
Mechanics and Mechanical Engineering

Vol. 10, No 1 (2006) 160–166

c© Technical University of Lodz

Dynamic stability of carbon nanotubes

Andrzej Tylikowski

Warsaw University of Technology, Institute of Machine Design Fundamentals
Narbutta 84, 02-524 Warszawa, Poland

aty@simr.pw.edu.pl

Received (10 May 2006)

Revised (27 May 2006)

Accepted (13 June 2006)

The dynamical stability of carbon nanotubes embedded in an elastic matrix under time-
dependent axial loading is studied in this paper. Effects of van der Waals interaction
forces between the inner and outer walls of nanotubes are taken into account. Using
continuum mechanics an elastic beam model is applied to solve the transverse paramet-
ric vibrations of two co-axial carbon nanotubes. The physically realizable forces with
known probability distributions and uniformly distributed on the both beam edges are
assumed as the tube axial loadings. The energy-like functionals are used in the stability
analysis. The emphasis is placed on a qualitative analysis of dynamic stability problem.
Influence of constant component of axial forces on stability regions is shown. Boundaries
of dynamic stability regions are determined using the three models and techniques with
different degree of accuracy.
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1. Introduction

Due to novel electronic properties and high mechanical strength, carbon nanotubes
have become promising materials for nanoelectronics, nanodevices, nanocompos-
ites and nanomachines. Bending and elastic buckling of single- and multi-walled
nanotubes have been object of numerous experimental, theoretical and molecular–
dynamics simulations [1]. The results of atomic modeling for axially compressed
single - walled nanotubes were compared with the results for elastic cylindrical
shell models [9]. To apply the elastic shell model to carbon nanotubes, a most
crucial point is to define the representative thickness of single-walled nanotubes.
The representative thickness was assumed as the equilibrium interlayer spacing of
adjascent nanotubes [3]. In many applications it has been tacitly assumed that the
bending stiffness of nanotubes is given by the classic cylindrical bending stiffnes. In
[5] the effective bending stiffness of single-walled nanotubes was introduced as an
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independent material parameter not related to the representative thickness by the
classic bending stiffness formula. More recently, considerable attention has turned
to mechanical behaviour of a single or multi-walled carbon nanotubes embedded
in a plastic or metallic matrix. From the viewpoint of continuum modeling, car-
bon nanotubes are distinguish from classical elastic cylindrical shells due to their
multi-walled structure and intertube van deer Waals forces [7]. Multi-walled nan-
otubes can be used as frictionless nano-actuators, nano-bearings, and nano-springs.
The applicability of the cylindrical shell and beam models in the carbon nanotube
buckling was explored and the benchmark was developed [10]. The research on
static stability analysis of carbon nanotubes was performed via elastic continuum
beam and shell models [8]. The actual applicability of the elastic cylindrical shell
and beam model was discussed for different buckling phenomena of carbon nan-
otubes under different constant compressive loads. The simulations were validated
by the existing experimental results or results obtained with molecular modeling.
Recently, double-walled carbon nanotube oscillators of various lengths and con-
struction were compared for their dissipation energy mechanisms under motion –
induced self-heating [11]. The role of interlayer radial displacements in transverse
vibrations of multi-walled nanotubes based on a simple linear model of multiple
Euler beams [10] was studied. The thin-walled composite beams are subjected to
a flattening effect leading to the strongly nonlinear equations [6]. The parametric
vibrations dynamical stability of carbon nanotubes embedded in an elastic matrix
under time-dependent axial loading is studied in this paper. Effects of van der
Waals interaction forces between the inner and outer walls of nanotubes are taken
into account [4]. Using continuum mechanics the multiple beam model is applied to
solve the dynamic stability problem of transverse parametric vibrations of co-axial
carbon nanotubes. The physically realizable forces with known probability distribu-
tions are assumed as the tube axial loading. The influence of constant component
of axial force is also taken into account. The energy-like functionals are used in
the stability analysis. The emphasis is placed on a qualitative analysis of dynamic
stability problem. Boundaries of dynamic stability regions are determined using the
two models and techniques with different degree of accuracy.

2. Thin-walled double co-axial beam model

Beam transverse displacements are denoted by w and u. Assuming the viscous
damping, the linearized van der Walls interaction between tubes characterized by
the coefficient c and the external nanotube-matrix interaction with constant d we
obtain the coupled system of partial differential equations. The dynamic equations
have the form

w,tt + 2βw,t + ew,xxxx +
(
No + Ñ (t)

)
w,xx + c (w − u) = 0 (1)

x ∈ (0, l)

u,tt + 2βu,t + eu,xxxx +
(
No + Ñ (t)

)
u,xx + c (u− w) + du = 0 (2)

Ñ (t) is the time-dependent component of axial force, e = D/ρA, D is the tube
effective bending stiffness, ρA is the mass of unit length and it is assumed that
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the radii of double-walled carbon nanotubes differ negligibly, β is the damping
coefficient responsible for energy dissipation [11]. The both nanotubes are assumed
to be simply supported at x = 0 and x = l where the transverse displacements and
bending moments are equal to zero

w (0, t) = w (l, t) = u (0, t) = u (l, t) = 0 (3)

w,xx (0, t) = w,xx (l, t) = u (0, t) = u (l, t) = 0 (4)

3. Dynamic stability analysis of the double beam model

Assume that the axial forces are physically realizable and it is known their proba-
bility distributions. In order to investigate almost sure dynamic stability of trivial
solutions of equations (3) and (4) w = u = 0 we generate the Liapunov functional as
a modification of the full shell energy. Assume that the axial forces acting in both
thin-walled beams are equal and are uniformly distributed on the beams edges. In
order to investigate almost sure dynamic stability of trivial solutions of equations
(1) and (2) the Liapunov functional is taken in the form

V = 1
2

∫ l

0

[
w2

,t + 2βw2
,t + 2β2 w2 + u2

,t + 2βu,tu + 2β2u2 + ew2
,xx+

+eu2
,xx −Now

2
,x −Nou

2
,x + c (w − u)2 + du2

]
dx

(5)

It should be emphasized that functional (5) is positive definite, if the constant
component of axial force No is smaller than Euler’s critical force e (π/l)2.

