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The stability of compressible magnetized hollow cylinder (gas jet embedded into a liquid)
pervaded by varying azimuthally magnetic field has been developed for all symmetric
m = 0 and asymmetric m 6= 0 pertubation modes (m transverse wavenumber). The
problem is formulated well, apart from the singular solutions the different variables are
determined, the stability criterion is derived and discussed. The axial field in the liquid
region is stabilizing for all short and long wavelengths and that effect is independent of
m values. In contrast, the azimuthal field in the gas is destabilizing or not according
to restrictions and m values. The capillary force along the gas – liquid interface is
destabilizing only for m = 0, for small longitudinal wavenumber and stabilizing in the
rest. The compressibility has a strong stabilizing effect for all m ≥ 0 disturbance modes.
Here the instability due to azimuthal field and the capillary force could be completely
suppressed under restrictions and stability sets in.
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1. Introduction

The stability of a (gas cylinder immersed into a liquid) hollow jet under the effect of
the capillary force is indicated for first time by Chandrasekhar [2], see also Rayleigh
[12]. That is as the perturbation is axisymmetric for azimuthal direction. Drazin
and Reid [4] gave the dispersion relation in a classical method for such model. In
such model it is proposed that the liquid inertia force is predominate over that of
the gas jet during perturbation. But one has to keep in mind that the gas pressure
in the unperturbed state must be greater than other stresses of the model, otherwise
the model will collapse and the gas will be distributed in the liquid layers. Cheng
[3] discussed analytically the capillary instability of unbounded hollow jet. Kendall
[5] performed very interesting experiments with modern equipment for studying the
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stability of bounded hollow jet under the action of the inertia and capillary forces.
Radwan and Elazab [6] discussed the hydrodynamic stability of viscous hollow jet
endowed with surface tension. Radwan [8] examined the effect of the Lorentz force
on the capillary instability of an ideal hollow cylinder where the velocity vector
is solinoidal. For bounded hollow jet stability we may refer to the recent work of
Radwan and Ogail [10]. Also Radwan [8] discussed the stability of a compressible
hollow jet pervaded by a uniform magnetic fied in the axial direction.

Here we study the magnetohydrodynamic stability of a compressible (gas jet
submerged into a liquid) hollow jet pervaded by azimuthal varying magetic field for
all axisymmetric and non-axisymmetric modes of perturbation. Here the technique
which will be used is totally different from that used before because the velocity is
not solenoidal anymore, i.e. ∇u 6= 0.

2. Basic Equations

Consider a gas cylinder of radius Ro embedded into a liquid medium. The liquid
is assumed to be non-viscous, non-resistive but it is compressible and pervaded by
the uniform magnetic field

Ho = (0, 0,Ho) (1)

The gas cylinder is pervaded by the azimuthally varying magnetic field

Hg
o = (0,

βr

Ro
Ho, 0) (2)

where Ho is the intensity of the magnetic field in the liquid region and β is some
parameter satisfying certain condition. In investigating such problem we shall use
the cylindrical coordinates (r, ϕ, z) with the z-axis coinciding with the axis of the
gas cylinder.

The model is acting upon the capillary, electromagnetic and pressures gradient
forces. Under the present circumstances the fundamental equations required for
studying such kind of problems are given as follows, cf. Roberts [12].

In the liquid region

ρ
du

dt
= −∇P + µ(∇∧H) ∧H (3)

dH

dt
= (H · ∇)u−H(∇ · u) (4)

dρ

dt
+ ρ(∇ · u) = 0 (5)

ρCv
dT

dt
+ P (∇ · u) = 0 (6)

∇ ·H = 0 (7)

P = Kργ (8)

with
d

dt
=

∂

∂t
+ (u · ∇) (9)
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∇ = (
∂

∂r
,
1
r

∂

∂ϕ
,

∂

∂z
) (10)

In the gas region
∇ ·Hg = 0 (11)

∇∧Hg = 0 (12)

(there is no current) along the gas – liquid interface

Ps = S(∇ ·N) (13)

Here ρ, u, T, Cv and P are the liquid mass density, velocity vector temperature,
specific heat at constant volume and kinetic pressure where K and γ are constants.
µ and H are magnetic field permeability and intensity, Ps is the surface pressure
due to capillary force, S the surface tension coefficient and N is a unit outward
vector normal to the gas – liquid interface f(r, ϕ, z, t) = 0, given by

N = ∇f(r, ϕ, z, t)/|∇f(r, ϕ, z, t)| (14)

The initial state as uo = (0, 0, 0) is clearly studied, the foregoing basic equations
are solved, the boundary conditions are applied and consequently the liquid kinetic
pressure Po is given by

Po =
−S

Ro
+

µH2
o

2
(β2 − 1) + P g

o (15)

where P g
o is the gas constant pressure in the unperturbed state. In absence of the

surface tension contribution in equation (15), β must satisfy the restriction

β2 ≥ 1− (
2

µH2
o

)P g
o (16)

in order that
Po ≥ 0 (17)

otherwise the model collapses and the gas will be distributed among the liquid
molecules.

