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The model of the equations of two-dimensional coupled problem in thermo-elasticity for
a thermally half-space solid whose surface is subjected to a thermal shock is established.
The problem is in the context of the Green and Lindsay’s generalized thermoelasticity
theory with two relaxation times in an isotropic medium with the modulus of elasticity
being dependent on the reference temperature. The normal mode analysis is used to
obtain the exact expressions for the temperature, the displacement and thermal stress
components. The resulting formulation is applied to two kinds of boundary conditions.
Numerical results are illustrated graphically for each case considered. Comparison is
carried out with the results predicted by the coupled theory and with the case where the
modulus of elasticity is independent of temperature.
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1. Introduction

In the postwar years we have seen a rapid development of thermoelasticity stimu-
lated by various engineering sciences Nowacki [1]. Most of the investigations were
done under the assumption of the temperature-independent material properties,
which limit the applicability of the solutions obtained to certain ranges of temper-
ature. At high temperature the material characteristics such as the modulus of
elasticity, the Poisson’s ratio, the coefficient of thermal expansion and the thermal
conductivity are no longer constants. In recent years due to progress in various
fields in science and technology the necessity of taking into consideration the real
behavior of the material characteristics became actual. In some investigations they
were taken as functions of coordinates, Tanigawa [2] and Ootao et al. [3].

In this work we consider that the modulus of elasticity is the only temperature-
dependent material parameter. The experimental data by Manson [4] show that



50 Othman, MIA

the changes in Poisson’s ratio and the coefficient of linear thermal expansion due
to the high temperature can be neglected.

The classical uncoupled theory of thermoelasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction of this
theory does not contain any elastic terms, contrary to the fact that elastic changes
produce heat effects. Second, the heat equation is of parabolic type, predicting
infinite speeds of propagation for heat waves.

Biot [5] formulated the theory of coupled thermoelasticity to eliminate the para-
dox inherent in the classical uncoupled theory that elastic changes have no effect
on the temperature. The heat equations for both theories of diffusion type pre-
dict infinite speeds of propagation for heat waves contrary to physical observations.
The theory of generalized thermoelasticity with two relaxation times was first in-
troduced by Müller [6]. A more explicit version was then introduced by Green
and Laws [7], Green and Lindsay [8] and independently by uhubi [9]. In this the-
ory the temperature rates are considered among the constitutive variables. This
theory also predicts finite speed of propagation as in Lord and Shulman’s theory
of generalized thermoelasticity with one relaxation time [10]. It differs from the
latter in that Fourier’s law of heat conduction is not violated if the medium un-
der consideration has a center of symmetry. Erbay and Şuhubi [11] studied wave
propagation in finite cylinders. Ignaczak [12] studied a strong discontinuity wave
and obtained a decomposition theorem for this theory [13]. This theory was ex-
tended by Dhaliwal and Sherief [14] to general anisotropic media in the presence
of heat sources. Dhaliwal and Rokne have solved a thermal shock problem in [15].
Ezzat and Othman [16] constructed a model of two-dimensional equations of gener-
alized magneto-thermoelasticity with two relaxation times in a perfectly conducting
medium. Ezzat et al. [17] studied the effect of reference temperature on thermal
stress distribution for the one-dimensional problems.

In the present work a comparison is made with the results predicted by the
coupled theory and with the case where the modulus of elasticity is independent of
temperature.

2. Formulation of the problem

We consider an isotropic elastic medium with temperature-dependent mechanical
properties. The constitutive law for the theory of generalized thermoelasticity with
two relaxation times is (Ezzat et al. [18])

σij = λeδi,j + 2µεij − γ[(T − To) + νoṪ ]δij (1)

The heat conduction equations

kTi,i = ρCE(Ṫ + τoT̈ ) + γTou̇i,i (2)

The strain-displacement relations

εij =
1
2
(ui,j + uj,i), e = ui,i (3)

We assume that

E = Eof(T ), λ = Eoλof(T ), µ = Eoµof(T ) and γ = Eoγof(T ) (4)
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wheref(T ) is a given non-dimensional function of temperature. In the case where
the modulus of elasticity is temperature independent, f(T ) ≡ 1, and E = Eo.

