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In this paper, recursive dynamic formulation for the dynamic simulation of multibody
systems are presented. The method uses the concepts of linear and angular momentums
to generate the rigid body equations of motion in terms of the Cartesian coordinates
of a dynamically equivalent constrained system of particles, without introducing any
rotational coordinates and the corresponding rotational transformation matrix. For the
open-chain system, the equations of motion are generated recursively along the serial
chains. Closed-chain system is transformed to open-chain by cutting suitable kinematic
joints and introducing cut-joint constraints. An example is chosen to demonstrate the
generality and simplicity of the developed formulation.
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1. Introduction

There are different formulations for the dynamic analysis of spatial mechanisms
which vary in the system of coordinates used and in the way they introduce kine-
matic constraint equations [1–5]. Each formulation has its own advantages and
disadvantages depending on the application and the needs. Some formulations are
developed using a two-step transformation which leads to a simple and reduced
system of equations. One method [6,7] uses initially the absolute coordinate formu-
lation where the location of each rigid body in the system is described in terms of a
set of translational and rotational coordinates. Then, the equations of motion are
transformed to a reduced set in terms of the relative joint variables. Another method
uses initially the point coordinate formulation in which a dynamically equivalent
constrained system of particles replaces the rigid bodies [8–11]. The global motion
of the constrained system of particles together with the constraints imposed upon
them represent both the translational and rotational motions of the rigid body.
The external forces and couples acting on the body are distributed over the system
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of particles. Then, the equations of motion which are expressed in terms of the
Cartesian coordinates of the particles are rederived in terms of the relative joint
variables. The main disadvantage of this two-step transformation is the necessity
to transform at every time step from the joint variables to the original system which
is time consuming.

A recursive dynamical formulation for the dynamic analysis of planar mecha-
nisms is presented by Attia [12]. The concepts of linear and angular momentum are
used to write the rigid body dynamical equations without the need to distribute
the external forces and couples over the particles. The method can be applied to
recursively generate the equations of motion for open and/or closed-chain systems.

In this paper, a recursive formulation for the dynamic analysis of spatial link-
ages is presented. The method is based upon the idea of replacing the rigid body by
its dynamically equivalent constrained system of particles discussed in [8–12] with
essential modifications and improvements. The concepts of the linear and angular
momentums are used to formulate the rigid body dynamical equations. However,
they are expressed in terms of the rectangular Cartesian coordinates of the equiva-
lent constrained system of particles. This groups the advantages of the automatic
elimination of the unknown internal forces as in Newton-Euler formulation and
results in a reduced system of differential-algebraic equations. Some useful geomet-
rical relationships are used to obtain a reduced dynamically equivalent constrained
system of particles.

For the open-chain system, the equations of motion are generated recursively
along the serial chains instead of the matrix formulation derived in [8–11]. Most of
the kinematic constraints due to the kinematic joints are automatically eliminated
by properly locating the equivalent particles. For the closed-chain system, the sys-
tem is transformed to open-chain system by cutting suitable kinematic joints and
introducing the cut-joint kinematic constraints. Examples are chosen to demon-
strate the generality and simplicity of the proposed method.

2. The Dynamic Formulation

2.1. Construction of the Equivalent System of Particles

A rigid body and its dynamically equivalent constrained system of particles should
have the same mass, the position of the centre of mass and the inertia tensor with
respect to a body attached coordinate frame which results in ten conditions in the
spatial case. The choice of four particles (not all are laying in the same plane) results
in 16 unknowns (4 masses + 12 coordinates) that should satisfy the ten conditions.
However, this choice will lead to the solution of nonlinear algebraic equations due
to the quadratic form of the second moments and also it does not give the freedom
to choose all the particles in important places in the mechanisms. A system of ten
particles will lead to the solution of ten linear algebraic equations in ten unknown
masses. Also it gives the freedom of positioning the particles on the bodies in
accordance with the joints that connect the bodies in order to reduce the number
of particles and consequently eliminates some geometric and kinematic constraints.
Therefore, a system of ten particles is chosen to replace the rigid body as shown in
Fig. 1. It constitutes four particles 1,..., 4, which are denoted as primary particles
and additional six particles 5,..., 10, which are denoted as secondary particles. Each
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secondary particle is located at the middle point between a pair of primary particles
in order to facilitate the elimination of its acceleration components and, in turn,
reduce the unknown motion variables. The mass distributions to points must satisfy
the following conditions

m =
10∑

i=1

mi (1)

mr̄G =
10∑

i=1

mir̄i (2)

