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Plastic stresses, strains and the phase of failure in tension
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Received (15 September 2006)

Revised (23 September 2006)

Accepted (3 October 2006)

In this paper the analysis of the state of strain and stress in necking has been analysed.
A description of the stress-strain relationship, which takes into account strain harden-
ing, and next necking until the moment of rupture, along with a description of breaking
stresses, allows one to build such a mathematical model (described in bi-polar coordi-
nates) in the whole range of load, which accounts for the fracture formation and the
element failure.
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1. Introduction

In modern mechanical, building, structures, etc., an exact evaluation of the state
of stresses and strains, possible failures of materials is needed both during their
manufacturing and usage. Because of a complex nature of the material internal
microstructure, local properties of the material that can propagate in time under
the effect of heat and pressure, a local failure system, residual stresses caused by
the technological process and other factors exert very often an influence on failure
modes.

Results of experimental investigations are the basic element in formulation of
theoretical solutions, however, despite a dynamic development in measuring tech-
niques, an interpretation of test results can be difficult due to a limited spectrum
and range of applicability of the apparatus used in tests. It seems that an appli-
cation of latest calculation methods allows one to determine the boundary states
and failure phases of a structure or an element on the basis of material proper-
ties. However, investigation methods are continuously modernised and the results
of some research are protected by patents and made public unwillingly in numerous
cases, thus such data should be supplemented with additional measurements, e.g.,
of strains in the failure phase, the determination of crack resistance, etc.
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Strength resistance properties of materials are the basic element that enables
calculations and formulation of theoretical solutions, however due to their limited
spectrum in cases of complex stresses and strains, their explicit interpretation can
be impeded.

As a classical example of such an approach, one can consider a simple tensile
test as the basis for further calculations. The analysis of the failure phase under
tension has been presented, for example, in [1], [4], [5], [17] and al.

Tension diagrams that characterize the material properties are treated as the
fundamental element of numerical computations. Testing machines used currently
allow one to describe precisely tensile tests, but their software enables the determi-
nation of only some parameters that define the material properties. The application
of results of typical strength tests into numerical computations is incurred with er-
rors that follow from the simplifications assumed. A lack of mathematical model,
which would describe an actual σ− ε (stress-strain) relationship in the whole range
of load, compels designers to use simplified assumptions or to conduct additional
recalculations in order to describe the complete tensile behaviour, including the
failure phase. The investigations carried out by the author allow one to analyse
subsequent tension phases, a failure mode and an occurrence of sliding planes and
an actual σ−ε relationship. The analysis of stress and strain states for St3s and St4s
steel was made on an Instron testing machine. The displacement and strain mea-
surements presented in this study were made with strain gauges, an extensometer
and by means of the moiré-fringe technique [3, 6] and al.

In principle, strength tests on, e.g., an Instron testing machine, are carried out
for two kinds of programs, namely:

1. Strain measurement is made with extensometers – then we can determine
the proof stress or the physical yield point and the Young’s modulus. Usually,
when the proof stress or the physical yield point is exceeded, the extensometer
should be turned off, and the strain recording program recalculates the jaw
edge displacements and calculates the elongations as if they were still recorded
by the extensometer, and next it calculates the tensile strength.

2. Strain measurement is made without extensometers – then we can determine
the proof stress or the physical yield point and the tensile strength and elon-
gations on the basis of a difference in displacements of the machine grip jaw
edges.

A detailed analysis of such measurements is to be found in the next section of the
present study.

The way the strains are described in bi-polar coordinates, which has been based
on the experimental investigations, makes it possible to employ the results in the
numerical computations, wherever we are interested in stress states in the failure
phase. The real σ − ε (stress-strain) relationship used in calculations (in elastic-
plastic materials after strain hardening) comprises a description of strains until the
moment of an occurrence of necking, next it describes a stress distribution after the
occurrence of necking, and the process of fracture itself is described on the basis of
tests of specimens with existing fissures.
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The investigations of the fracture process and the analysis of causes of the scratch
occurrence are the object of numerous scientific investigations and studies, and the
complete range of methods and solutions, whose examples are listed at the end of
this study, fall beyond the scope of the present study. In this study, some test and
calculation methods that can be employed to develop a model of structures, which
can be used in the engineering practice in the whole range of loading and which
accounts for element fracture and failure investigations, have been presented. The
tests were made on steel specimens and models made of epoxy resins with the linear
characteristics (characterized by brittle cracking) and “elastic-plastic” resins (with
the non-linear characteristics).

The numerical calculation results, and especially the finite element method, are
now widely used in structure calculations.

The professional software packages (ANSYS, NASTRAN, ADINA) enable all
kinds of computations, but the accuracy of these computations depends, among
others, on the characteristics of structural materials, and thus on the data obtained
in the basic investigations.

For instance, the professional ANSYS software allows for carrying out all kinds
of computations. In this program in the range of elastic-plastic strains, the loga-
rithmic stain −→ε is assumed instead of the conventional strain ε, and the value of
the Poisson’s ratio νpl(ε) is assumed as a constant and equal to 0.5, which agrees
approximately with the real state of stresses and strains.

