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The new method of dynamic systems control is presented. Energy-vector space is in-
troduced. Transformations of the traditional phase space to obtain the energy space.
Applications of the new type system research are shown. Different types of systems
dynamics are analysed with use of the energy space. Stability of the system is analysed
with use of the Stefaski method of the largest Lyapunov exponent calculation [12]. New
kind of maps are introduced and applied to examine system dynamics.
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1. Introduction

In the article the new conception of the system dynamics research is proposed. The
energy space is introduced and applied. The idea of this new space is based on the
transformation of the traditionally applied phase space. After this transformation
the norm |~x| of the vector is the special function of the energy E, that is accumu-
lated in the system. As the result the trajectory of the system, that accumulates
constant amount of the energy lays on a surface of the multidimensional sphere,
with the radius showing an amount of the accumulated energy. Vector ~x together
with its derivative d~x

dt determine the plane and direction of the temporary energy
flow. Additionally the angle between these vectors gives the possibility of the en-
ergy E changes estimation. Application of the energy space allows also to control
energy, that is accumulated in the oscillating system, or part of one, to estimate
energy, that is dissipated during the motion. Moreover it possess all the possibilities
of the system dynamics control, that are used in the traditional phase space. The
phase space is nowadays one of the most important tools used in dynamical systems
investigations. Many aspects of the systems dynamics can be concluded using this
space, but it also allows for the intuitional, geometrical view on an existing dy-
namical phenomena [13]. The new conception of the space that is proposed in [9],
[10], [11] allows for a geometrical view on energy changes in mechanical vibrating
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systems. This space posses all the advantages of the phase space but it also shows
an amount of the energy accumulated in the system, an energy changes, flow, dissi-
pation, synchronization, an energy attractors. Thus it increases our knowledge and
intuition on energy changes in vibrating systems.

An energy flow modelling still arouses interests in the scientific world. Differ-
ent methods are applied to solve problems connected with energy flow: Statistical
Energy Analysis [1], [2], [3], Finite Element Method [4], [5]. But these methods do
not allow for a special kind of a geometrical view on energy changes, which could
develop our intuitional knowledge on energy flow phenomenon. This intuition is
very important especially in modelling the systems, where we still can not measure
energy flow, such as bioenergy, observed and applied in medicine diagnostics thanks
to GDV method based on Kirlian effect [6], [7], [8], telepathy - the problem of an
energy flow between two bioelectromagnetic systems, and so on.

In this article an application of the energy space in the mechanical vibrating
system dynamics investigations is shown. Some aspects of the motion, energy flow,
are considered. New types of the maps are introduced.

2. Energy space

Consider the vibrating system with the mathematical model given by four differ-
ential equations (1). These equations describe dynamics of the system consisted of
two oscillators. The external harmonic force excites the oscillator µ. This oscillator
is joined with the second oscillator µ1.





ẋ = y
ẏ =

(
F sin ητ − cy − c1 (y − y1)− σx3 − σ1 (x− x1)

)
1
µ

ẋ1 = y1

ẏ1 = (c1 (y − y1) + σ1 (x− x1)) 1
µ1

(1)

Because of nonlinearity of the spring σ the transformation of the phase space, to
obtain the energy space, in direction of x is nonlinear. In the considered case we have
to show the transformation of the space, as function f : R4 → R4, that transforms
the phase space the following way:

f (x, y, x1, y1) =





√
σ
2 x2sign (x) = ze

√
µ
2 y = ye

√
σ1
2 (x1 − x) = z1e

√
µ1
2 y1 = y1e

(2)

To simplify the description of the transformation note, that in the energy space
there are square roots of the potential or kinetic energies on each axis. Note also,
that function f transforms energy into vector form.

For better understanding let us to analyse energy flow for the selected parame-
ters. In the Fig.1 one can see the resonance diagram. Energy flow for the special
point η = 1 was analysed. From the Fig. 1 one can see, that for η = 1 energy accu-
mulated in the spring σ is close to zero. It means, that whole energy accumulated
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in the oscillator µ system is close to zero, although this part of the system is forced
by external force. It is the case, when the oscillator µ1 works as the dynamical
damper, that is for the excitation frequency equal to the system µ1 free vibrations
frequency.