3. Linearization Analysis

As the initial state is perturbed, there will be a small departure along the gas –
liquid interface. In such a case any physical quantity Q(r, ϕ, z, t) may be expressed
as

Q(r, ϕ, z, t) = Qo(r) + εoQ1(r, ϕ, z, t) + . . . (18)

where the index o characterizes quantities in the unperturbed state while those with
index 1 are their increments due to perturbation. Here Q stands for ρ, u, P, H,Hg, N,
T and the radial distance of the gas cylider ε(t) is the amplitude of the perturbation
given by

ε(t) = εoexp(σt) (19)

where εo = ε at t = 0 is the initial amplitude while σ is the growth rate or rather
the oscillation frequency ω as σ = iω with i =

√−1 is imaginary. Based on the
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expansions (18) and the linear perturbation technique, upon considering sinusoidal
propagating wave along the gas – liquid interface, the radial distance of the gas
cylinder is given by

r = Ro + εoR1 (20)

Here
R1 = exp[i(kz + mϕ) + σt] (21)

is the elevation of the surface wave measured from the unperturbed position, where
m (integer) is the azimuthal wave number and k(real) the longitudinal wave number.

From the viewpoint of the foregoing expansions, the linearized perburbation
equations are given as follows

∂u1

∂t
− µ

ρo
(Ho · ∇)H1 = −∇Π1 (22)

∂H1

∂t
= (Ho · ∇)u1 − (u1 · ∇)Ho −Ho(∇ · u1) (23)

∂P1

∂t
= a2 ∂ρ1

∂t
(24)

(∇ ·H1) = 0 (25)

∂ρ1

∂t
= −ρo(∇ · u1) (26)

∇ ·Hg
1 = 0 (27)

∇∧Hg
1 = 0 (28)

and

P1s =
S

R2
o

(R1 +
∂2R1

∂ϕ2
+ R2

o

∂2R1

∂z2
(29)

Here
ρΠ1 = P1 + (µ/2)(H ·H)1 (30)

is the total hydromagnetic pressure which is the sum of liquid kinetic pressure P1

and magnetic pressure (µ/2)(H · H)1. However the parameter a is the speed of
sound in the compressible liquid given by

a = (γPo/ρo)
1
2 (31)

By combining equations (24) and (26), after using the time dependence, we get

σP1 = −ρoa
2(∇ · u1) (32)

Based on the linear perturfation technique utilized for solving stability problems
of cylindrical models, cf. Chandrasekhar [2] and Radwan [7, 8], the perturbed
quantities Q1(r,ϕ,z,t) may be expressed as

Q1(r, ϕ, z, t) = εQ∗
1(r) exp[i(kz + mϕ)] (33)
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By the use of this expansion, the relevant perturbation equations (22) – (32) are
solved. Apart from the singular solution, the finite solution is given as follows

H1 = (ikHo/σ)u1 + (Ho/ρoa
2)ρ1ez (34)

(σ2 + Ω2
A)u1 = −σ∇Π1 + i(σΩ2

A/kρoa
2)P1ez (35)

Π1 = (ξ/ρo)P1 (36)

ξ = 1 + [µH2
o/(ρoσ

2a2)](σ2 + k2a2) (37)

η2 = k2 + (σ2/a2ξ) (38)

Π1 = AKm(ηr) exp[σt + i(kz + mϕ)] (39)

Hg
1 = B∇{Im(kr) exp[σt + i(kz + mϕ)]} (40)

Here ez is a unit vector in z-direction and ΩA is the Alfven wave frequency

ΩA = (µH2
ok2/ρo)

1
2 (41)

defined in terms of Ho. In order to determine the constants A and B of integration,
we have to apply appropriate boundaryconditions across the gas – liquid interface
at r = Ro. Consequently, we have

A =
−(σ2 + Ω2

A)
ηK ′

m(y)
(42)

and
B =

iHm
o β

xI ′m(x)
(43)

where x = kRo is the dimensionless ordinary longitudinal wavenumber while
y = ηRo is the dimensionless compressible longitudinal wave-number.