2. Results of tensile tests

The diagrams F(∆l) or σ(ε) obtained from the testing machine should be interpreted
so that the diagram σ(ε) should correspond to real σ− ε relationships. The charac-
teristic quantities, on the basis of which the σ−ε relationship can be formed, are the
forces corresponding to the physical yield point or the proof stress, the maximum
force and the strain corresponding to it, and the force acting when the specimen is
necked and ruptured. For each of these forces, the cross-sectional dimensions can
be measured and the stresses calculated, and then an approximate variability of the
function σ(ε) can be calculated. The values obtained in the strength tests and the
quantities determined on their basis are depicted in Fig. 1. The plot σ(ε) obtained
from the testing machine is a conventional plot, the value of the force divided by a
constant value of the cross-section is given on the vertical axis, whereas the elonga-
tion related to the initial length, that is to say, the relative strain (also called the
conventional strain) is presented on the horizontal axis. Thus, as a matter of fact
this diagram is a copy of the F(∆l) plot, in another system of coordinates. The
quantities obtained on the basis of the strength tests are as follows:

1. limit of proportionality σp = σprop and the strain corresponding to it εp =
εprop - and the Young’s modulus E,

2. proof stress or physical yield point - R02 , Re (σ0 = σpl and the strain corre-
sponding to it ε0 = εpl),

3. maximum force Fmax - tensile strength Rm , real stress (σrz) corresponding
to Rm, force corresponding to necking Fkr – maximum stress (σmax) corre-
sponding to rupture
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Beside standard results given in typical reports, actual values of stresses corre-
sponding to the tensile strength and the rupture force are given as well.

Table 1 Sample results of the tensile tests

No Specimen
dimensions
bo x ho

[mm]

Critical
dimensions
bmin x hmin

[mm]

Extenso
-meter
base
lo [mm]

Proof
stress
R0.2

[MPa]

Tensile
strength
Rm

[MPa]

Real stresses
correspond-
ing to Rm

σrz * [MPa]
1 59.65 x 1.86 40.08x1.46 50 243.9 297.3 357.2
2 66.30 x 1.86 43.40x1.35 50 204.6 317.4 394.1
No Necked

cross-
section
Ap[mm2]

Elongation
of the mea-
sured part
∆ lex [mm]

Maximum
tensile
force
Fmax[kN]

Force at
which the test
was stopped
Fkr [kN]

Maximum
tensile
stress
σmax **
[MPa]

Unit
elon-
gation
εmax

[%]
1 58.52 18.04 32.98 29.88 510.6 36.8
2 58.59 22.35 39.11 34.22 584.1 44.7

σrz * - real stresses corresponding to Rm,
σmax ** - maximum stresses corresponding to rupture.
Note : the real stresses have been defined as a ratio of the maximum force to the

area of the actual cross-section (according to formula 3), on the assumption that
we have uniform tension until the maximum tensile force is achieved, e.g.:

σrz =
Fmax

b(ε) · h(ε)
=

Fmax

b0h0 · (1− εkr · νpl)
2 = 357.2

and when this force is exceeded, we can observe a further development of plastic
strains and an occurrence of necking, and the maximum stresses have been defined
as a ratio of the rupture force to the necked cross-section area Ap:

σmax =
Fkr

Ap
=

Fmax

bminhmin
= 510.6

3. Theoretical description of tension – modification of the Ramberg-
Osgood curve

On the basis of physical and geometrical relations for plain stress, strains and
stresses can be calculated if we characterise the material by the Ramberg-Osgood
curve:

εpl
ij =

3
2
α · εo

(
σe

σo

)n−1

· Sij

σo
(1)

The non-linear relationship σ − ε is usually assumed in the form (assuming for
simplicity that p = 1/n):
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Figure 1 Tension diagrams F(∆l) - force-elongation: a) diagram obtained from the Instron testing
machine, b) general diagram with characteristic quantities that enable a description of the material
properties

for :ε ≤ ε0 σ =
(

σ0
ε0

)
· ε

for :ε > ε0 ε = α · ε0 ·
(

σ
σ0

) 1
p ⇒ σ = 1

ασ0 ·
(

ε
ε0

)p (2)

According to the author’s point of view, an effect of transverse strains should
be considered under large strains. To simplify the issue (for large plastic strains
or elastic-plastic strains), one can assume that the dimensions of the rectangular
cross-section (b0 ×h0) change according to the following relationship:

b(εx) = b0 · (1− νpl · εy) , h(εz) = h0 · (1− νpl · εy) , εx = εz = −νpl · εy (3)
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and, for: ε > ε0, the equivalent Poisson’s ratio for elastic-plastic materials,
according to [69], takes the form:

νpl = 1
2 − 1−2·ν0

2·E0
· σ

ε , after the substitution of :

E0 = σ0
ε0

σ = σ0 ·
(

ε
ε0

)p
(4)

νpl =
1
2
− 1− 2 · ν0

2
·
(

ε

ε0

)p−1

where: ν0
∼= 0.3 (5)

In individual phases of tension, we can determine approximately strains on the basis
of tests, having the initial dimensions and the tension diagram in form (2).
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Figure 2 Changes in the Poisson’s ratio νpl(ε ) according to formula (5) as a function of strain
ν(ε) for ν0=0.3 and p=0.1

While analysing the tension process, we should consider the material strain
hardening. Instead of the coefficient (1/α), we can assume the function f(ε), which
characterises the material strain hardening and necking. The value of the tensile
force treated as a product of the stress and the cross-section can be calculated in
approximation from the formula:

Frz = f(ε) · σo ·
(

ε

εo

)p

· b0h0 · (1− νpl · ε)2 (6)

The function σ(ε) should also describe the material strain hardening and the effect
of necking on the stresses under rupture; the function f(ε) (proposed by the author)
has been assumed as:

σ = f (ε) · σ0 ·
(

ε

ε0

)p

where: f(ε) = f1(ε) · f2(ε) (7)
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The functions f1(ε) and f2(ε) have been selected in such a way that having em-
ployed the force-elongation or force-strain plot obtained from the testing machine,
we can formulate the actual stress-strain σ(ε) relationship. If the function f1(ε)
characterises the linear strain hardening

f1(ε) = 1 + A1 · ε

εkr

then, having the maximum value of the tensile force Fmax and the strain εkr corre-
sponding to it, obtained in tests, we can calculate the value of the exponent p and
the strain hardening parameter A1 from the equations:

(
∂F
∂ε

)
F=Fmax

= 0, (F )ε=εkr
=

= f(ε) · σo ·
(

ε
εo

)p

· b0h0 ·
(

1−
[

1
2 − 1−2·ν0

2 ·
(

ε
ε0

)p−1
]
· ε

)2

= Fmax

(8)

for instance, for the given values: b0=59.65, h0=1.86, L0=200 mm, σ0=240MPa,
ε0=0.001165, Fmax 32.98kN, εkr=0.22.

Having solved system of equations 8, we obtain p =0.042 and the parameter
A1=0.254.

Simplifying the problem, that is to say, neglecting the influence of gripping in
the machine jaws and considering the strains of the part under tension, when the
yield point is exceeded, tension can be divided into two stages: uniform tension and
an occurrence of necking. Uniform tension takes place until the maximum tensile
force is achieved, and when it is exceeded, we can observe a further development of
plastic strains and an occurrence of necking. Thus, the initial length can be divided
theoretically into the part subjected to uniform tension (L01) and the part that has
been subjected to uniform tension and then to necking (L02), as in Figs. 3 and 4.

The lengths L01 and L02 are calculated on the basis of the incompressibility
condition, determined by strains and on the assumption that the total elongation
of the specimen is a sum of elongations of both the parts (L01 and L02), and the
necked part (L02) has been subjected to further strain by ∆ε. These assumptions
lead to the following system of equations:

L01 · (1 + εkr) · b1 · h1 + L02 · (1 + εkr) · (1 + ∆ε) · b2 · h2 = L0 · b0 · h0

L01 · (1 + εkr) + L02 · (1 + εkr) · (1 + ∆ε) = LU

L01 + L02 = L0

(9)

Having solved system of equations 9, we obtain the following values: L01=84.76,
L02=115.25 (115.245), ∆ε=0.347.

Taking into account the incompressibility condition defined by mean strains
corresponding to the maximum tensile force and the rupture force, we calculate the
length of the part subjected to uniform tension – LU1 and to necking – LU2 on the
basis of the following formulae:

LU1 = L01 · (1 + εkr) , LU2 = L02 · (1 + εkr) · (1 + ∆ε) (10)
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Figure 3 View of the specimens under test: a) in the grips of the testing machine with an
extensometer, b) after the occurrence of necking, just before rupture, c) division into the part
subject to tension (L01) and the part that has been necked down (L02)
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Figure 4 Subsequent phases of tension after exceeding the yield point: initial length L0 divided
into the part subjected to uniform tension L01and the part that has been subjected to uniform
tension and then to necking L02

Changes in the cross-section of the specimen part subject to necking have a
power character and vary according to relationship (4), (Fig. 5), and at the instant
prior to rupture are equal to:

b1 = b0·(1− νpl · εkr) , b2 = b1·(1− νpl ·∆ε) , bmin = b1·(1− 2 · νpl ·∆ε) , (11)

analogously:
h1 = h0 · (1− νpl · εkr), h2 = h1 · (1− νpl ·∆ε), hmin = h1 · (1− 2 · νpl ·∆ε),
where: νpl

∼= 0.49.
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The length of the part subjected to necking – LU2 and the dimensions b1, b2

and bmin according to formulae (11) allow for a description of strains in bi-polar
coordinates, and l1 = 0.5· LU2 has been assumed in the calculations.

The necking Zpl with respect to the dimensions corresponding to the maximum
tensile force is equal to:

Zpl =
b1 · h1 − bmin · hmin

b1 · h1
= 1− (1− 2 · νpl ·∆ε)2

The function f2(ε) that describes necking has been calculated under the following
assumptions made in the calculations: for the tensile force Fmax, necking equals
zero, and at the instant of rupture, we know the value of the rupture force FZ and
the dimensions of the cross-section. The functionf2(ε) describing necking has been
assumed as:

f2(ε) = 1−A2 ·
(

ε

εm

)w/p

(12)

The constant A2 and the exponent w have been calculated on the assumption that
necking occurs when the maximum tensile force is exceeded and the changes in the
cross-section have a power character, and on the assumption that νpl

∼= 0.495.
Then the dimensions of the cross-section change according to relationship (11), (Fig.
5) and are equal to (bmin· hmin ) at the instant of rupture, and thus we obtain the
equations:

f2(εkr) = 1 f2(εmax) = 1− (1− 2 · νpl ·∆ε)2

f1(ε) · σo ·
(

ε
εo

)p

· b0h0 ·
[
1−A2 ·

(
ε

εm

)w1

p

]
· (1− νpl · ε)2 = FZr

(13)

For the previously given values of A1, p and for the rupture force Fzr = 3.1 kN, ε
= 0.347, (ε = ∆ε), we obtain A2=0.285, w=0.862 and the value of strains in the
necked part that corresponds to rupture is εm = 0.407.