The equations of motion are

ρüi = Eof [(λo + µo)e,i + µo∇2ui − γo(T + νoṪ ),i]

+Eof,j [λoeδij + 2µoεij − γo(T − To + νoṪ )δij ] (5)

Now we introduce the following non-dimensional variables

x∗ = coηox, y∗ = coηoy, u∗i = coηoui, t∗ = c2
oηot

τ∗o = c2
oηoτo, ν∗o = c2

oηoνo, θ∗ =
γoEo

ρc2
o

(T − To), σ∗ij =
σij

ρc2
o

(6)

Omitting the asterisk for convenience, we have

σij = [(2β − 1)eδij + (1− β)(ui,j + uj,i)− (θ + νoθ̇)δij ]f(θ) (7)

üi = [βe,i + (1− β)∇2ui − (θ,i + νoθ̇,i]f(θ) +

+(2β − 1)ef,i + (1− β)(ui,j + uj,i)f,j − (θ + νoθ̇)f,i (8)

The heat conduction Eq.(2) by using Eq. (3) becomes:

∇2θ = (θ̇ + τoθ̈) + ε1f(θ)δoė (9)

We consider the special case in which

|T − To| << 1, 0 ≤ δo ≤ 1 and f(θ) = (1− α∗To)

The equations of motion in two-dimension take the form

αü = ∇2u + β
∂2v

∂x∂y
− β

∂2u

∂y2
− (1 + νo

∂

∂t
)
∂θ

∂x
(10)

αv̈ = ∇2v + β
∂2u

∂x∂y
− β

∂2v

∂x2
− (1 + νo

∂

∂t
)
∂θ

∂y
(11)

The equation of heat conduction becomes

∇2θ = (θ̇ + τoθ̈) + εė (12)

ασxx =
∂u

∂x
+ (2β − 1)

∂v

∂y
− (1 + νo

∂

∂t
)θ (13)

ασyy =
∂v

∂y
+ (2β − 1)

∂u

∂x
− (1 + νo

∂

∂t
)θ (14)

ασxy = (1− β)(
∂u

∂y
+

∂v

∂x
) (15)

ασzz = (2β − 1)e− (1 + νo
∂

∂t
)θ (16)
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where
α =

1
(1− α∗To)

, ε = ε1δo(1− α∗To) (17)

Differentiating Eq. (10) with respect to x and (11) with respect to y, then adding
we arrive at

[∇2 − α
∂2

∂t2
]e = (1 + νo

∂

∂t
)∇2θ (18)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplace’s operator in two-dimensional.

3. Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form

[u, v, e, θ, σij ](x, y, t) = [u∗(x), v∗(x), e∗(x), θ∗(x), σ∗ij(x)]exp(ωt + iay) (19)

where ω is the complex time constant and “a” is the wave number in the y-direction.
Using Eqs. (19), (12) and (18) take the form

[D2 − a2 − ω(1 + τoω)]θ∗(x) = εωe∗(x) (20)

[D2 − a2 − αω2]e∗(x) = (1 + νoω)(D2 − a2)θ∗(x) (21)

where D = ∂
∂x .