Iξξ =
10∑

i=1

mi(ζ2
i + η2

i ) (3)

Iηη =
10∑

i=1

mi(ζ2
i + ξ2

i ) (4)

Iζζ =
10∑

i=1

mi(ξ2
i + η2

i ) (5)

Iξη =
10∑

i=1

miξiηi (6)

Iξζ =
10∑

i=1

miξiζi (7)

Iζη =
10∑

i=1

miζiηi (8)

where m is the mass of the body, r̄G is the position vector of the centre of mass
of the body with respect to the body attached coordinate frame, Iξξ, Iηη, Iζζ are
the moments of inertia of the body with respect to the body attached coordinate
frame, Iξη, Iξζ , Iζη are the products of inertia of the body with respect to the
body attached coordinate frame, mi is the mass of particle i, and r̄i is the position
vector of particle i with respect to the attached coordinate frame. Equation (1–8)
represents a 10x10 linear system of algebraic equations in 10 unknown masses of the
primary and secondary particles. At the same time, the coordinates of the particles
can be chosen arbitrarely, which gives the advantage of the automatic elimination
of the kinematic constraints due to some mechanical joints. Also it allows for two
adjacent rigid bodies to contribute to the mass concentrated at the joint connecting
them which reduces the total number of particles replacing the whole system.

2.2. Equations of Motion of a Single Rigid Body in Spatial Motion

Consider a rigid body which is acted upon by external forces and force couples.
The rigid body is replaced by an equivalent system of ten particles. The distances
between the ten particles are invariants as a result of the internal forces existing
between them. The vector sum of these unknown internal forces or also the vector
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sum of their moments about any point equals zero by the law of action and reaction
[13]. Then, the linear momentum equation for the whole system of particles yields,

R =
10∑

i=1

mir̈i (9)

where R is the vector sum of the external forces acting on the rigid body and r̈iis
the acceleration vector of particle i. Also, the angular momentum equation for the
whole system of particles with respect to particle 1 results in [13]

G1 =
10∑

i=2

miri,1xr̈i =
10∑

i=2

mir̃i,1r̈i (10)

where G1 is the vector sum of the moments of the external forces and force couples
acting on the body with respect to particle 1 and ri,1 is the relative position vector
between particles i and 1. The distance constraints between the ten particles are
given as (see Fig. 1)

Figure 1 The rigid body system with the equivalent system of ten particles

rT
2,1r2,1 − d2

2,1 = 0 (11)

rT
4,1r4,1 − d2

4,1 = 0 (12)

rT
4,2r4,2 − d2

4,2 = 0 (13)

rT
3,1r3,1 − d2

3,1 = 0 (14)

rT
3,2r3,2 − d2

3,2 = 0 (15)

rT
3,4r3,4 − d2

3,4 = 0 (16)

r5 − (r1 + r2)/2 = 0 (17)

r6 − (r1 + r3)/2 = 0 (18)

r7 − (r1 + r4)/2 = 0 (19)
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r8 − (r2 + r3)/2 = 0 (20)

r9 − (r2 + r4)/2 = 0 (21)

r10 − (r3 + r4)/2 = 0 (22)

where the masses m5, m6, m7, m8, m9,m10 are located, respectively, at the middle
point of masses m1 and m2, m1 and m3, m1 and m4, m2 and m3, m2 and m4,
and m3 and m4. The equations of motion (9), (10) and (11–22) represent a system
of differential-algebraic equations that can be solved to determine the unknown
acceleration vectors r̈i of the particles at any instant of time. However, due to
the large number of the geometric constraints the integration of these equations is
inefficient. In the following section, some useful geometrical relationships are used
to eliminate the majority of these constraints.

2.3. The Reduced Form of the Equations of Motion of a Single Rigid
Body

The reduced form of the equations of motion can be achieved in two steps. First,
the accelerations of the secondary particles and their unknown accelerations can be
easily eliminated by substituting the constraint Eqs. (17) to (22) into Eqs. (9) and
(10) to obtain

R =
4∑

i=1

m̄ir̈i (23)

G1 =
4∑

i=1

Air̈i (24)

where

m̄i = mi +
4∑

j=1,j 6=i

1
2
mi,j (25)

Ai = ¯̄mir̃i,1 +
4∑

j=2,j 6=i

1
4
mi,j r̃j,1 (26)

¯̄mi = mi +
4∑

j=1,j 6=i

1
4
mi,j (27)

and where mi,j denotes the mass of the secondary particle that is located between
the primary particles i and j (m1,2 = m5,. . . etc.). Then, Eqs. (23) and (24) in
addition to the remaining constraints Eqs. (11) to (16) represent the equations of
motion for a single rigid body where only the accelerations of the primary particles
stay.