Having calculated the strain hardening and necking parameters, we obtain the
plots of the tensile force Frz(ε), or F(∆l), as a function of elongation (these plots
are shown in Fig. 5):

Frz = f1(ε) · f2(ε) · σo ·
(

ε

εo

)p

· b0h0 ·
(

1−
[

1
2
− 1− 2 · ν0

2
·
(

ε

ε0

)p−1
]
· ε

)2

(14)

and of the stresses σ(ε) as a function of conventional strains for ε0 ≤ ε ≤ εmax:

σrz =
Frz

b(ε) · h(ε)
, or approximately: σ(ε) = f1(ε) · σo ·

(
ε

εo

)p

(15)

3.1. Conventional and logarithmic strain

Other methods of the description of the relationship F(ε) have been presented in
[4, 5, 17, 18,]. Starting from the logarithmic strains −→ε proposed by Ludwik [7],
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Figure 5 Tension diagrams F(∆l) and σ(ε) obtained from the calculations according to formulae
(14) and (15), taking into account strain hardening and necking

the conventional strain ε is related to the logarithmic one −→ε by the following
relationship:−→ε = ln(1 + ε). An elementary increment of the conventional strain
dε expresses a change in the length with respect to the initial length l0, whereas
an increment of the logarithmic strain d−→ε expresses a change of the length with
respect to the instantaneous length l. These strains are written as follows:

dε =
dl

l0
⇒ ε =

l − l0
l0

, d−→ε =
dl

l
⇒ −→ε = ln

l

l0
(16)

where: l = l0(1 + ε), and thus we obtain: −→ε = ln(1 + ε)
Taking into account the above-mentioned assumptions, we can calculate the

value of the tensile force from the formula:

F = σ(ε) ·A(ε) (17)

where the stresses σ(ε) and the cross-sectionA(ε)are functions of strains. Starting
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with the condition of instability in tension, that is to say, for F = Fmax , ∂F/∂ε1

= 0 (on assumption that ε1 corresponds to the tension direction, and ε2 and ε3 are
main strains perpendicular to ε1), the following has been obtained:

dF

dε1
=

dσ

dε1
·A+σ · dA

dε1
= 0, where: A = A0 · (1+ε2) · (1+ε3) = A0 ·e

−→ε2 ·e−→ε3 (18)

Having taken into account the incompressibility condition that is defined by the
logarithmic dilatational strain:

∆
−→
V = ln(1 + ∆V ) = −→ε1 +−→ε2 +−→ε3 ∆

−→
V = 0 −→ε1 +−→ε2 +−→ε3 = 0 ⇒ −→ε2 +−→ε3 = −−→ε1

and A1 = A0 · e−−→ε1 , we obtain: dA
d−→ε1

= −A0 · e−−→ε1 = −A

Having substituted the above-mentioned equation into (18) and having divided
it by A, we get the condition of instability in tension as follows:

dσ

dε1
= σ1 (19)

The conventional dilatational strain (∆V) is equal to:

∆V = (1 + ε1)(1 + ε2)(1 + ε3)− 1 = J1 + J2 + J3

J1, J2, J3 – are invariants of the strain tensor. Under large strains, the assumption
that the conventional dilatational strain can be expressed only by the first invariant
of the strain tensor, i.e. ∆V ∼= ε1 + ε2 + ε3 =J1, is a kind of approximation, and
thus does not present precisely the dilatational strain. Bearing in mind the above-
mentioned assumptions, the value of the tensile force on the basis of (17) is equal
to:

F = σ(ε) ·A0 · e−
−→ε1or, ife

−→ε1 = 1 + ε1andε1 = e
−→ε1 − 1, thenF = σ(ε) · A0

1 + ε1
(20)

Assuming in the calculations the relationship σ(ε) according to formula (3) for
the rectangular cross-section A0 =b0 · h0, we obtain the value of the force as a
function of strains:

F = σo ·
(

ε

εo

)p

· b0h0

1 + ε
(21)

Having introduced the function g(ε), we obtain:

Fn = g(ε) · σo ·
(

ε

εo

)p

· b0h0

1 + ε
(22)

The functiong(ε) = g1(ε) · g2(ε), which characterises strain hardening and neck-
ing, has been assumed in an analogous form according to formulae (7) and (12):

g1(ε) = 1 + B1 · ε

εkr
, g2(ε) = 1−B2 ·

(
ε

εm

)u/p
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and the parameters B1 and p have been calculated as previously for ε = εkr, Fn

= Fmax and (∂Fn/∂ε) = 0 and for the same given values of σ0, ε0, ν0, εzn
∼= εmax

and the initial dimensions b0 and h0according to the formulae:

(
1 + B1

ε
εkr

)
· σo ·

(
ε
εo

)p

· b0h0
1+ε = Fmax

B1
εkr

+
(
1 + B1

ε
εkr

)
· p

ε −
(
1 + B1

ε
εkr

)
· 1

1+ε = 0

⇒p = 0.053, B1= 0.146. The parameters B2, u and εmhave been calculated
employing the equations analogous to (13):

g2(εkr) = 1 g2(εmax) = 1− (1− 2 · νpl ·∆ε)2

(
1 + B1

ε
εkr

)
·
[
1−B2 ·

(
ε

εm

)u
p

]
· σo ·

(
ε
εo

)p

· b0h0
1+ε = Fzr

(23)

and thus we obtain: B2= 0.606, u = 0.147, εzn = 0338, εm = 0.43
The values of actual stresses have been obtained by dividing the tensile force F(ε)

by the cross-section, and for ε0 ≤ ε ≤ εmax, they have been calculated according to
the following formulae:

Fn =
(
1 + B1

ε
εkr

)
·
[
1−B2 ·

(
ε

εm

)u
p

]
· σo ·

(
ε
εo

)p

· b0h0
1+ε ,

σ(ε) = g1(ε) · σo ·
(

ε
εo

)p

(24)

