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The steady laminar incompressible boundary layer mixed convection flow of an electri-
cally conducting fluid on a vertical flat plate in the presence of an applied magnetic field
has been studied. The effect of the induced magnetic field has been considered in the
analysis. The resulting partial differential equations are transformed into a system of or-
dinary differential equations which have been solved numerically using shooting method.
Two cases are considered here for the buoyancy force: (i) when it acts in the same di-
rection as the forced flow (Tw > T∞), (ii) when it acts in the opposite direction to the
forced flow (Tw < T∞). The velocity profiles, temperature profiles, the skin friction
on the plate and the rate of heat transfer coefficient (Nusselt number) are computed
and discussed for different values of the magnetic force number β, the thermal buoyancy
force λ1, reciprocal of the magnetic Prandtl number α and viscous dissipation parameter
(Eckert number) Ec for the two cases.
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1. Introduction

The study of mixed convection flow finds applications in several industrial and
technical processes such as nuclear reactors cooled during emergency shutdown,
solar central receivers exposed to winds, electronic devices cooled by fans, heat
exchangers placed in a low-velocity environment, etc.

The mixed convection flows become important when the buoyancy forces due to
the temperature difference between the wall and the free stream becomes large. The
mixed convection around heated vertical surfaces has been studied by Ramachan-
dran et al. [1], Mahmood and Merkin [2] and Merkin and Mahmood [3]. They [1-3]
have obtained similarity solutions of the governing equations. These studies deal
with steady flows. The analogous unsteady case was recently studied by Surma
Devi, et al. [4]. It has been observed that in a nuclear reactor, magnetic field
affects considerably the flow and heat transfer. The steady forced convection flow
over a flat plate with a magnetic field has been studied by Glauert [5] and Na [6].
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Hossain and Ahmed [7] have studied a combined effect of forced and free convec-
tion with uniform heat flux in the presence of a strong magnetic field. Hossain [8]
also studied the effect of viscous and Joule heating on the flow of an electrically
conducting and viscous incompressible fluid past a semi infinite plate of which tem-
perature varies linearly with the distance from the leading edge and in the presence
of uniform transverse magnetic field. Ibrahim [9] also studied the effect of the mag-
netic field on boundary layer equations of a non-Newtonian power law fluid when
the induced magnetic field is small. The study of unsteady laminar incompressible
mixed convection flow of an electrically conducting fluid at the stagnation point of
a two dimensional body and an axisymmetric body in the presence of an applied
magnetic field has been studied by Kumari, et al. [10], they explained the effect of
the induced magnetic field. The unsteady laminar boundary layer flow of an electri-
cally conducting fluid past a semi infinite flat plate with an aligned magnetic field
when at time t > 0, the plate is impulsively moved with a constant velocity which
is in the same or opposite direction to that of free stream velocity has been studied
by Takhar, et al. [11]. They solved the non linear partial differential equations
numerically using finite-difference method.

The present paper is continuing of the last works. Taking into account the
effect of viscosity and Joule heating in the heat equation also we take the effect of
buoyancy force in the two cases. We will use the similarity solution and shooting
method to solve the non linear partial differential equations. There are discussions
of the results.

2. Formulation of the problem

Consider a vertical flat plate aligned parallel to a uniform free stream with velocity
U and temperature T∞. The plate is maintained at a constant temperature . Let
x-axis and y-axis are in the direction of the plate upward and the normal to it,
respectively and let the gravitational force acts in the direction opposite to the
x direction as in Fig. 1. The buoyancy force then acts in the same direction as
the forced flow when (Tw > T∞) in the opposite direction to the forced flow when
(Tw < T∞).