Eliminating θ∗(x) between Eqs. (20) and (21), we obtain the following fourth-
order partial differential equation satisfied by e∗(x)

(D4 −AD2 + B)e∗(x) = 0 (22)

where
A = 2a2 + b1 (23)

B = a4 + a2b1 + b2 (24)

b1 = [αω2 + ω2 + εω1] (25)

b2 = αω2ω2 (26)

ω1 = ω(1 + νoω), ω2 = ω(1 + τoω) (27)

In a similar manner we arrive at

(D4 −AD2 + B)θ∗(x) = 0 (28)

Eq. (22) can be factorized as

(D2 − k2
1)(D

2 − k2
2)e

∗(x) = 0 (29)

where, k2
i (i = 1, 2) are the roots of the following characteristic equation

k4 −Ak2 + B = 0 (30)

k2
1,2 =

1
2
[A±

√
A2 − 4B] (31)
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The solution of Eq. (29) has the form:

e∗(x) =
2∑

i=1

e∗i (x) (32)

where e∗i (x) is the solution of of the equation

(D2 − k2
i )e∗i (x) = 0, i = 1, 2 (33)

Substituting from Eq. (33) which is bounded as x →∞, is given by

e∗i (x) = Ri(a, ω)e−kix (34)

Thus, e∗(x) has the form

e∗(x) =
2∑

i=1

Ri(a, ω)e−kix. (35)

In a similar manner, we get

θ∗(x) =
2∑

i=1

R′i(a, ω)e−kix (36)

where RiandR′i are some parameters depending on a and ω.
Substituting from Eqs. (35) and (36) into the Eq. (20) we obtain

R
′
i(a, ω) =

εω

[k2
i − a2 − ω2]

Ri (37)

Substituting from Eq. (37) into the Eq. (36) we obtain

θ∗(x) =
2∑

i=1

εω

[k2
i − a2 − ω2]

Rie
−kix (38)

In order to obtain the displacement u, in terms of Eq. (19) and using the following
equation

e∗ = Du∗ + iav∗ (39)

from Eq. (10)

[(1− β)D2 − (1− β)a2 − αω2]u∗(x) = (1 + νoω)Dθ∗ − βDe∗ (40)

(D2 −m2)u∗(x) =
1

(1− β)
[(1 + νoω)Dθ∗ − βDe∗] (41)

where

m2 = a2 +
αω2

(1− β)
(42)
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Substituting from Eqs. (35) and (37) into Eq. (41), we get

(D2 −m2)u∗(x) =
1

(1− β)

2∑

i=1

ki(β − εω1

[k2
i − a2 − ω2]

)Rie
−kix (43)

The solution of Eq. (43), bounded as x →∞, is given by

u∗(x) = Ge−mx +
1

(1− β)

2∑

i=1

ki

(k2
i −m2)

(β − εω1

[k2
i − a2 − ω2]

)Rie
−kix (44)

From Eq. (35) we can obtain

v∗ =
−i

a
[e∗ −Du∗] (45)

Substituting from Eqs. (35) and (44) into Eq. (45), we get

v∗(x) =
−i

a
{mGe−mx +

2∑

i=1

[1 +
k2

i

(1− β)(k2
i −m2)

(β

− εω1

[k2
i − a2 − ω2]

)]Rie
−kix} (46)

In terms of Eq. (19), substituting from Eqs. (38), (44) and (46) into Eqs. (13)-(16)

σ∗xx(x) =
1
α
{2m(β − 1)Ge−mx −

2∑

i=1

[
2βm2

(k2
i −m2)

+1− εω1(k2
i + m2)

(k2
i −m2)[k2

i − a2 − ω2]
]Rie

−kix} (47)

σ∗yy(x) =
1
α
{2m(1− β)Ge−mx +

2∑

i=1

[1 +
2βk2

i

(k2
i −m2)

− εω1(3k2
i −m2)

(k2
i −m2)[k2

i − a2 − ω2]
]Rie

−kix} (48)

σ∗xy(x) =
i(1− β)

αa
{(m2 + a2)Ge−mx +

2∑

i=1

ki[1

+
(k2

i + a2)
(1− β)(k2

i −m2)
(β − εω1

[k2
i − a2 − ω2]

)]Rie
−kix} (49)

σ∗zz =
1
α

2∑

i=1

(2β − 1− εω1

[k2
i − a2 − ω2]

)Rie
−kix (50)