4. Theoretical description of strains in bi-polar coordinates - generali-
sation of the Bridgman solution

The analysis of the state of strain and stress in necking has been described in [1, 4]
and al. However, the state of stress has been generally analysed in necking and a
description of strains has been presented in cylindrical coordinates. In the present
study, the state of strain and stress has been described in the whole specimen
(neglecting the gripped parts only) with bi-polar coordinates (these coordinates
have been described, among others, in books [3], [11]). The strain distributions
corresponding to the phase prior to the specimen fracture in bi-polar coordinates
are shown in Fig. 7. The lines showing main strains obtained experimentally can
be described approximately in bi-polar coordinates by dividing the specimen into
two basic elements: necking in the place of rupture and the “gripped” part that
is subject to smaller plastic strains (Fig. 7). The location of necking has been
described by means of the variables: ζ, α, β.



94 Jaroniek M.

0 2 4 6 8 10 12 14 16 18 20
1.5 ?10

4

1.7 ?10
4

1.9 ?10
4

2.1 ?10
4

2.3 ?10
4

2.5 ?10
4

2.7 ?10
4

2.9 ?10
4

3.1 ?10
4

3.3 ?10
4

3.5 ?10
4

3.302 10
4

?

1.621 10
4

?

F n
i

18.755 10
6?

?
? L

i

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
100

135

170

205

240

275

310

345

380

415

450
407.038

146.115

? n
i

0.3751 10
7?

?
?i

Stress ? [MPa]

Strain ? [-]

Force Fn (N)

Elongation ? l (mm)
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according to formulae (23) and (24), having taken into account strain hardening and necking

ζ = α + i · β andζ = ln a+z
a−z where: z = x + i · y

x = a·sinh(α)
cosh(α)+cos(β)y = · a·sin(β)

cosh(α)+cos(β) α = ln
√

(x+a)2+y2√
(x−a)2+y2

β = arctg y
a+x − arctg y

a−xρ1 = a1
|shαo| R1 = a1

|sin βo|

d1 = a1 · |ctghαo| r1 = a1 ·
∣∣tghαo

2

∣∣

(25)

Strains in the part subject to smaller plastic strains have been also presented in
the bi-polar coordinates η, R2 and ξ, ρ2. For the “gripped” part, strains have been
described through a transformation of the coordinate system (rotation by 90˚ and



Plastic stresses, strains and the phase of failure in tension 95

translation by L) with an exchange of variables. The lines α=const transform into
the lines ξ, the lines β=const transform into the lines ηogζ2 = ξ + i · η).

x2 = a2·sin(η)
cosh(ξ)+cos(η) , y2 = l1 − a2·sinh(ξ)

cosh(ξ)+cos(η) l1 = a1·sin β
cosh α+cos β + a2·sinh ξ

cosh ξ+cos η ,

ρ2 = a2
|shξ| , R2 = a2

|sin η| , b0 = 2 · a2 ·
∣∣tg ηo

2

∣∣
(26)
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Figure 7 Bi-polar coordinates assumed in the calculations: a) main strain line curvatures, b)
division into two basic elements: necking and the rupture point, and the ”gripped” part

The solution to the problem in cylindrical coordinates is presented in, for in-
stance, [1, 4]. In these references, an approximate integration of the equations of
equilibrium for specimens with the circular cross-section has been performed. In
the case of flat specimens, an analogous method can be used. The description of
strains in bi-polar coordinates enables a division into two basic elements: necking
(point of rupture) and a part that is subject to smaller plastic strains.

4.1. Calculations of strains

The strains corresponding to necking, obtained on the basis of the experimental
data, can be described in bi-polar coordinates. The specimen length subject to
necking – LU2= 2·l1,the radii of main curvatures ρ2 and R2, the specimen width b1

are equal to, respectively:

l1 = a1·sin β
cosh α+cos β + a2·sinh ξ

cosh ξ+cos η ρ2 = a2
|shξ| R2 = a2

|sin η| b1 = a2 ·
∣∣tg ηo

2

∣∣ (27)
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In the upper part, the variables ξ, η have to satisfy the conditions 0 ≤ η ≤ η0,
- ξ0 ≤ ξ ≤ 0.

On the other hand, it has been assumed that the dimensions of the cross-section
vary according to relationship (11), where: ∆ε = εmax − εkr and the length l1 is
equal to half the length of LU2, hence l1 = 0.5 · LU2,

LU2 = L01 · (1 + εkr) · (1 + ∆ε)

Taking into account relationships (23) and (24) and the conditions of continuity
along the joint of the lower and upper part, we obtain a system of equations that
allows us to describe strains in bi-polar coordinates:

b0 · (1− νpl · εkr) = 2 · a2 ·
∣∣tg ηo

2

∣∣ ,

b0 · (1− νpl · εkr) · (1− 2 · νpl∆ε) = 2 · a1 ·
∣∣tghαo

2

∣∣ ,

l1 = a1·sin(β0)
1+cos(β0)

+ a2·sinh(ξ0)
cosh(ξ0)+1 , a1·sinh(α0)

cosh(α0)+cos(β0)
= a2·sin(η0)

cosh(ξ0)+cos(η0)
,

a1
|sin βo| = a2

|shξ0| , l1 = a1·sin(β0)
cosh(α0)+cos(β0)

+ a2·sinh(ξ0)
cosh(ξ0)+cos(η0)

(28)

Additionally, it is known that: sin2 β0 + cos2 β0 = 1, cosh2 α0 − sinh2 α0 = 1,
sin2 η0 + cos2 η0 = 1, cosh2 ξ0 − sinh2 ξ0 = 1.