Figure 1 Resonance diagram of z1, µ = 1kg, µ1 = 0.07kg, σ = 1N/m, σ1 = 0.07N/m,
c = 0.1Ns/m, c1 = 0.0001Ns/m, F = 2.5N

Energy flow for the considered case is shown in Fig. 2. In Fig. 2(a, b) one can see
energy planes of the oscillators µ and µ1 respectively.

The first one (ze : ye) – the energy plane of the oscillator µ system.
This plane is obtained after transformation of the plane (x : y). This transfor-

mation is nonlinear. Depending on actual x and parameters σ, µ the phase space
is squeezed or stretched in directions of the basis vectors.

In Fig. 2a plane (ze : ye) can be seen. The norm of the vector projection on
that plane shows the energy accumulated in the oscillator µ system. The value of
ze shows the potential energy of the spring σ, the value of ye – the kinetic energy
of the mass µ, and by means of these coordinates these energies can be calculated.
One can see the changes from the potential energy into the kinetic one and vice
versa. Note that total amount of the energy accumulated in the oscillator µ system
is not constant. There exists an energy flow between the oscillators µ and µ1. This
flow will be analysed further.

The second interesting plane is (z1e : y1e) – the energy plane of the oscillator µ1

system.
There exist transformations of two kinds which were made on the phase plane

(x1 : y1) to obtain this energy plane.
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The first one: instead of the state variable x1 we have the spring σ1 deflection:
z1 = x1 − x.
The second one is linear and one can find eigeinvectors of the transformation

as orthogonal basis vectors [1,0] and [0,1]. Eigenvalues of the transformation are
equal:

λ1 =
√

σ1
2 λ2 =

√
µ1
2 respectively.

Figure 2 a) The energy plane of the oscillator µ system, b) The energy plane of the oscillator µ1

system, c), d) Differences of the variables in dτ intervals, e) Radius of the attractor.
η = 1, µ = 1kg, µ1 = 0.07kg, σ = 1N/m, σ1 = 0.07N/m, c = 0.1Ns/m, c1 = 0.001Ns/m,
F = 2.5N

Thus in time of this part of transformation, depending on σ1 and µ1 the phase space
is just only squeezed or stretched in directions of the given eigenvectors.
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In Fig. 2b plane (z1e : y1e) can be seen. The projection of the vector on that
energy plane shows the energy accumulated in the oscillator µ1 system. The value
of z1e shows the potential energy of the spring σ1 and the value of y1e – the kinetic
energy of the mass µ1, and by means of these coordinates the energies can be
calculated.

The position of the vector projections on the energy planes (ze : ye) and
(z1e : y1e) at the same moment of time is marked by a small circle.

Note, that difference between these oscillators is one time of magnitude order.
Note also from the marked small circles, that system µ1 oscillates in antiphase to
the system µ. External force, that excites oscillator µ is in the same phase as this
oscillator. Thus all the energy of the excitation just only flows through the µ system
and is intercepted by µ1 system. What is interesting, the energy of the µ1 system
is constant, what can be seen in Fig. 2(b, d). The energy accumulated in the
system flows only between the masses µ and µ1 systems and the excitation energy
is dissipated in the dampers c and c1. The energy of the whole system is constant,
what can be seen in Fig. 2e. The radius of the trajectory is constant, what means,
that the trajectory lays on a surface of the four-dimensional sphere. The radius
of this sphere is equal to the square root of the energy accumulated in the whole
system.

3. Chaotic energy maps

Dependence of the system dynamics on the excitation force frequency is shown in
the Fig. 3. The bifurcation diagrams of z1 variable in grey, and the largest Lya-
punov exponent λmax in black can be seen in it. The value of largest Lyapunov
exponent was estimated using Stefański method. It is based on the phenomenon of
synchronization of identical systems [13]. Different types of dynamics and bifurca-
tions leading to the chaotic state can be identified in Fig. 3. Chaotic energy flow
is shown in Fig. 4(a, b). Intersection of the attractor using Poincare plane was
applied. For comparison the same intersection of the attractor in the phase space
was shown in Fig. 4(c, d). One can see the same type of dynamics in these charts.
What can not be seen in the phase space is, that the oscillator µ accumulates much
more energy than oscillator µ1. For the same system parameters new kind of maps
is presented in Fig. 5. The system energy state on two energy levels can be seen
in it. From the geometrical viewpoint it shows projections of the special attractor
intersection. Attractor is cut using the sphere with the radius R matched up with
the concerned energy level. Intersections by small Fig. 5(a, b) and big Fig. 5(c,
d) spheres are presented. The scales of the charts are matched up with the inter-
section radius R. From these figures one can conclude, that the attractor is flat in
directions of z3 and z4. Especially the intersection by the big sphere shows that the
attractor cuts the sphere in the “equator” plane, what is the reason of the circles,
that can be seen in Fig. 5(a, d). Energy state of the system for an extreme values
of the total energy accumulated in the system is shown in Fig. 6.
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Figure 3 Bifurcation diagram of z1 (in grey, left) The largest Lyapunov exponent λmax