We consider the steady laminar incompressible viscous electrically conducting
fluid flow with constant properties. A magnetic field Ho is imposed parallel to
the surface (i.e. along the x-axis) outside the boundary layer. The effects of the
induced magnetic field, viscous dissipation and Joule heating have been included
in the analysis. However, the Hall effect is neglected. It is assumed that there
is no applied voltage which implies the absence of the electric field (i.e E = 0).
The electrical currents flowing in the fluid give rise to an induced magnetic field
which would exist if the fluid were an electrical insulator. Here it is assumed that
the normal component of the induced magnetic field vanishes at the plate and the
parallel component approaches its given value Ho far from the plate [5, 10, 23].
The plate is assumed to have constant temperature Tw. Under these assumptions,
the approximation boundary layer equations governing the steady mixed convection
flow under Boussinesq’s approximations can be expressed as [10, 11, 12, 13].
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Figure 1 Variation of the velocity profile f ′ with λ1 for the first case (Tw > T∞) when Pr =
0.7, β = 0.5, α = 6, Ec = 0.2, λ1 = 1, 4, 7
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in which u and v are the components of the velocity of the fluid in x and y directions
respectively, and are the induced magnetic field components in x and y direction
respectively, ν is the kinematic viscosity, plus or minus sign in equation (3) corre-
sponds to a positively or negatively buoyant force, g is the acceleration due to the
gravity, βT is the coefficient of thermal expansion, T is the temperature of the fluid,
ρ is the density of the fluid, is the magnetic permeability, K is the thermal diffu-
sivity, is the specific heat at constant pressure, is the electrical conductivity and is
the magnetic diffusivity or magnetic viscosity [19] α1 = (σ µm)−1. The boundary
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conditions associated with equations (1)-(5) are

u = v = 0 , T = Tw , H2 = 0 at y = 0 (6)

u = U , T = T∞ , H1 = H0 as y → y∞ (7)

The continuity equations (1) and (2) can be satisfied by using a stream functions
such that

u =
∂ψ1

∂y
. v = −∂ψ1

∂x
, H1 =

∂ψ2

∂y
, H2 = −∂ψ2

∂x
(8)

To transform equations (3-5) into a set of ordinary differential equations, we use
the transformations: [10]

η =
(

U

νx

) 1
2

y, ψ1 (η) = (Uνx)
1
2 f (η)

ψ2 (η) = H0

(ν x

U

) 1
2

φ (η) , θ =
T − T∞
Tw − T∞

(9)

where is dimensionless distance from the plate, f() and are dimensionless stream
function of velocity and magnetic field respectively and is the dimensionless tem-
perature. By using equations (8) and (9), equations (3)-(7) transform to :

f ′′′ +
1
2
ff ′′ − 1

2
βφφ′′ ± λ1θ = 0 (10)

θ′′ +
1
2

Pr f θ′ ± Pr Ec
(
f ′′2 + αβφ′′2

)
= 0 (11)

φ′′ +
1
2α

(fφ′ − f ′φ) = 0 (12)

with boundary conditions :
at

a) η = 0, b) f(0) = f ′(0) = 0, c) θ(0) = 1, d) φ(0) = 0 (13)

as
η → η∞, a) f ′(η∞) = 1, b) θ(η∞) = 0, c) φ′(η∞) = 1 (14)

where β = µmH2
0

ρU2 is the magnetic force number which is the square of the ratio

of the Alfven wave velocity [20] UA =
(

µmH2

ρ

)1/2

= B
(µmρ)1/2

, B = µmH

to free stream velocity; is the ratio of Grashof number Gr = g βT (Tw−T∞)x3

4 ν2 to
the square of Reynolds number Re(x) = x U

ν and it is represented as the thermal
buoyancy force. We notice that λ1 is a dimensionless quantity but it is a function
of x. In the similarity solution we can give λ1 any value and in this case Gr(x)
and Re(x) are called local Grashof number and local Reynolds number [1, 24, 25].
Pr = ν

K is Prandtl number; is Eckert number (viscous dissipation parameter) and

α = α1
ν = (σµm)−1

ν = (σµmν)−1 is the reciprocal of the magnetic Prandtl number
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Prm, which is the ratio of the kinematic viscosity to the magnetic diffusivity. Thus
one can define the magnetic Prandtl number as Prm = 1

α = Rm

Re , where Rm

is magnetic Reynolds number [21, (Chapter 10)] (Rm = U x
α1

) and Re is Reynolds
number. Plus or minus (±) in equations (10) and (11) are according to the direction
of the buoyancy force with the direction of the forced flow or in opposite to it
respectevily. The prime denotes derivative with respect to η.