The data for calculations are assumed on the basis of the experimental investi-
gations.

The initial dimensions are as follows: b0 = 60.0mm, h0 = 1.86mm, l1 = 93.147
mm, the coefficient of deformation νpl, corresponding to the Poisson’s ratio, has been
calculated according to (5), the values of strains corresponding to the maximum
tensile force εkr and the force corresponding to rupture εmax are equal to εkr = 0.2,
εmax = 0.375 (εmax = 0.44), respectively.

The dimensions of the specimen after it has been subjected to strain and neck-
ing are as follows: b1 = 54.06mm, b2 =47.64 mm, bmin = 40.08mm ⇒b1=b0(1-
2νpl∆εk)

Having solved system of equations (28), we obtain the parameters that describe
changes in the specimen dimensions corresponding to necking in bi-polar coordi-
nates:

a1 =112.18mm, ρ1 =304.09mm, α0=0.361, β0=0.795, R1=157.14 mm and a2

=128.76 mm, ρ2= 157.1 mm, η0 = 0.414, R2=280.8mm, ξ0 = - 0.748.
Employing the equations of equilibrium for the Cartesian system of coordinates

(x, y), assumed for the whole specimen, the state of strain in the phase prior to
rupture can be described:

∂σx

∂x
+

∂τxy

∂y
= 0,

∂τxy

∂x
+

∂σy

∂y
= 0

Assuming that the relationships between main strain lines in the phase of plastic
yield can be described in approximation by the proportions:

r1

x
=

x + 2ρ

r1 + 2ρ1
⇒ 1

ρ
=

2x

r2
1 + 2ρ1r1 − x2

(29) (29)
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Next, assuming that:

τxy = σy−σx

2 sin 2ϕ ≡ σintϕ forϕ → 0 sin 2ϕ ∼= 2ϕ, ϕ ∼= y
ρ (30)

for y = 0 σy − σx = σint on the basis of the first equation of equilibrium:
∂τxy

∂y = σint
∂ϕ
∂y , ∂σx

∂x = −σint · 2x
r2
1+2ρ1r1−x2 ⇒ σx = σint · ln

(
r2
1 + 2ρ1r1 − x2

)
+ C

The constant C can be calculated from the condition for x = r1 σx= 0 , then
for y⇒0

σx = σint · ln r2
1 + 2ρ1r1 − x2

2ρ1r1
σy = σint ·

(
1 + ln

r2
1 + 2ρ1r1 − x2

2ρ1r1

)
(31)

whereas, for y 6=0, one should check if the second equation of equilibrium and bound-
ary conditions are fulfilled.

Assuming that τxy ≡ σint · ϕ = σint · 2xy
r2
1+2ρ1r1−x2 on the basis of the second

equation of equilibrium, we obtain:

σy = −σint ·
(

y2

r2
1 + 2ρ1r1 − x2

+
2x2y2

(r2
1 + 2ρ1r1 − x2)2

)
+ C2

hence, the constant C2 can be calculated if we know the stress σy for y=0 according
to formula (31), and thus:

σy = σint ·
(

1 + ln
r2
1 + 2ρ1r1 − x2

2ρ1r1
− y2

(
r2
1 + 2ρ1r1 + x2

)

(r2
1 + 2ρ1r1 − x2)2

)
(32)

The above-mentioned solution describes the components of stresses in Cartesian
coordinates. However, taking into account changes in curvatures of main strains,
it is easier to describe the components of stresses in the part subject to necking in
curvilinear coordinates.

4.2. Analysis of stresses in bi-polar coordinates

On the basis of physical and geometrical relations for plane stress for flat specimens,
strains and stresses can be calculated on the basis of the Lamé equations, then the
following equations hold in necking:

∂σβ

∂sα
+

σβ − σα

R1
= 0,

∂σα

∂sβ
+

σβ − σα

ρ1
= 0 (33)

Assuming that σint = σβ − σα, we obtain:

σα = σint · ln cosh αo+cos β
cosh α+cos β σβ = σint ·

[
1 + ln (cosh αo+1)·(cosh α+cos β)

(cosh α+1)2

]

σz = 0 εz = −
(

σint

σo

)n−1

· εo

2σo
(σα + σβ)

(34)

The specimen thickness h(α,β) can be calculated in approximation according to:

h(α, β) = h0 · (1 + εz) = h0 ·
[
1−

(
σint

σo

)n−1

· εo

2σo
(σα + σβ)

]
(35)
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Under the assumption of plane stress on the specimen surface, the intensities of
stresses and strains are equal to, respectively:

σint =
√

σ2
α − σασβ + σ2

β , εint = ε0 ·
(

σint

σ0

)n

(36)

where σint is the stress intensity according to the Huber – Mises hypothesis.
On the basis of the boundary conditions along the line that connects the upper

and lower part: for β = π/2 and ξ = -π/2, σβ = σξ and σα = ση for η = 0.492,
ση = 0, for y = L σy = σo , and then we obtain the stress components.

In the “gripped” part, the Lamé equations have the form:

∂σξ

∂sη
+ σξ−ση

ρ2
= 0 ∂ση

∂sξ
+ σξ−ση

R2
= 0

σηi = −σ0i · ln cosh ξi+cos η0
cosh ξi+cos ηi

, σξi = σoi ·
[
1− ln (1+cos η0)·(cosh ξi+cos ηi)

(1+cos ηi)
2

] (37)

where σ0i is the stress acting along the line connecting the upper and lower part,
calculated on the basis of the conditions of continuity along the line βo = ξo= const.