A more reduced set of equations of motion can be derived by expressing the
position vector of one of the primary particles in terms of the position vectors of
the other three primary particles. We choose to express the coordinates of particle
3 in terms of the coordinates of particles 1, 2, and 4. As shown in Fig. 2, three
invariant quantities λ̄, µ̄, and τ̄ can be estimated with the aid of the constraint
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Eqs. (14) to (16) that fix the distances between particle 3 and particles 1, 2, and
4, respectively. The invariant quantities take the form,

λ̄ =

∣∣∣∣∣
rT
3,1r̃2,1r4,1

|r̃2,1r4,1|

∣∣∣∣∣ (28)

ν̄ =
√
|r3,1|2 − λ̄2 (29)

µ̄ =
|r4,2| |r̃2,1r5,1|
|r̃5,1r4,2| (30)

τ̄ = |r4,2| − µ̄ (31)

where
r5,1 = r3,1 − λ̄

r̃2,1r4,1

|r̃2,1r4,1|

Figure 2 The rigid body system with its equivalent primary particles indicating the invariant
quantities

Knowing the initial Cartesian coordinates of the primary particles, the invariant
quantities are determined using Eqs. (10). In terms of these invariant quantities,
the position vector of particle 3 is expressed as

r3 = r1 + λ̄
r̃2,1r4,1

|r̃2,1r4,1| + ν̄
µ̄r4,1 + τ̄ r2,1

|µ̄r4,1 + τ̄ r2,1| (32)

Since the quantities in the denominators in the right hand side of Eq. (32) are
invariants we can rearrange the terms and obtain the simpler form

r3 = r1 + λr̃2,1r4,1 + µr4,1 + τr2,1 (33)

where

λ =
λ̄

|r̃2,1r4,1| , µ =
ν̄µ̄

|µ̄r4,1 + τ̄ r2,1| , τ =
ν̄τ̄

|µ̄r4,1 + τ̄ r2,1|
The corresponding velocity and acceleration vectors of particle 3 are estimated using
the first and second time differentiations of Eq. (33) respectively which result in
the following forms,

ṙ3 = ṙ1 + λ(r̃2,1ṙ4,1 + ˙̃r2,1r4,1) + µṙ4,1 + τ ṙ2,1 (34)
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r̈3 = r̈1 + λ(r̃2,1r̈4,1 + ¨̃r2,1r4,1 + 2 ˙̃r2,1ṙ4,1) + µr̈4,1 + τ r̈2,1 (35)

Equation (35) expresses the unknown acceleration vector of particle 3 in terms of the
acceleration vectors of the other primary particles which eliminates the constraint
Eqs. (14) to (16). Equation (35) can be put in the more convenient form,

r̈3 = (1− µ− τ + λr̃4,2)r̈1 + (τ − λr̃4,1)r̈2 + (µ + λr̃2,1)r̈4 (36)

Substituting the derived acceleration vector of particle 3 from Eq. (36) into Eqs.
(23) and (24), then the differential equations of motion take the modified form

R = {m̄1 + m̄3(1− µ− τ + λr̃4,2)}r̈1 + {m̄2 + m̄3(τ − λr̃4,1)}r̈2

+{m̄4 + m̄3(µ + λr̃2,1)}r̈4 + 2λm̄3
˙̃r2,1ṙ4,1 (37)

G1 = {A1 + A3(1− µ− τ + λr̃4,2)}r̈1 + {A2 + A3(τ − λr̃4,1)}r̈2

+{A4 + A3(µ + λr̃2,1)}r̈4 + 2λA3
˙̃r2,1ṙ4,1 (38)