The normal mode analysis is, in fact, to look for the solution in the Fourier trans-
formed domain. Assuming that all the relations are sufficiently smooth on the
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real line such that the normal mode analysis of these functions exist. In order to
determine the parameters Ri(i = 1, 2)and G, we need to consider the boundary
conditions at x = 0. We consider two kinds of boundary conditions respectively,
and the details are described as the following

Case 1

1. Thermal boundary conditions that the surface of the half-space subected to a
thermal shock

θ(0, y, t) = f(y, t) (51)

2. displacement boundary condition that the surface of the half-space is rigidly
fixed

u(0, y, t) = v(0, y, t) = 0 (52)

Substituting from the expressions of considered variables into the above boundary
conditions we can obain the following equations satisfied by the parameters

2∑

i=1

ε ω

[ k2
i − a2 − ω2 ]

Ri = f∗(a, ω), (53)

G +
1

(1− β)

2∑

i=1

ki

(k2
i −m2)

[
β − ε ω1

[ k2
i − a2 − ω2]

]
Ri = 0 , (54)

mG +
2∑

i=1

[
1 +

k2
i

(1− β)(k2
i −m2)

(
β − ε ω1

[ k2
i − a2 − ω2]

) ]
Ri = 0 . (55)

Solving Eqs. (53)-(55), we get the parameters Ri, i = 1, 2 and G with the following
form respectively

G =
1

(β − 1)

2∑

i=1

ki

(k2
i −m2)

(β − εω1

[k2
i − a2 − ω2]

)Ri (56)

R1 =
f∗(a, ω)h2

s1h2 − s2h1
(57)

R2 = − f∗(a, ω)h1

s1h2 − s2h1
(58)

where
si =

εω

[k2
i − a2 − ω2]

(59)

hi =
m

(ki + m)
+

ki

(1− β)(k2
i −m2)

(1− εω1

[k2
i − a2 − ω2]

), i = 1, 2 (60)

Case 2

1. Thermal boundary conditions that the surface of the half-space subected to a
thermal shock

θ(0, y, t) = f(y, t). (61)
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2. Mechanical boundary condition that the surface of the half-space is traction
free

σxx(0, y, t) = σxy(0, y, t) = 0 (62)

Similarly, we can obtain the following equations satisfied by the parameters

2∑

i=1

εω

[k2
i − a2 − ω2]

Ri = f∗(a, ω) (63)

2m(1− β)G−
2∑

i=1

(
2βm2

(k2
i −m2)

+ 1− εω1(k2
i + m2)

(k2
i −m2)[k2

i − a2 − ω2]
)Ri = 0 (64)

(m2 + a2)G +
2∑

i=1

ki(1 +
(k2

i + a2)
(1− β)(k2

i −m2)
(β − εω1

[k2
i − a2 − ω2]

))Ri = 0 (65)

From Eqs. (63)-(65), we get

G =
1

2m(1− β)

2∑

i=1

(
2βm2

(k2
i −m2)

+ 1− εω1(k2
i + m2)

(k2
i −m2)[k2

i − a2 − ω2]
)Ri (66)

R1 =
f∗(a, ω)g2

s1g2 − s2g1
(67)

R2 = − f∗(a, ω)g1

s1g2 − s2g1
(68)

where

gi =
m2 + a2

2m(β − 1)
(

2βm2

(k2
i −m2)

+ 1− εω1

(k2
i −m2)[k2

i − a2 − ω2]
)

+ki[1 +
(k2

i + a2)
(1− β)(k2

i −m2)
(β − εω1

[k2
i − a2 − ω2]

)] (69)

4. Numerical results

The copper material was chosen for the purpose of numerical evaluations. In the
caculation process, the material constants necessary to be known can be found by
Sherief and Helmy [19].