3. Numerical solution:

The nonlinear ordinary differential equations (10) , (11) and (12) with the bound-
ary conditions (13) and (14) have been solved by the fourth-order Runge Kutta
integration scheme along with the Nachtshem- Swigert shooting technique [14] with
error of order 10−4. The procedure is to estimate the unknown values of f ′′(0),
θ′(0) and φ′(0).

In order to verify the accuracy of our present method, we have compared our
results with those of Pop et al. [15] in their special case for the viscosity is constant
i.e. µ= constant and if we have β = λ1 = Ec = 0, our equations and their equations
will reduce to

f ′′′ +
1
2
f f ′′ = 0 (15)

θ′′ +
1
2

Pr f θ′ = 0 (16)

If the boundary conditions are : at η = 0: f(0) = 0, f ′(0) = 0 and θ(0) = 1
; as η → ∞: f ′(∞) = 1, θ(∞) = 0. Our results were f ′′(0) = −0.4445887 and
θ′(0) = −0.3542833, but in Pop, et al. [15] f ′′(0) = −0.4445517 and θ′(0) =
−0.3507366. Therefore our results are in very good agreement with [15]. In the
special case, when β = λ1 = 0, equation (10) together with the boundary conditions
(13a, b) and equation (14a) reduces to the well known Blasius equation (f ′′′ +
1
2f f ′ = 0). Our result for this special case was f ′′(0) = 0.3320654, which agrees
very well with Schlichting [16].

4. Results and discussion

4.1. Thermal buoyancy force λ1 in the same direction of the forced flow
Tw > T∞

In the computation performed, we can find important results. From figure (1), it
can be seen that:

1. In the interval (0 < η ∼= 3.2), the dimensionless longitudinal velocity f ′ in-
creases as the thermal buoyancy forceλ1increases.

2. In the middle of this interval, the velocity f ′ has values more than one (the
outer flow velocity). This overshoot is due to the effect of the buoyancy force
(λ1) on the velocity.

3. After this interval i.e. far from the plate the effect of the buoyancy force λ1

is very weak.
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From figure (2), it is noticed that Eckert number (Ec) also increases this overshoot
of the velocity, so the velocity f ′ increases as Eckert number Ec (viscous dissipation
parameter) increases. Figure (3) illustrates that there is an overshoot in the tem-
perature near the plate for values λ1 ≥ 4. That is near the plate, the temperature
θ increases as the buoyancy force λ1 increases. This result agrees with Kumari,
et. al. [10] and Ibrahim and Terbeche [22] for their case of non-Newtonian fluid
(when n is kept constant). Also from this figure, we notice that at Eckert number
Ec = 0 there is no overshoot in the temperature but when
Ec = 0.2 the overshoot appears which prove that the cause of this overshoot is
due to the existence of Eckert number i.e. the last two terms in equation (4) which
are the viscosity term and Joule heating. Important result is also noticed from
this figure that the temperature θ increases as the buoyancy force λ1 increases for
Ec > 0 but the temperature θ decreases as the buoyancy force λ1 increases for
Ec = 0(there is no viscous dissipation). From figure (4), it is observed that near
the plate (for η < 1) the value of the velocity f ′ approximately does not depend
on the value of the magnetic field parameter . But after this interval (for η > 1),
the dimensionless velocity f ′ increases as the magnetic field parameter increases.
Figure (5) represents the effect of the reciprocal of the magnetic Prandtl number
(α) on the velocity. We found that as α increases the velocity f ′ decreases. That
is the magnetic Prandtl number has direct effect on the velocity f ′ . Numerical
calculations are carried out for the effects of the magnetic field parameter βand the
reciprocal of the magnetic Prandtl number (α) on the temperature θ, it is found
that they have very small effects.