σ0i = σint ·
[
1 + ln (cosh α0+1)·(cosh αi+cos β0)

(cosh αi+1)2

]
·
[[

1− ln (1+cos η0)·(cosh ξi+cos η0)

(1+cos ηi)
2

]−1
]

A mean value of the stress intensity σint can be calculated if the dimensions of
the specimen in its cross-section subject to necking are known. Having divided the
force causing necking by the cross-section corresponding to it for β=0, we obtain
the integral equation, on the basis of which we calculate σint:

σint =
Fzr

2 ·
α0∫
0

h(α, β) cos ϕ · dsβ

(38)

where Fzr is calculated from formula (14), and h(α,β) – from formula (35). An
example of calculations of the stress intensity (σint) is shown in Fig. 13.

Example of calculations

σinti =

h
1+0.146

“
εi

εkr

”ih
1−B2( εi

εm
)

u
p
i
σ0

“
εi
ε0

”p b0h0
1+εi

2
R 0.3481
0 h0

h
1− 1

2

“
σni
σ0

”n
ε0

h
1+ln

h
(cosh(α0)+1)(cosh(α0)+cos(β0))

(cosh(α)+1)2

iii“
a1

cosh(α)+cos(β0)

”
dα

σn(ε) = g1(ε) · σo ·
(

ε
εo

)p

, σlog(ε) = σn(ε) · (1 + ε)
(39)
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Figure 8 Distribution of strains in the failure phase for St3s and St4s steel and the strain lines in
bi-polar coordinates, with a division into two basic elements: the point of rupture and the gripped
part

5. Description of the displacement measurement method and results of
tests and calculations

Displacements of the specimen surface in the point of an occurrence of necking and
fracture just before failure were determined by means of the moiré–fringe technique.
Owing to the simplicity of this method and relatively large strains, a shadow method
was employed. [10,13]. The measurement principle has been shown in Fig. 10.
Moiré half-tone screens were located parallel to the specimen surface, then the
specimens were illuminated at the angle

ϕ = 30◦ ÷ 40◦, and the moiré–fringe patterns corresponding to perpendicular
displacements that characterise changes in thickness and sliding lines were pho-
tographed.

Next, the results of tests and calculations were compared for the given values:
e=1/13mm, ϕ1 = 40◦, ϕ2 =34 ˚, w ∼= 0.051mm.

The difference in height corresponding to the distance S between the neighbour-
ing moiré-fringe patterns was calculated according to the formula:

w =
e

tgϕ1 + tgϕ2
(40)

where:
e – mesh pitch (distance between mesh lines per 1 mm)
w – difference in height corresponding to the length S between the subsequent moiré-
fringe patterns
ϕ1 − angle of incidence of the parallel light beam
ϕ2 − camera inclination angle
w = 8· 0.051 = 0.408 mm, 2w = 0.816, hs= 0.54 ÷0.66 mm, hmin= 1.356 ÷1.476
mm (1.4 mm)
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Figure 9 Tension diagrams σ(ε) obtained according to formula (41), after taking into account
strain hardening and necking, and according to formula (42) as a function of logarithmic strains
according to formula (16)

5.1. Results of analytical calculations of stresses and strains in the
phase prior to rupture

The analysis of strains and stresses made by means of analytical and numerical
methods was based on tensile tests in the phase of failure. The results of analytical
numerical calculations obtained with the ‘MATHCAD 2001” software package and
the FEM code (ANSYS 6.1 and 9.0) are presented below. The distributions of
stresses σβ and σα calculated on the basis of equations (34) and the intensities of
stresses and strains in the necking region (as a function of the coordinates α and
β) according to (36) are depicted in Figs. 13 ÷ 18.
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Figure 10 Displacement measurement principle on the specimen surface
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Specimen surface – necking prior to fracture
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Figure 11 Distribution of the moiré-fringe patterns: a) occurrence of necking, b) prior to rupture
on the surface (in the middle of the specimen) and changes in the cross-section at the point of
rupture obtained with the moiré-fringe technique

The curves showing a variability of the stresses σβ and σα and changes in the
stress and strain intensities σint and εint , respectively, in the necking zone are
plotted along the strain lines in bi-polar coordinates (Fig. 8) for various values of
α along the curves β=const. (β=0, π/24, π/18, π/16, π/12,.. π/4) and in the
form of surface functions F(a1,α,β) (for two variables α and β). The changes in the
specimen thickness calculated according to (35) were compared to the test results



102 Jaroniek M.

Figure 12 Distributions of the moiré-fringe patterns corresponding to an occurrence of the plastic
strain zone, then fractures in the middle, and, consequently, the failure of the specimen
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Figure 13 Distributions of the normal stresses σβaccording to formula (34) in the necking zone
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obtained with the moiré-fringe technique.
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Figure 15 Distributions of the normal stresses σα according to formula (34) in the necking zone
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Figure 16 Distributions of the actual reduced stresses -σint (stress intensity) according to the
Huber hypothesis and a comparison of values of mean and actual stresses

The distributions of strains prior to an occurrence of the central fissure (in the
middle of the specimen) and strains on the specimen surface obtained with the
moiré-fringe technique were compared to the calculation results. The differences in
the measured and calculated changes in the specimen thickness ∆h were equal to
2÷6 %.
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?? INT

Figure 17 Distributions of the normal stresses σβ and the reduced stresses -σint (stress intensity)
according to the Huber hypothesis in the necking zone

HH ??