Since we have ω = ωo+i ζ, where i is imaginary unit, eω t = eωot( cos ζ t+i sin ζ t )
and for small values of time, we can take ω = ωo (real). The other constants of
the problem are taken as: ε = 0.003 ; δo = 0.0199 ; ωo = 2 ; a = 5; νo = 0.05 ;
and τo = 0.02. The computations were carried out for a value of time t = 0.2.
The real part of θ (x, y, t), u(x, y, t), σxx(x, y, t) and σyy(x, y, t) are caculated in
accordance with two different values of α, for α = 1when α∗ = 0 and for α = 1.5
when α∗ = 0.0012 [1/K], (corresponding respectively, to the cases of independence
and dependence on temperature, To = 273 [K]. Both values were studied for the
two different cases.
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Figure 1 Temperature distribution θ for case 1

Figure 2 Horizontal displacement distribution u for case 1
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Figure 3 The distribution of stress component σxx for case 1

Figure 4 The distribution of stress component σyy for case 1
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Figure 5 Temperature distribution θ for case 2

Figure 6 Horizontal displacement distribution u for case 2
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Figure 7 The distribution of stress component σxx for case 2

Figure 8 The distribution of stress component σyy for case 2
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Due to the symmertries of geometrical shape and thermal boundary condition, the
displacement component v(x, y, t) and the stress component σxy(x, y, t) are zero
when y = 0. The results are shown in Figs. 1-8, respectively. The graph shows the
four curves predicted by different theories of thermoelasticity . In these figures, the
solid lines represent the solution in the generalized Green and Lindsay’s theory, and
the dotted lines represent the solution derived using the coupled equation of heat
conduction (τo = 0 , νo = 0). It was found that near the surface of the solid, where
the boundary conditions dominate, the generalized and the coupled theories give
very close results. We also notice that the results for the considered variables when
the relaxation times is included in the equation of motion and the heat equation are
distinctly different from those when the relaxation times are not mentioned in the
equation of motion and the heat equation, because the thermal waves in the Fourier
theory of heat equation travel with an infinite speed of propagation as opposed
to finite speed in the non-Fourier case. This demonstrates clearly the difference
between the coupled and the generalized theories of thermoelasticity. Also, it was
found that the dependent of the modulus of elasticity on the reference temperature
effects to decrease the magnitude of the considred variables.

5. Concluding remarks

Due to the complicated nature of the governing equations for generalized thermo-
elasticity, with two relaxation times, few attempts have been made to solve problems
in this field, Nowacki [20]; these attempts utilized approximate method valid for
only a specific range of some parameters. In this work, the method of normal
mode analysis is introduced for the solution of two different cases in generalized
thermoelasticity in which the temperature, displacement and stress are coupled.
This method gives exact solutions without any assumed restrictions on temperature,
displacement and stress distributions. The normal mode analysis is applied to a wide
range of problems in different branches (Othman, [21], Ezzat et al., [17], [18]). It
can be applied to boundary-layer problems, which are described by the linearized
Navier-Stokes equations in electrohydrodynamic (Othman, [22] and Othman and
Ezzat, [23]).
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Nomenclature

λ, µ Lame’s constants
ρ density
CE specific heat at constant strain
E(T ) temperature dependent modulus of elasticity
α∗ empirical material constant [1/K]
Eo constant modulus of elasticity at α∗ = 0
ν Poisson’s ratio
t time
T absolute temperature
αT coefficient of linear thermal expansion
δo non-dimensional constant
c2
o

(λo+2µo)Eo

ρ

To
δoρc2

o

γoEo
= δo

αT
( 1−ν
1+ν ), reference temperature

σij components of stress tensor
εij components of strain tensor
e = εii dilatation
ui components of displacement vector
k thermal conductivity
νo, τo two relaxation times
ε1

γoEo

ρCE

f(T ) is a given nondimensional function of temperature
ε ε1δof(T )
µo

1
2(1+ν)

λo
ν

(1+ν)(1−2ν)

γo
αT

1−2ν

β Eo(λo+µo)
ρc2

o
= 1

2(1−ν)

ηo
ρCE

k