4.2. Thermal buoyancy force in the opposite direction of the forced flow
Tw < T∞

f ′′′ +
1
2

f f ′′ − 1
2

β φ φ′′ − λ1 θ = 0 (17)

θ′′ +
1
2

Pr f θ′ − Pr Ec (f ′′2 + α β φ′′2) = 0 (18)

φ′′ +
1
2α

(fφ′ − f ′φ) = 0 (19)

with the boundary conditions (13) and (14). The transformation (in this case)

θ =
T − T∞
Tw − T∞

, Tw < T∞ (20)

illustrates that the dimensionless temperature θ decreases as the temperature T
increases. Numerical calculations are carried out for this case as before in the case
(Tw < T∞). From figure (6) it can be seen that:

1. The dimensionless longitudinal velocity f ′ near the plate has negative value
in the interval 0 ≤ η ≤ 1 due to the effect of the opposite direction of the
buoyancy force parameter. Also this negative value according to the effect of
the normal componant of the induced magnetic field H2

H2 =
H0

2

√
ν

Ux
(ηφ′(η)− φ(η))
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In this interval, H2 takes negative value.

2. In the interval 0 ≤ η ≤ 3.2, the velocity f ′ increases as the buoyancy parameter
increases.

3. Far from the plate (3.2 ≤ η ≤ η∞) the dominant force is due to the value of
the induced magnetic field component H1. Consequently an inverse effect for
on f ′ is noticed.

4. It is observed also that in the middle zone of the velocity boundary layer
(2 ≤ η ≤ η∞), the velocity f ′ increases and has value more than one ( the
outer flow velocity).

This overshoot is due to the effect of the buoyancy parameter and Eckert number
Ec. Figure (7) represents the effect of the parameter on the temperature θ. It is
noticed that the temperature θdecreases as increases in the interval 0 ≤ η ≤ 2 but
an inverse behavior after this interval is noticed. Figures (8), (9) and (10) illustrat
the effects of the magnetic field parameter , the reciprocal of the magnetic Prandtl
number α and Eckert number Ec on the velocity respectively. They have the same
behavior on the velocity as the buoyancy parameter . Figure (8) illustrates that the
magnitude of the velocity f ′ increases very small as the magnetic field parameter
increases in the interval 0 < η ∼= 3, but an inverse behavior after this interval is
noticed. Figure (9) illustrates that the dimensionless velocity f ′ increases as the
reciprocal of the magnetic Prandtl numberα increases. Also from figure (10), it is
noticed that the velocity f ′ increases as Eckert number Ec increases in the interval
0 ≤ η ≤ 2.4, but after this interval f ′ decreases as Eckert number Ec increases. From
figure (11) it is noticed that increasing of Ec causes decreasing of the temperature
θ until η ∼= 2 (this result is different from the result in the case (Tw < T∞)). For
η > 2 the temperature θ increases as Ec increases. The effects of the magnetic field
parameter and the reciprocal of the magnetic Prandtl number α on the temperature
θ are calculated numerically and found that their effects are very small.

The physical quantities of interest in this problem are the skin friction coefficient
f ′′(0), the dimensionless coefficient of heat transfer −θ′(0) i.e. the Nusselt number
and the displacement thickness (the boundary layer thickness) δ1 which are defined
respectively as ( [15] and [22]):

Cf =
2τw

ρU2
, τw = µw(∂u/∂y)y=0 (21)

Nu =
xqw

k(Tw − T∞)
, qw = −k(∂T/∂y)y=0 (22)

δ1 =

y∞∫

0

(1− u

U
) dy =

η∞∫

0

(1− f ′) dη (23)
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Figure 2 Variation of the velocity profile f ′ with λ1 for the first case (Tw > T∞) when Pr =
0.7, β = 0.5, α = 6, Ec = 0, 0.2, λ1 = 4, 7

Figure 3 Variation of the temperature profile θ with λ1 for the first case (Tw > T∞) when
Pr = 0.7, β = 0.5, α = 6, Ec = 0, 0.2, λ1 = 4, 7
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Figure 4 Variation of the velocity profile f ′ with β for the first case (Tw > T∞) when Pr =
0.7, β = 0, 0.6, α = 6, Ec = 0.2, λ1 = 0.5