Equations (37) and (38) in addition to the constraint Eqs. (11) to (13) represent
the equations of motion of a single floating rigid body in spatial motion. It can
be solved at every time step to determine the unknown acceleration components
of particles 1, 2, and 4. Consequently, Eq. (36) can be used to determine the
acceleration components of particle 3. The acceleration components of the particles
are integrated numerically knowing their Cartesian coordinates and velocities at
a certain time to determine the positions and velocities for the next time step.
Gear’s method [14] for the numerical integration of differential-algebraic equations
is used to overcome the instability problem resulting during the modelling process of
constraint mechanical systems. The motion of the particles determines completely
the translational and rotational motion of the rigid body. If the rigid body is
rotating about a fixed point, then particle 1 may be located at the centre of this
joint. In this case, Eq. (38) and Eqs. (11) to (13) are used to solve for the
unknown Cartesian accelerations of particles 2 and 4. Equation (37) can be solved
to determine the unknown reaction forces at the joint N1 as,

N1 = {m̄1 + m̄3(1− µ− τ + λr̃4,2)}r̈1 + {m̄2 + m̄3(τ − λr̃4,1+)}r̈2

+{m̄4 + m̄3(µ + λr̃2,1)}r̈4 + 2λm̄3
˙̃r2,1ṙ4,1 −R

If the rigid body is rotating about a fixed axis, then particles 1 and 2 can be located
along the axis of the joint to define its direction. Then, to solve for the unknown
acceleration vector of particle 4, the constraint equations (12) and (13) can be used
in addition to one scalar moment equation that is generated by taking the projection
of the vectors in Eq. (38) along the direction of the fixed axis. Then, Eq. (37) may
be used to get the reactions at the axis of the revolute joint.
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2.4. Equations of Motion of a Serial Chain of Rigid Bodies

2.4.1. Case of all are spherical joint

Figure 3 shows a serial chain of N rigid bodies connected by spherical joints with the
equivalent system of (3N+1) particles where connected particles are unified from
both bodies.

Figure 3 Serial chain of N rigid bodies with the equivalent system of primary particles

Step 1: For the last body ”N” in the chain, the equations of motion are derived in
a similar way as Eq. (38) and Eqs. (11) to (13) of a single rigid body. The angular
momentum equation takes the form

GN,3N−2 = {A3N−2 + A3N (1− µN − τN + λN r̃3N+1,3N−1)}r̈3N−2

+{A3N−1 + A3N (τN − λN r̃3N+1,3N−2)}r̈3N−1

+{A3N+1 + A3N (µN + λN r̃3N−1,3N−2)}r̈3N+1

+2λNA3N
˙̃r3N−1,3N−2ṙ3N+!,3N−2 (39)

where

A3N = ¯̄m3N r̃3N,3N−2 +
3N+1∑

i=3N−1,i6=3N

1
4
m3N,ir̃i,3N−2

¯̄m3N = m3N +
3N+1∑

i=3N−2,i6=3N

1
4
m3N,i

where GN,3N−2 is the sum of the moments of the external forces and force couples
acting on body N with respect to the location of particle 3N-2. The acceleration
equations of the distance constraint between primary particles belonging to body
N are given as

rT
3N−2,3N−1r̈3N−2 + rT

3N−1,3N−2r̈3N−1 = −ṙT
3N−1,3N−2ṙ3N−1,3N−2 (40)

rT
3N−2,3N+1r̈3N−2 + rT

3N+1,3N−2r̈3N+1 = −ṙT
3N+1,3N−2ṙ3N+1,3N−2 (41)

rT
3N−1,3N+1r̈3N−1 + rT

3N+1,3N−1r̈3N+1 = −ṙT
3N+1,3N−1ṙ3N+1,3N−1 (42)

Step 2: Addition of one more body in the chain leads to the inclusion of an
angular momentum vector equation that takes into consideration the contributions
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of all the ascending bodies in the chain together with three distance constraint
equations between the particles belonging to this body. These six scalar equations
are appended to the equations of motion derived for the leading bodies in the chain.
For body j, the appended equations of motion take the form