Moreover, upon applying the balance of the normal component of the total stress
tensor across the gas – liquid interface at r = Ro. This condition, yields

σ2 =
−S

ρoR3
o

(1−m2 − x2)
yK ′

m(y)
Km(y)

+
µH2

o

ρR2
o

[−x2 + (m2β2 Im(x)
xI ′m(x)

− β2)
yK ′

m(y)
Km(y)

] (44)

4. Discussions

Equation (44) is the stability criterion of magnetohydrodynamic of a gas cylinder
immersed into non-viscous, non-resistive compressible liquid pervaded by azimuthal
varying magnetic field. It relates the temporal amplification σ with the wavenum-
bers m, x and y, the modified Bessel functions Im & Km of the first and sec-
ond kind of order m and their derivatives and with the parameters T, ρo, Ro, µ, Ho

and β of the problem. The relation (44) posses the natural fundamental quantity
(ρoR

2
o/(µH2

o ))1/2 as well as (ρoR
3
o/S)1/2 as a unit of time.
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Upon using the general dispersion relation (44), several stability criteria docu-
mented previously by others could be obtained under a lot of restrictions.

For the classical capillary dispersion relation of ordinary hollow jet we (assume
β = 0, Ho = 0 and a tends to infinity) get

σ2 =
−S

ρR3
o

xK ′
m(x)

Km(x)
(1−m2 − x2) (45)

This relation is given by Drazin and Reid (1980).
For axisymmetric perturbation as m = 0, the foregoing relation (45) yields

σ2 =
S

ρR3
o

xK1(x)
K0(x)

(1− x2), K ′
0(x) = K1(x) (46)

This relation has been indicated by Chandrasekhar [2] in comparising the stability
of a hollow jet with that of a full liquid jet. Also the relation (46) coinciding with
the relation derived by Radwan and Elazab [6] as we neglect the contribution of
viscosity there.

As the lquid is incompressible as a tends to infinity we have y tends to x and in
this case the stability criterion of hydromagnetic ordinary jet is given by

σ2 =
−S

ρoR3
o

xK ′
m(x)

Km(x)
(1−m2 − x2)

+
µH2

o

ρR2
o

{−x2 + β2(
m2Im(x)
xI ′m(x)

− 1)
xK ′

m(x)
Km(x)

} (47)

As S = 0 and a →∞, we get

σ2 =
µH2

o

ρR2
o

[−x2 + β2(
m2Im(x)
xI ′m(x)

− 1)
xK ′

m(x)
Km(x)

] (48)

which is the magnetodynamic dispersion relation of an incompressible hollow jet per-
vaded by azimuthal varying magnetic field for all axisymmetric and non-axisymmetric
perturbation.

5. Stability Discussions

In order to study the stability analysis of the present model and its behaviour
analytically, we have to discuss the properties of the modified Bessel functions and
their derivatives.

Consider the resurrence relations (see Abramowitz and Stegun [1])

2I ′m(x) = Im−1(x) + Im+1(x) (49)

2K ′
m(x) = −Km−1(x)−Km+1(x) (50)

In view of the relations (49) and (50) and the fact for non-zero value of x that

Im(x) > 0 (51)
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Km(x) > 0 (52)

we may see that
I ′m(x) > 0 (53)

K ′
m(x) < 0 (54)

Therefore, for x 6= 0 and y 6= 0, we have

yK ′
m(y)/Km(y) < 0 (55)

Im(x)/(xI ′m(x)) > 0 (56)

The capillary instability a compressible hollow jet as Ho = 0 could be discussed via
the dispersion relation

σ2 =
−S

ρoR3
o

yK ′
m(y)

Km(y)
(1−m2 − x2) (57)

In view of the recurrence relations (49) and (50) and the inequalities (51) – (56),
the sign of σ2 is depending on the sign of the quantity (1−m2 − x2) based on the
values of m and x. Therefore, we have

1. for m = 0:
σ2

S/(ρoR3
o)

{
< 0 as 1 ≤ x < ∞
> 0 as 0 < x < ∞ (58)

2. for m ≥ 1:

σ2

S/(ρoR3
o)

< 0 as 0 < x < ∞ (59)

This means that S/(ρoR
3
o)1/2 is imaginary in the axisymmetric perturbation as

1 ≤ x ≤ ∞ and it is so in the non-axisymmetric perturbation as 0 < x < ∞. While
is real only in the axisymmetric mode m = 0 as 0 < x < 1. Consequently, the
hollow jet is capillary stable:

1. in the non-axisymmetricperturbation for all short and long wavelengths

2. in the axisymmetric mode m = 0 for short wavelengths λ ≤ 2πRo which are
shorter than the eireumerence of the gas jet.

While the present model is capillary unstable only in the axisymmetric mode as
the wavelength λ > 2πRo is greater than the circumference of the gas jet. It is
remarkable that the transition from stability states to those of instability in the
axisymmetric mode m = 0 occurred as λ = 2πRo. i.e. at x = 1.