Figure 5 Variation of the velocity profile f ′ with α for the first case (Tw > T∞) when Pr =
0.7, β = 0.5, α = 4, 6, 7, Ec = 0.2, λ1 = 7
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Figure 6 Variation of the velocity profiles f ′ with λ1 for the second case (Tw < T∞) when
Pr = 0.7, β = 0.5, α = 6, Ec = 0.7, λ1 = 4, 4.5, 5.5

Figure 7 Variation of the temperature profile f ′ with λ1 for the second case (Tw < T∞) when
Pr = 0.7, β = 0.5, α = 6, Ec = 0.7, λ1 = 4, 4.5, 5.5
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Figure 8 Variation of the velocity profiles f ′ with β for the second case (Tw < T∞) when
Pr = 0.7, β = 0.3, 0.7, α = 6, Ec = 0.7, λ1 = 5

Figure 9 Variation of the velocity profiles f ′ with α for the second case (Tw < T∞) when
Pr = 0.7, β = 0.5, α = 5, 9, Ec = 0.7, λ1 = 5



108 Dimian, MF and Hadhoda, MKh

Figure 10 Variation of the velocity profiles f ′ with Ec for the second case (Tw < T∞) when
Pr = 0.7, β = 0.5, α = 6, Ec = 0.6, 0.7, 0.8, λ1 = 5

Figure 11 Variation of the temperature profiles f ′ with Ec for the second case (Tw < T∞) when
Pr = 0.7, β = 0.5, α = 6, Ec = 0.60.7, 0.8, λ1 = 5
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Using (8) and (9), quantities (26) and (27) can be expressed as

Cf = 2(Re)
−1
2 f ′′(0), Nu = −(Re)

1
2 θ′(0) (24)

From table (1); f ′′(0), θ′(0) and φ′(0) are listed for Prandtl number Pr = 0.7 and
several sets of values of β, λ1 , αand Ec. It is seen that for increasing the magnetic
force parameter β, all of the skin friction coefficient f ′′(0); f ′′(0) =

[
(Re)1/2 Cf/2

]
,

heat transfer coefficient in term of Nusselt number θ′(0); θ′(0) =
[−(Re)−1/2Nu

]
and the induced magnetic field φ′(0) increase. These results agree with Kumari, et
al. [10]. Also the effects of the buoyancy force parameter λ1 and Eckert number
Ec on f ′′(0), θ′(0) and φ′(0)are the same as the magnetic force parameter β i.e.
f ′′(0), θ′(0) and φ′(0) increase as the buoyancy parameter λ1 increases also as Eck-
ert number Ec increases. But an inverse behavior of the reciprocal of the magnetic
Prandtl number α on them. That is f ′′(0), θ′(0) and φ′(0) decrease as α increases.

Table 1 Values of the skin friction f ′′(0), the local Nusselt number θ′(0) and the induced magnetic
field φ′(0) with Pr = 0.7 for the case Tw > T∞