N∑

k=j

Gk,3j−2 =
N∑

k=j

{A3k−2 + A3k(1− µk − τk + λkr̃3k+1,3k−1)}r̈3k−2

+{A3k−1 + A3k(τk − λkr̃3k+1,3k−2)}r̈3k−1

+{A3k+1 + A3k(µk + λkr̃3k−1,3k−2)}r̈3k+1

+2λkA3k
˙̃r3k−1,3k−2ṙ3k+1,3k−2 (43)

where

A3k = ¯̄m3kr̃3k,3j−2 +
3k+1∑

i=3k−1,i6=3k

1
4
m3k,ir̃i,3k−2

¯̄m3k = m3k +
3k+1∑

i=3k−2,i6=3k

1
4
m3k,i

rT
3j−2,3j−1r̈3j−2 + rT

3j−1,3j−2r̈3j−1 = −ṙT
3j−1,3j−2ṙ3j−1,3j−2 (44)

rT
3j−2,3j+1r̈3j−2 + rT

3j+1,3j−2r̈3j+1 = −ṙT
3j+1,3j−2ṙ3j+1,3j−2 (45)

rT
3j−1,3j+1r̈3j−1 + rT

3j+1,3j−1r̈3j+1 = −ṙT
3j+1,3j−1ṙ3j+1,3j−1 (46)

where according to Eq. (36),

r̈3k = (1− µk − τk + λkr̃3k+1,3k−1)r̈3k−2 + (τk − λkr̃3k+1,3k−2)r̈3k−1+

+(µk + λkr̃3k−1,3k−2)r̈3k+1

If body ”j” is the floating base body in the chain then, three linear momentum
equations, similar to Eq. (37), are required to solve for the unknown acceleration
components of particle 1. These linear momentum equations equate the sum of the
external forces acting on all the bodies in the chain to the time rate of change of
the vectors of linear momentum of all the equivalent particles that replace the chain
which take the form

N∑

k=j

R =
N∑

k=j

{m̄3k−2 + m̄3k(1− µk − τk + λkr̃3k+1,3k−1)}r̈3k−2

+{m̄3k−1 + m̄3k(τk − λkr̃3k+1,3k−2)}r̈3k−1

+{m̄3k+1 + m̄3k(µk + λkr̃3k−1,3k−2)}r̈3k+1

+2λkm̄3k
˙̃r3k−1,3k−2ṙ3k+1,3k−2 (47)

where

m̄3k = m3k +
3k+1∑

i=3k−2,i6=3k

1
2
m3k,i
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In general, for a serial chain of N bodies, an equivalent system of (3N+1) primary
particles and 6N secondary particles is first constructed. Then, by eliminating all
the accelerations of the secondary particles and N primary particles, we are left with
2N+1 accelerations of the particles and consequently, 6N+3 unknown acceleration
components. To solve for these unknowns, 3N angular momentum equations can be
generated recursively along the chain together with 3N distance constraints between
the particles located on each body. Finally, three linear momentum equations can
be used to solve for the unknown acceleration components of particle 1 if body 1 is
floating or for the unknown reaction forces if there is a fixation at point 1.

Step 3: If body j is connected to body j-1 by a revolute joint, then we take the
projection of all the moment vectors in Eq. (43) along the axis of the joint which
is defined by two particles from both bodies that are commonly located on it. Two
additional distance constraints, that fix the distances between the remaining fourth
particle and the other two particles along the axis of the joint, together with the
angular momentum equation can be used to solve for the acceleration vector of the
fourth particle on body j.

Step 4: If bodies ”j” and ”j-1” in a serial chain are connected by a prismatic
joint, then particles 3j-5, 3j-4, 3j-3, and 3j-2 are located on body ”j-1” while particles
3j-1, 3j, 3j+1, and 3j+2 are assigned to body ”j”. Particles 3j-5 and 3j-2 on body
”j-1” and particles 3j-1 and 3j+2 on body ”j” are arbitrarily located along the axis
of the prismatic joint. To obtain the equations of motion for body ”j”, one force
equation can be written by taking the projection of all the vectors in Eq. (43) along
the axis of the prismatic joint together with the distance constraint Eqs. (45)-
(46). Moreover, five independent kinematic constraint equations associated with
the prismatic joint are included and take the form,

(r3j−5 − r3j−2)x(r3j−1 − r3j+2) = 0 (48)

(r3j−5 − r3j−2)x(r3j−1 − r3j−2) = 0 (49)
(

r3j−4,3j−5 −
rT
3j−4,3j−5

r3j−2,3j−5∣∣r3j−2,3j−5

∣∣

)T (
r3j,3j−1 −

rT
3j,3j−1

r3j+2,3j−1∣∣r3j+2,3j−1

∣∣

)
= 0 (50)

Therefore, for a preceeding body ”h” in the chain the moment equation is generated
recursively along the serial chain as addressed above which take the form,