Due to the physical realizability it is possible to calculate the time derivative of
functional (5) in a classical way

dV
dt =

∫ l

0

[
w,tw,tt + βww,tt + βw2

,t + 2β2 ww,t + u,tu,tt + βuu,tt+
+βu2

,t + 2β2uu,t + ew,xxw,xxt + eu,xxu,xxt+
−Now,xw,xt −Nou,xu,xt + (w − u) (w,t − u,t) duu,t] dt

(6)

Substituting the accelerations w and u from equations (1) and (2) respectively,
and integrating by parts using the zero boundary conditions (3) and (4) we can
simplify the time-derivative of functional. As an example the ninth component of
the integrand is transformed in the following way

l∫

0

ew,xxw,xxtdx = ew,xxw,xt|l0−
l∫

0

ew,xxxw,xtdx = −ew,xxx w,t|l0 +

l∫

0

ew,xxxxw,tdx

(7)
Using the technique presented in formula (7) we have

dV

dt
= −2βV + 2U (8)

where the auxiliary functional has the form

U = 1
2

∫ l

0

[
2β2w2

,t + 2β3 w2 + 2β2u,tu + 2β3u2+

+Ñ (t) (w,t + βw)w,xx + Ñ (t) (u,t + βu) u,xx

]
dx

(9)
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Solving the second order variational inequality we find the function χ satisfying the
following inequality

U ≤ χV (10)

where
χ (t) = max

m=1,2,...
{χm (t)} (11)

and χm(t) is a time-dependent function equal to the maximum solution of the
following equation

Det

∣∣∣∣∣∣∣∣

a11 a12 0 0
a12 a22 + cχm 0 −cχm

0 0 a11 a12

0 −cχm a12 a22 + (c + d)χm

∣∣∣∣∣∣∣∣
= 0 (12)

where

a11 = χm, a12 = β (χm − β) + 1
2Ñ (t)

(
mπ

l

)2
,

a22 = 2β2 (χm − β) +
(

mπ
l

)2
χm

(
e
(

mπ
l

)2 −No

)
+ 1

2βÑ (t)
(

mπ
l

)2 + c χm.

(13)
Using inequality (10) in equation (8) leads to the following inequality

dV

dt
≤ −2 (β − χ)V (14)

Solving the first order differential inequality we have the upper bound estimation
of functional (5 ) along arbitrary solution of dynamic equations (1), (2)

V (t) ≤ V (0) exp


−2


β − 1

t

t∫

0

χ (τ) dτ


 t


 (15)

Therefore, if the forces acting in the tubes are stationary and ergodic processes the
almost sure stability condition is written in the form

β ≥ Eχ (16)

where E is a mathematical expectation.

4. Simplified models

If bending energies of both tubes dominate the energy of van der Waals forces the
problem of tubes parametric vibrations decouples and the double beam dynamic
equations are written in a simplified form

w,tt + 2βw,t + ew,xxxx +
(
No + Ñ (t)

)
w,xx = 0 (17)

x ∈ (0, l)

u,tt + 2βu,t + eu,xxxx +
(
No + Ñ (t)

)
u,xx + du = 0 (18)



164 Tylikowski A.

Using the method described in the Section 3 the almost sure stability condition has
the following form

β1 ≥ E max
m=1,2,...





∣∣∣β2 +
(

mπ
l

)2
Ñ (t) /2

∣∣∣
√

β2 +
(

mπ
l

)2
[
e
(

mπ
l

)2 −No

]
+ d





(19)

The farther simplification is done if the energy of Winkler foundation can be ne-
glected and the constant d in denominator in equation (19) is omitted.

5. Results

Stability boundaries are calculated for the following data: l=100 nm, e =3.626 10−6

m/s2, R = 8.5 nm,c =2.376 1035 1/ms2, N=0÷2.275 1017 m2/s2
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Figure 1 Stability domains for changing constant component of axial force No and d = c
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Figure 2 Stability domains calculated according to the simplified approach

Stability regions are situated under straight lines and are determined for changing
values of force constant component :No = 0 - continuous line, No = 1016 - dotted
line, No = 5 · 1016 - broken line, No = 1017 - dotted broken line, No = 2.275 · 1017 -
double-dotted broken line. They are calculated using equations (11), (12) and (16).
Stability domains calculated according to the simplified approach (19), where van
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der Waals coupling between tubes is neglected, are shown in Fig. 2. It is seen that
the simplified approach is erroneous as differences are large.
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Figure 3 Stability regions for the changing values of force constant component and d=2c
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Figure 4 Stability domains for the weaker Winkler foundation d=c/5

Stability regions calculated for the more stiff Winkler foundation are shown in Fig.
3 where the double-dotted broken line corresponds to No = 1.31 · 1017. Stability
regions calculated for the weaker Winkler foundation d = c/5 are shown in Fig. 4:
No = 0 - continuous line, No = 1015 - dotted line, No = 5 · 1015 - broken line,
No = 1016 - dotted broken line, No = 5.5 · 1016 - double-dotted broken line.
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