

+N(1 + 5)ξm(x)(1 − m2 − x2) (59)

where
N = T/(4πGa3(ρ′ + ρ)2) (60)

has to be computed in the computer for m = 0. This has already been done
for different values of the parameters N (cf. equation (59) which is dimensionless
parameter due to the capillary and self-gravitating forces) S(= ρ′/ρ) the densities

ratio and W ∗ = −ikW (4πG(ρ′ + ρ))−
1

2 is dimensionless streaming velocity). The

numerical data, concerning the oscillation states as σ(4πG(ρ + ρ′))−
1

2 is imaginary

and those concerning the instability states as σ(4πG(ρ +ρ′))−
1

2 is real, are collected
classified, tabulated and presented graphically. See Figures 1–5. There are many
features of interest in these numerical results.
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The case 0 < S < 1

When S = 0.2 and W ∗ = 0.5: corresponding to N = 0, 0.25, 0.5, 1.0, and 2.0
the unstable domains are

0 < x < 1.86302 ,
0 < x < 1.35498 ,
0 < x < 1.23970 ,
0 < x < 1.16430 ,
0 < x < 1.09939 ,

and their maxima mode of instability are

σmax = 0.6645, 0.72486, 0.7779, 0.8613 and 0.9932 .

The stable domains are
1.86302 ≤ x < ∞ ,
1.35498 ≤ x < ∞ ,
1.23970 ≤ x < ∞ ,
1.16430 ≤ x < ∞ ,
1.09939 ≤ x < ∞ ,

where the equalities correspond to the marginal stability, see Figure 1. Thus we

Figure 1 σ∗ versus x

can say that each of the axial flow and the capillary force has destabilizing influence
but the densities (fluid to liquid) ratio has strong stabilizing influence on the self-
gravitating instability.

The case S = 1

It is well known in this case that the self-gravitating force has no influence at all
on the stability of the fluid-core liquid jet. This is obvious from the dimensionless
relation (59) where the factor (1 − S) is occurred in the term contributed to the
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Figure 2 σ∗ versus x

self-gravitating forces. Therefore, one has to keep in mind that the stability analysis
here will be due to the influence of the inertia, pressure gradient and capillary forces.

When S = 1.0 and W ∗ = 0.5: corresponding to N = 0, 0.25, 0.5, 1.0 and 4.0 it
is found that the unstable domains are

0 < x < ∞ ,
0 < x < 1.5856 ,
0 < x < 1.3830 ,
0 < x < 1.2389 ,
0 < x < 1.0870 ,

and their maxima mode of instability are

0.5, 0.6562, 0.7209, 0.81243 and 1.12484.

See Figure 2. As N = 0.25, 0.5, 1.0 and 4.0 the stable domains are found to be

1.5856 ≤ x < ∞ ,
1.3830 ≤ x < ∞ ,
1.2389 ≤ x < ∞ ,
1.0870 ≤ x < ∞ ,

see Figure 2. When S = 1.0 and W ∗ = 0.7: corresponding to N = 0, 0.25, 0.5, 1.0
and 4.0 we may find similar results as above. See Figure 3.

The case 1 < S < ∞

When S = 2.0 and W ∗ = 0.5: corresponding to N = 0.25, 0.5, 1.0, and 2.0 it is
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Figure 3 σ∗ versus x

found that the unstable domains are

0 < x < 2.28995 ,
0 < x < 1.84664 ,
0 < x < 1.53930 ,
0 < x < 1.32987 ,

and their maxima mode of instability are

1.0412, 1.0327, 1.0508 and 1.1125 .

One has to write down here, as N = 0 that the model is purely self-gravitating
unstable and its maxima mode of instability is sited near infinity.

Corresponding to N = 0.25, 0.5, 1.0 and 2.0 the stable domains are

2.28995 ≤ x < ∞ ,
1.84664 ≤ x < ∞ ,
1.53930 ≤ x < ∞ ,
1.32987 ≤ x < ∞ ,

where the equalities corresponding to marginal stability. See Figure 4 for visualiza-
tion.

When S = 2.0 and W ∗ = 0.7: corresponding to N = 0.25, 0.5, 1.0 and 2.0 it is
found that the unstable domains are

0 < x < 2.48880 ,
0 < x < 2.00387 ,
0 < x < 1.65875 ,
0 < x < 1.41553 ,
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Figure 4 σ∗ versus x

and their maxima mode of instability are

1.2421, 1.2327, 1.2508 and 1.3125 .

The fluid-core liquid cylinder is infinity unstable as N = 0. The neighbour stable
domains are

2.48880 ≤ x < ∞ ,
2.00387 ≤ x < ∞ ,
1.65875 ≤ x < ∞ ,
1.41553 ≤ x < ∞ ,

where the equalities correspond to the marginal stability states. See Figure 5.
Therefore, for this case in which S = 2.0, we conclude that the axial flow has a

Figure 5 σ∗ versus x
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destabilizing influence for all N values while the capillary force due to the curvature
pressure has stabilizing influence on the gravitational instability in particular for
large values of x. The model of the fluid-core liquid cylinder is infinity unstable
for all W ∗ values as N = 0 i.e., in the absence of the surface tension. Any how
the existence of the capillary force besides the self-gravitating force created some
stability states in the dangerous case (m = 0 with S > 1) whether the model is
streaming or not. In fact this important conclusion is vital for our problem because
in the case T = 0 it is found that the model is purely unstable and the maxima
mode of instability of each case is sited at infinity. Therefore the capillary force
developed and modified the self-gravitating instability in particular as S > 1.
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