(in black, right) µ = 1kg, µ1 = 0.07kg,
σ = 1N/m, σ1 = 0.07N/m, c = 0.1Ns/m, c1 = 0.1Ns/m, F = 2.5N

Figure 4 a) Energy plane of the oscillator µ system, b) Energy plane of the oscillator µ1

system, c) Phase plane of the oscillator µ system, b) Phase plane of the oscillator.
η = 0.6025, µ = 1kg, µ1 = 0.07kg, σ = 1N/m, σ1 = 0.07N/m,
c = 0.1Ns/m, c1 = 0.1Ns/m, F = 2.5N
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Figure 5 Sphere cut radius: a), b): R = 0.2[J1/2], c), d): R = 0.7[J1/2] a), c) Energy plane
of the oscillator m system b), d) Energy plane of the oscillator m1 system.
η = 0.6025, µ = 1kg, µ1 = 0.07kg, σ = 1N/m, σ1 = 0.07N/m,
c = 0.1Ns/m, c1 = 0.1Ns/m, F = 2.5N

Figure 6 Energy max cut: a) Energy plane of the oscillator m system, b) Energy plane of
the oscillator m1 system, c),d) Differences of the variables in dt intervals.
µ = 1kg, µ1 = 0.07kg, σ = 1N/m, σ1 = 0.07N/m, c = 0.1Ns/m,
c1 = 0.1Ns/m, F = 2.5N
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3.1. Application of the energy - Vector analysis in the system with im-
pacts

Consider the system shown in Fig. 7. For some ranges of the system parameters, it
works as an impact damper of the motion of the oscillator µ [9], [10]. The system
consists of three oscillators. The external harmonic force excites the oscillator µ.
It is joined with the classical dynamical absorber µ1. This absorber is allowed to
collide with the third oscillator µ2.

Figure 7 The physical model of the system
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In the periods between the impacts the mathematical model of the system is given
by six differential equations of the first order:





ẋ = y
ẏ = (F sin ητ − cy − c1 (y − y1)− σx− σ1 (x− x1)) · 1

µ

ẋ1 = y1

ẏ1 = (−c1 (y1 − y)− σ1 (x1 − x)) · 1
µ1

ẋ2 = y2

ẏ2 = (−c2y2 − σ2x2) · 1
µ2

(3)

where:
µ, µ1, µ2 – masses
σ, σ1, σ2 – stiffness coefficients of the springs
c, c1, c2 – damping coefficients
F – amplitude of the external excitation force
ω – frequency of the external excitation force

η =
ω

α
, τ = αt, α =

√
σ

µ
(4)

The impact between the dynamical and impact absorbers is put into the mathe-
matical model over the restitution coefficient r.

The phase vector in the standard phase space R6 is represented by six compo-
nents:

x; y; x1; y1; x2; y2 (5)

Transform the phase space as follows:

• Instead of the displacement coordinates ~x, ~x1, ~x2, take the deflections of the
springs.

z = x; z1 = x1 − x; z2 = x2 (6)

• Depending on the coefficients σi and µi squeeze and stretch the space in
directions of zi and yi .

In these two steps a new energy space can be obtained.
In the first step, one obtains a new space V with the basis E:

E = (ez, ey, e1z, e1y, e2z, e2y) (7)

where:
ex = [1, 0, 0, 0, 0, 0]T , ey = [0, 1, 0, 0, 0, 0]T

e1x = [0, 0, 1, 0, 0, 0]T , e1y = [0, 0, 0, 1, 0, 0]T

e2x = [0, 0, 0, 0, 1, 0]T , e2y = [0, 0, 0, 0, 0, 1]T
(8)

Change the basis vectors of the space V . Then, the new energy basis EN of this
space is:

EN = (bz, by, b1z, b1y, b2z, b2y) (9)
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where:

bz = [(
√

σ)−1
, 0, 0, 0, 0, 0]T , by = [0,

(√
µ
)−1

, 0, 0, 0, 0]T

b1z = [0, 0,
(√

σ1

)−1
, 0, 0, 0]T , b1y = [0, 0, 0,

(√
µ1

)−1
, 0, 0]T

b2z = [0, 0, 0, 0,
(√

σ2

)−1
, 0]T , b2y = [0, 0, 0, 0, 0,

(√
µ2

)−1]T
(10)

The transition matrix AEN←E from the basis E to the basis EN of the energy space
takes the form:

AEN←E =




√
σ 0 0 0 0 0

0
√

µ 0 0 0 0
0 0

√
σ1 0 0 0

0 0 0
√

µ1 0 0
0 0 0 0

√
σ2 0

0 0 0 0 0
√

µ2




(11)

The coordinates of the vector ~ve = [ze, ye, z1e, y1e, z2e, y2e]TEN with respect to the
energy basis EN can be obtained from the vector ~v with respect to the basis E,
using the transition matrix

ve = AEN←Ev. (12)

Then

v=
e

[√
σz,

√
µy,

√
σ1z1,

√
µ1y1,

√
σ2z2,

√
µ2y2

]T

EN
(13)

The norm of the vector ~ve in the energy space with the energy product is as follows:

|ve| =
√
〈ve, ve〉

=

√
1
2

[√
σ (z)2 + (

√
µy)2 + (

√
σ1z1)

2 + (
√

µ1y1)
2 + (

√
σ2z2)

2 + (
√

µ2y2)
2
]

= 7

√
σz2

2
+

µy2

2
+

σ1z2
1

2
+

µ1y2
1

2
+

σ2z2
2

2
+

µ2y2
2

2
=

√
Ep + Ek + Ep1 + Ek1 + Ep2 + Ek2 (14)

where:
Ep –the potential energy accumulated in the spring σ,
Ek –the kinetic energy of the mass µ,
Ep1 –the potential energy accumulated in the spring σ1,
Ek1 –the kinetic energy of the mass µ1,
Ep2 –the potential energy accumulated in the spring σ2,
Ek2 –the kinetic energy of the mass µ2.
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The mathematical model of the system in the transformed space is given by
following differential equations:





że =
√

σ
µye

ẏe = − c
µye − c1

µ ye + c1√
µµ1

y1e −
√

σ
µze +

√
σ1
µ z1e + F

µ sin ητ

ż1e =
√

σ1
µ1

y1e −
√

σ1
µ ye

ẏ1e = −
√

σ1
µ1

z1e − c1
µ1

y1e + c1√
µµ1

ye

ż2e =
√

σ2
µ2

y2e

ẏ2e = −
√

σ2
µ2

z2e − c2
µ2

y2e

(15)

where:

ze = sign (x)
√

Ep

ye = sign (y)
√

Ek

z1e = sign (x1)
√

Ep1

y1e = sign (y1)
√

Ek1

z2e = sign (x2)
√

Ep2

y2e = sign (y2)
√

Ek2 (16)

3.1.1. Impact map

Let π be the plane determined by the basis vectors (Fig.8):

b1y =
[
0, 0, 0, (

√
µ1)

−1
, 0, 0

]T

(17)

b2y =
[
0, 0, 0, 0, 0, (

√
µ2)

−1
]T

(18)

The vectors ~y1e and ~y2e correspond to the kinetic energies of the masses µ1 and
µ2, respectively. The position of the vector is marked on this plane just before and
after impact. Thus, this plane is a special kind of the impact map. In order to
make this map clearer, note that it represents only the points for different types of
impact. As the choice criterion,

y1e < y2e

has been applied. The consideration of the position and norm of the vector on
this map allows one to conclude about the energy flow between the dynamical and
impact absorbers and also about the energy dissipation during each collision. The
energy dissipation is included into the mathematical model of the system over the
restitution coefficient r .

Let ~veπ be the projection of the ~ve on the plane π just before the impact, and
~veπ’ after it.