β λ1 α Ec f ′′(0) θ′(0) φ′(0)
0
0.2
0.4
0.6

7
7
7
7

6
6
6
6

0.2
0.2
0.2
0.2

6.59578
6.62086
6.63612
6.64502

0.97839
0.98768
0.99088
0.99335

1.58533
1.60411
1.61463
1.62865

0.5
0.5
0.5
0.5

1
3
5
7

6
6
6
6

0.2
0.2
0.2
0.2

1.41021
3.03018
4.68836
6.64233

-0.28571
-0.10649
0.28617
0.99166

0.89167
1.12282
1.35001
1.61973

0.5
0.5
0.5
0.5

7
7
7
7

4
5
6
7

0.2
0.2
0.2
0.2

6.80785
6.71417
6.64423
6.59297

1.07912
1.02904
0.99282
0.96721

1.79468
1.70013
1.62162
1.56469

0.5
0.5
0.5

7
7
7

6
6
6

0
0.1
0.2

5.19609
5.72216
6.64302

-0.59447
-0.02262
0.99208

1.35373
1.45275
1.62033

From table (2) which represents the second case for cooling plate (Tw < T∞).
we can notice that the skin friction f ′′(0), the local Nusselt numberθ′(0) and the
induced magnetic field φ′(0) increase as the magnetic field parameter β and the re-
ciprocal of the magnetic Prandtl number increase as in the first case. But an inverse
behavior for the buoyancy parameter λ1. It is noticed that only φ′(0) increases but
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f ′′(0) and θ′(0) decrease as the buoyancy parameter λ1 increases. Finally f ′′(0)
and φ′(0) increase as Eckert number Ec (viscous dissipation parameter) increases
but θ′(0) decreases as Eckert number (viscous dissipation parameter) increases.

Table 2 Values of the skin friction f ′′(0), the local Nusselt number θ′(0) and the induced magnetic
field φ′(0)with Pr = 0.7 for cooling plate (Tw < T∞)

β λ1 α Ec f ′′(0) θ′(0) φ′(0)
0.3
0.4
0.5
0.6

5
5
5
5

6
6
6
6

0.7
0.7
0.7
0.7

-2.02626
-2.01089
-1.99778
-1.98709

-1.04905
-1.04676
-1.04465
-1.04368

0.61019
0.61641
0.62099
0.62830

0.5
0.5
0.5
0.5

4
4.5
5
5.5

6
6
6
6

0.7
0.7
0.7
0.7

-1.87022
-1.94942
-1.99778
-2.04826

-0.94976
-1.00083
-1.04465
-1.08894

0.56822
0.59416
0.62099
0.64819

0.5
0.5
0.5
0.5

5
5
5
5

5
7
8
9

0.7
0.7
0.7
0.7

-2.01649
-1.99606
-1.96974
-1.94704

-1.04831
-1.04463
-1.04033
-1.03688

0.58736
0.65274
0.68022
0.70425

0.5
0.5
0.5
0.5

5
5
5
5

6
6
6
6

0.6
0.65
0.7
0.8

-2.21526
-2.21526
-1.98554
-1.80303

-1.03046
-1.03816
-1.04384
-1.06216

0.58339
0.60497
0.62423
0.70425

5. Conclutions

The effect of buoyancy-induced streamwise pressure gradients on laminar forced
convective flow and heat transfer over a vertical flat plate are studied analytically
by the local similarity method of solution in tow cases for the buoyancy force:

1. when it acts in the same direction as the forced flow (Tw > T∞),

2. when it acts in the opposite direction to the forced flow (Tw < T∞).

We found that:

1. In the first case (Tw > T∞) i.e. for heating plate, the longitudinal dimension-
less longitudinal velocity f ′and the temperature θ of the fluid are increasing as
the buoyancy parameter λ1 and the the magnetic field parameter β increase.
But they (f ′ and θ) decrease as the reciprocal of the magnetic Prandtl num-
ber increases. In the second case (Tw < T∞) i.e. for cooling the plate, the
longitudinal dimensionless longitudinal velocity f ′ and the temperature θ of
the fluid decrease as the buoyancy parameter λ1 increases (near the plate).

2. In the two cases, near the plate (η < 1), the effect of the magnetic field is very
weak on the velocity f ′. That is f ′ does not depend on the magnetic field
near the plate, but far from the plate (η > 1), f ′ increases as the magnetic
field parameter β increases.
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3. For heating plate (Tw > T∞); the skin friction coefficient f ′′(0), heat transfer
coefficient θ′(0) and the induced magnetic field φ′(0) increase as the magnetic
force parameter β and the buoyancy parameter λ1 increase. But for cooling
plate (Tw < T∞), it is noticed that only the induced magnetic field φ′(0) in-
creases as the buoyancy parameter λ1 increases but the skin friction coefficient
f ′′(0) and heat transfer coefficient θ′(0) decrease as buoyancy parameter λ1

increases.
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