Figure 18 Changes in the specimen thickness ∆h from the axis of symmetry. Distributions of
the normal stresses σα in the necking zone

6. Zones of sliding lines (surfaces)

Under further loading, plastic strain zones and sliding lines (surfaces) start to occur
and they can be described as a function of two variables x(α,β), y(α,β) on the basis
of well-known relationships:

dy
dx = ± 2(τxy−k)

σy−σx
or : dy

dx = ± σy−σx

2(τxy−k) , where: k = σint√
3

(41)

The zones of plastic strains and sliding lines (surfaces) can be described on the basis
of the main strain lines x(α,β), y(α,β), whereas the stress components have been
calculated according to formulas (24) and (36)

1. Assuming that σint = σβ − σα and τxy = σβ−σα

2 · sin 2ϕ
and σy − σx = (σβ − σα) cos 2ϕ,

we obtain:

dy

dx
= ±σint · sin 2ϕ− 2k

σint · cos 2ϕ
⇒ dy

dx
= ±

(
tg2ϕ− 2k

σint · cos 2ϕ

)
(42)

After the integration:

y = ±x ·
(

tg2ϕ− 2k

σint · cos 2ϕ

)
+ C2 (43)
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where: sin 2ϕ = 2·shαi·sin βi·[(1+chαi)·cos βi]
(chαi+cos βi)2

cos 2ϕ = 2−(chαi−cos βi)
2

(chαi+cos βi)2

2. Assuming that plain stress occurs on the specimen surface, the intensity of
stresses and strains have been calculated according to formula (36), and the sliding
surface shape according to the following formula:

dy

dx
= ± σint · cos 2ϕ

σint · sin 2ϕ− 2k
, y = ±x ·

(
σint · cos 2ϕ

σint · sin 2ϕ− 2k

)
+ C2 (44)

?
h mx SX

Figure 19 Zones of the plastic strains and the sliding lines (surfaces) at the point of necking prior
to fracture, calculated according to (43)

EX EX

Figure 20 Distributions of the reduced stresses according to the Huber hypothesis along the
sliding line at the point of necking prior to fracture, calculated according to (44)
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Figure 21 Specimen surface in strain and the sliding lines, calculated according to (43). Due to
the two-axis symmetry, 1/4 of the specimen has been presented at the point of necking

7. Results of numerical calculations of the specimen under test

The results of experimental investigations and calculations have been compared to
the results of numerical calculations (with the finite element method, using the AN-
SYS 6.1 software package). In the model for numerical calculations, the dimensions
such as in the initial phase of necking have been assumed. (Fig. 6). The mate-
rial properties σ(ε) assumed in the computations in the form of a polygonal curve
correspond to actual stresses and strains at the point of necking (Fig. 22).
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Figure 22 Material properties σ(ε): a) obtained from the tests, b) assumed in the FEM compu-
tations

8. Conclusions following from the tensile test

The conducted tests and numerical calculations of the tensile test are aimed at the
verification of the mathematical model that can be applied in further computations.
The presented formulae enable a description of stresses in the whole range of loading,
taking into account necking and a determination of the intensity of stresses, a
description of the generation of the sliding lines, or strictly speaking, the sliding
surfaces.

The way the strains have been described in bi-polar coordinates, which has been
based on experimental investigations, allows for employing the results into numeri-
cal calculations, where we are interested in stress states in failure. The description of
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Figure 23 Results obtained on the basis of the FEM numerical calculations (ANSYS 6.1). The
drawings show: a mesh of elements, distributions of the reduced stresses according to the Huber
hypothesis and distributions of the maximum shear stresses τmax, distributions of the normal
stresses σy and σx

uxuy

Figure 24 Results obtained on the basis of the FEM numerical investigations (ANSYS 6.1). The
distributions of the displacements uy and uxare shown

the stress-strain relationship, which takes into account strain hardening and necking
under rupture and the determination of the magnitude of breaking stresses, makes
it possible to develop a numerical model until the element failure occurs. The dis-
tributions of strains calculated according to the presented formulae are convergent
with the results of strain tests in the neighbourhood of necking.

The simplified analysis of the stress state in bi-polar coordinates can be used
to build a numerical model if we assume a division of the specimen into two basic
elements: a part that is subjected to uniform tension (L01) and a part that has
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been subjected to uniform tension and then necking (L02).
The scheme of failure can be described as follows: the value of the maximum

force obtained during the tensile test and the strain corresponding to it enables a
determination of the parameter or the function of strain hardening. In order to
obtain the maximum force, we can assume uniform tension, then the necked part is
subject to strain as a matter of fact.

While analysing the test results, the following should be defined:

1. strains corresponding to the limit of proportionality and to the yield point,

2. strains corresponding to the maximum tensile force,

3. strains corresponding to necking at the instant of rupture and the dimensions
of the cross-section.

Next, an influence of necking, at which an increase in stresses and a rupture of
the material cohesion forces take place and a fracture (a vertical central fissure
propagating symmetrically along the sliding lines) occurs, and then the material
breaks along the sliding line, should be considered.

The sliding lines determined experimentally and analytically in the failure phase
go at the angle of 60˚ with respect to the vertical axis, and not at the angle of 45˚
as has been assumed in numerous theoretical solutions.

A good agreement between the FEM numerical results (ANSYS 6.1) and those
obtained from the tests has been found. Because of too little a number of tests, one
cannot draw too explicit conclusions, nevertheless the presented actual σ−ε (stress-
strain) relationship in the whole range of loading makes it possible to employ the
mathematical model that can be applied in further material strength calculations.
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