The transformation of the vector veπ during each impact is given by the matrix
AEN :

~veπ
′ = AEN ~veπ
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where:

AEN
=




µ−r
µ+1

1+r
µ+1

µ+µr
µ+1

1−µr
µ+1


 (19)

µ =
µ1

µ2

r – the restitution coefficient.
In the case µ=1 the eigenvalues of the AEN

matrix are:

λ1 = −r, λ2 = 1 (20)

and the eigenvectors are:

~w1 = [−1, 1]T , ~w2 = [1, 1]T (21)

respectively.
The directions of the eigenvectors are shown in Fig.8. Note that during impact

the vector ~veπ is transformed only in the direction given by the eigenvector ~w1.

Figure 8 The impact map: m = 1[kg], m1 = m2 = 0.1[kg], s = 1[N/m], s1 = s2 = 0.1[N/m],
c = 0.04[Ns/m], c1 = 0.01[Ns/m], c2 = 0.02[Ns/m], F = 0.002[N ], d = 0.0216[m], r = 0.5,
h = 1.165

The energy dissipation in time of each collision can be found from the change of the
norm of the energy space vector:

|~veπ| − |~v′eπ| (22)
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The maximum dissipation of the energy takes place when the vector ~veπ has the
same direction as the eigenvector ~w1. Then

v′eπ = λ1 · veπ (23)

Taking in the consideration that

| ~veπ| =
√

EK1 + EK2 (24)

where:
EK1 –the kinetic energy of the mass µ1 before impact,
EK2–the kinetic energy of the mass µ2 before impact,
and ∣∣∣ ~v′eπ

∣∣∣ =
√

E′
K1 + E′

K2 (25)

where:
E′

K1 –the kinetic energy of the mass µ1 after impact,
E′

K2–the kinetic energy of the mass µ2 after impact,
one can find easily that the energy relation after and before impact assumes the

form:
E′

K1 + E′
K2

EK1 + EK2
= λ2

1 = r2. (26)

The closer the direction of the vector ~veπ is to the second eigenvector ~w2, the less
energy dissipation occurs. In the case when the directions of ~veπ and ~w2 are almost
the same, there is almost no energy dissipation during the collision. The velocities
of the oscillators µ1 and µ2 are almost equal then, and in practice we do not know
if impact occurs or not. It is so called grazing collision and it causes chaotic motion
of the system. These special points can be seen in Fig.8 as common points of the
before and after impact attractors.

The transformation matrix AEN allows one also to divide the impact map into
two kinds of fields: the first one for the case when the energy flows during impact
from the dynamical to impact absorber and the second when the energy flows in
the opposite direction.

Consider the matrix AEN in the case µ1 = µ2:

AEN =

[ 1−r
2

1+r
2

1+r
2

1−r
2

]
(27)

Let:
veπ = [v1, v2]

T
and v′eπ = [v′1, v

′
2]

T (28)

Then
v′eπ = AEN · veπ (29)

so [
v′1
v′2

]
=

[
1−r
2

1+r
2

1+r
2

1−r
2

] [
v1

v2

]
. (30)

The energy flow from the dynamical to impact absorber is given by the condition:

−v1 ≤ v′1 ≤ v1 (31)
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Consider :

• v′1 = v1 The condition is satisfied when the directions of ~veπ and the eigen-
vector ~w2 are the same.

• v′1 = −v1

then
−v1 =

1− r

2
v1 +

1 + r

2
v2

and we obtain
v2 = −3− r

1 + r
· v1 (32)

For the case shown in Fig.4 r = 0.5 and then

v2 = −5
3
· v1 (33)

As a result, the energy flow from the dynamical to the impact absorber occurs:
if v1 > 0

−5
3
v1 ≤ v2 ≤ v1 (34)

if v1 < 0

v1 ≤ v2 ≤ −5
3
v1. (35)

The field of energy flow in this direction is marked in Fig.8 by the grey colour. It can
be seen that during impacts in the considered case energy flows in both directions,
but definitely more often from the dynamical to the impact absorber.

4. Conclusions

The way of transformation of the phase space to obtain the energy space has been
shown. It has been proved that this new kind of space allows for concluding about
the energy state of a vibrating system. The norm of the vector in that space
is equal to the square root of the total energy accumulated in the system. The
projection of the vector space on energy subspaces show the amount of the energy
that accumulates in some parts of the system. It has been shown that using this
kind of spaces, all aspects of the kind of motion can be concluded about, like from
the phase space and, moreover, the energy state, accumulation, flow and dissipation
can be observed. Different types of the energy flow were shown. New kind of maps
was introduced. It was shown, that the energy space allows for a new, geometrical
view on energy changes in vibrating systems.
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