N∑

k=h

Gk,3h−2 =
j−1∑

k=h

{A3k−2 + A3k(1− µk − τk + λkr̃3k+1,3k−1)}r̈3k−2

+{A3k−1 + A3k(τk − λk r̃3k+1,3k−2)}r̈3k−1

+{A3k+1 + A3k(µk + λkr̃3k−1,3k−2)}r̈3k+1

+2λkA3k
˙̃r3k−1,3k−2ṙ3k+!,3k−2

+
N∑

k=j

{A3k−1 + A3k+1(1− µk − τk + λkr̃3k+2,3k)}r̈3k−1

+{A3k + A3k+1(τk − λkr̃3k+2,3k−1)}r̈3k

+{A3k+2 + A3k+1(µk + λkr̃3k,3k−1)}r̈3k+2

+2λkA3k+1
˙̃r3k,3k−1ṙ3k+2,3k−1 (51)
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If body ”h” is the floating base body in the chain, then a force equation, similar to
Eq. (47), is written to solve for the unknown acceleration of particle 1 in the form,

N∑

k=h

Rk =
j−1∑

k=h

{m̄3k−2 + m̄3k(1− µk − τk + λkr̃3k+1,3k−1)}r̈3k−2

+{m̄3k−1 + m̄3k(τk − λkr̃3k+1,3k−2)}r̈3k−1

+{m̄3K=1 + m̄3k(µk + λkr̃3k−1,3k−2)}r̈3k+1

+2λkm̄3k
˙̃r3k−1,3k−2ṙ3k+1,3k−2

+
N∑

k=j

{m̄3k−1 + m̄3k+1(1− µk − τk + λkr̃3k+2,3k)}r̈3k−1

+{m̄3k + m̄3k+1(τk − λkr̃3k+2,3k−1)}r̈3k

+{m̄3k+2 + m̄3k+1(µk + λkr̃3k,3k−1)}r̈3k+2

+2λkm̄3k+1
˙̃r3k,3k−1ṙ3k+2,3k−1 (52)

Similar treatment can be used in dealing with all other kinds of lower or higher-pair
kinematic joints.

2.4.2. Case of an open-chain or closed-chain

In the case of an open-chain system or closed-chain system, it can be transformed
to a system of serial chains by cutting suitable joints and sconsequently cut-joint
constraints are introduced. In the case of a closed-chain system, the cut-joints
avoids the need to introduce loop closure equations and the corresponding loop
closure constraint forces and then allows the use of the laws of momentum/moment
of momentum with respect to a joint axis. Equivalent particles are conveniently
chosen to locate at the positions of the connection joints and in terms of their
Cartesian coordinates the cut-joint constraint equations are easily formulated. The
cut-joints kinematic constraints substitute for the unknown cut-joints constraint
reaction forces that appear explicitly in the linear and angular momentum equations
generated recursively along the separated serial chains.

It should be noted that in this formulation, the kinematic constraints due to
some common types of kinematic joints (e.g. revolute or spherical joints) can be
automatically eliminated by properly locating the equivalent particles. The remain-
ing kinematic constraints along with the geometric constraints are, in general, either
linear or quadratic in the Cartesian coordinates of the particles. Therefore, the coef-
ficients of their Jacobian matrix are constants or linear in the rectangular Cartesian
coordinates. Whereas in the formulation based on the relative coordinates [1], the
constraint equations are derived based on loop closure equations which have the dis-
advantage that they do not directly determine the positions of the links and points
of interest which makes the establishment of the dynamic problem more difficult.
Also, the resulting constraint equations are highly nonlinear and contain complex
circular functions. The absence of these circular functions in the point coordinate
formulation leads to faster convergence and better accuracy. Furthermore, prepro-
cessing the mechanism by the topological graph theory is not necessary as it would
be the case with loop constraints.
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Also, in comparison with the absolute coordinates formulation, the manual work
of the local axes attachment and local coordinates evaluation as well as the use
of the rotational variables and the rotation matrices in the absolute coordinate
formulation are not required in the point coordinate formulation. This leads to fully
computerized analysis and accounts for a reduction in the computational time and
memory storage. In addition to that, the constraint equations take much simpler
forms as compared with the absolute coordinates.