We have to mention here for the problem under consideration that:

y > x since 1 < q < ∞ (60)

so
Im(y) > Im(x) (61)
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Km(x) > Km(y) (62)

K ′
m(x) < K ′

m(y) (63)

I ′m(y) > I ′m(x) (64)

Therefore, for the given different values of y based on the assumed values of x,
we may see that the compressibility increases the stable domains of the hollow jet
under the capillary force effect.

We conclude that the compressibility has a stabilizing tendency. So it increases
the classical capillary stable domains and simultanuously decreases the unstable
domain (0 < x < 1 in m = 0).

The magnetohydrodynamic stability of the hollow jet could be investigated upon
using (see equation (47) as S = 0) the relation

σ2 =
µH2

o

ρR2
o

{−x2 + β2(
m2Im(x)
xI ′m(x)

− 1)
yK ′

m(y)
Km(y)

} (65)

The effect of the magnetic pervaded in the liquid region is represented by the term
(−x2) following the natural quantity (µH2

o/ρoR
2
o) in equations (65) and (48). It

has a stabilizing effect whether the fluid is compressible or not and that effect is
independent of the kind of perturbation for all long and short wavelengths.

The effect of the magnetic field pervaded into the gas cylinder is represented by
the terms including the parameter β following (µH2

o/ρR2
o) in equation (65) which

are

β2(
m2Im(x)
xI ′m(x)

− 1)
yK ′

m(y)
Km(y)

(66)

In axisymmetric perturbation m = 0, its effect is represented by the term
β2(−yK ′

0(y)/K0(y)) that has destabilizing influence since K0(y) < 0.
In the non-axisymmetric mode m ≥ 1, the magnetic field in the gas cylinder

has destabilizing effect in the term β2(−yK ′
m(y)/Km(y)) while it has a stabilizing

effect in the term β2[m2Im(x)/(xI ′m(x))][yK ′
m(y)/Km(y)].

Therefore, the magnetic field pervaded in the gas cylinder is purely stabilizing
in the axisymmetric mode while in the non-axisymmetric mode it is stabilizing or
not according to restriction.

Based on the foregoing disussions, the model of hollow jet is magnetodynamic
stable in the axisymmetric mode m = 0. While in the non-axisymmetric modes the
hollow jet is magnetodynamic stable or not according to restriction.

It is found here also that the compressibility has stabilizing tendency. So its
effect is to increases the stable domains as m = 0 and decreases the unstable domains
as m ≥ 1.

By combining the results of the discussions of the relations (57) and (65), the
electromagnetic force overcomes the capillary unstable domains in m = 0 while in
m ≥ 1 there will be stable and unstable domains.

In discussing the behaviour of the present model under the effect of surface
pressure along the gas – liquid interface, it is found via the numerical that the
instability curves show a non-zero growth rate for zero wavenumber. In order to
interpret such observations we may discuss the following asymptotic behaviour.
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For very long wavelengths (x << 1), the expansion of the modified Bessel func-
tions of first and second kind of zero order (cf. Abramowitz and Stegun [1]) are
given by

I0(x) = 1 +
x2

4
+

x4

64
+

x6

2304
+ ... (67)

and

K0(x) =
x2

2
+

3
128

x4 +
11

13824
x6 + ...

−(1 +
x2

4
+

x6

64
+ ...) ln(αx/2) + ... (68)

where α is Euler’s constant.
By substituting from equation (67) and (68) and the derivatives I ′o(x) and K ′

o(x)
into equation (57) as m = 0 for x << 1, we get

σ2
o =

S

ρoR3
o

{ −1
ln(αx/2)

+
3

2 ln(αx/2)
x2 + ...} (69)

The discussion of this asymptotic relation confirms that σ2 tends to zero with a
vertical tangent as x tends to zero for very long wavelengths, x < 1. This behavior
is very different from that of a liquid cylinder (emmersed in a gas of zero inertia)
where σo for liquid approaches zero linearly as x tends to zero (no dispersion!).
moreover, it is remarkable that unstable domains of the present model are much
greater than those of liquid jet. In spite of the curves for the hollow and full liquid
jet interset at x = 0 and at x = 1.

For very long wavelengths x << 1, in the case of the lowest non-axisymmetric
perturbation mode m = 1, the capillary dispersion relation (57) gives

σ2
1 =

−S

ρoR3
o

[1− (ln γ/2)x2 + ...]x2 (70)

which is the same approximation as for the liquid cylinder. There is a neutral
stability for infinite wavelengths (as x → 0) while the model is stable for all other
wavelengths.

In the case of higher non-axisymmetric perturbation modes m ≥ 2, the eigen-
value relation (57) yields

σ2
m =

S

ρoR3
o

[m(1−m2)− (1 + 3m)
2

x2 + ...]

which is the same, except for a change in sign, for a full liquid jet embedded into a
gas medium of negligible inertia.
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