The elimination of the rotational coordinates, angular velocities and angular
accelerations in the presented formulation, leads to possible savings in computation
time when this procedure is compared against the absolute or relative coordinate
formulation. It has been determined that numerical computations associated with
rotational transformation matrices and their corresponding coordinate transforma-
tions between reference frames is time consuming and, therefore, if these computa-
tions are avoided more efficient codes may be developed [10]. The elimination of
rotational coordinates can also be found very beneficial in design sensitivity analysis
of multibody systems. In most procedures for design sensitivity analysis, leading
to an optimal design process, the derivatives of certain functions with respect to a
set of design parameters are required. Analytical evaluation of these derivatives are
much simpler if the rotational coordinates are not present and if we only deal with
translational coordinates.

Some practical applications of multibody dynamics require one or more bodies
in the system to be described as deformable in order to obtain a more realistic dy-
namic response [10]. Deformable bodies are normally modeled by the finite element
technique. Assume that the deformable body is connected to a rigid body described
by a set of particles. Then, one or more particles of the rigid body can coincide with
one or more nodes of the deformable body in order to describe the kinematic joint
between the two bodies. This is a much simpler process that when the rigid body is
described by a set of translational and rotational coordinates. In general, the point
coordinates have additional advantages over the other systems of coordinates since
they are the most suitable coordinates for the graphics routines and the animation
programs.

Also, since we are dealing in this formulation with a system of particles instead
of rigid bodies, therefore only the laws of particle dynamics are utilized in generat-
ing the equations of motion of the mechanical system. This makes the formulation
much simpler than the other dynamic formulations which use the rigid body dy-
namical equations of motion both translational and rotational. In summary, the
methodologies presented in this paper have many interesting characteristics which
may be found useful in some applications. These methodologies can be combined
with other methods to develop even more efficient, accurate, and flexible procedures.
It should be noted that there is no single multibody formulation to be considered
as the best formulation for general multibody dynamics. Each formulation has its
own unique or common features and, therefore, selected features should be adopted
to our advantages [10].
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Figure 4 Schematic view of the RRPR robot with body numbers, joint types and velocity variables

Figure 5 Schematic diagram of the RRPR robot with primary particles and the body attached
coordinate frames

3. Dynamic Analysis of a Robot Manipulator

Shown in Fig. 4 a robot manipulator that consists of four bodies interconnected by
three revolute joints and one prismatic joint. The system has four degrees of freedom
and represents an open-chain with one branch exists. The inertia characteristics of
the rigid bodies are presented in Table 1. Each rigid body is replaced by four primary
particles with two common particles are located at the axis of the joint connecting
the adjacent bodies. A total of 12 primary particles replaces the whole system.
Fig. 5 presents a schematic diagram for the robot and the corresponding equivalent
system of particles. External actuator moments are applied at the different joints
to control the motion of the robot. A time dependent moment M1=10sin(πt/2) is
applied at the axis of the first revolute joint, while constant moments of magnitude
20 N.m each is applied at the axis of the second and third revolute joint respectively.
A time dependent force of magnitude F3=10sin(πt/4)N is applied locally along the
prismatic joint axis. Fig. 6 presents the space trajectory of particle 12. Verification
of the results is done by comparison with the absolute coordinate formulation [4]
which shows an excellent agreement between the results of the simulations.

4. Conclusions

In the present work, recursive equations of motion for the spatial motion of a system
of rigid bodies are presented. The concepts of linear and angular momentums are
used to formulate the rigid body dynamical equations of motion which are expressed
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Figure 6 The space trajectory of particle 12

in terms of the rectangular Cartesian coordinates of a dynamically equivalent con-
strained

Table 1 Description of the rigid bodies

Body No. Mass (kg) Inertia (kg.m2)
ξξ, ηη, ζζ, ηζ, ξζ, ξη

1 2 0.1, 0.1, 0.1, 0, 0, 0
2 1.6 0.2, 0.1, 0.2, 0, 0, 0
3 1.2 0.3, 0.15, 0.3, 0, 0, 0
4 1.6 0.2, 0.1, 0.2, 0, 0, 0

system of particles. This groups the advantages of the automatic elimination of
the unknown internal constraint forces, the absence of any rotational coordinates
in addition to the rotational transformation matrices, and the elimination of the
necessity to distribute the external forces and force couples over the particles. Also,
the formulation can be considered as a natural extension to the finite element rep-
resentation for a deformable body. Some useful geometric relations are used which
result in a reduced system of differential-algebraic equations. The formulation can
be applied to open and/or closed-chain with the common types of kinematic joints.
The developed formulation with its interesting characteristics may be found useful
in some applications.
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