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In this paper, the unsteady magnetohydrodynamic flow of a dusty viscous incompress-
ible electrically conducting non-Newtonian Casson fluid through a circular pipe is in-
vestigated. A constant pressure gradient in the axial direction and a uniform magnetic
field directed perpendicular to the flow direction are applied. The particle-phase is as-
sumed to behave as a viscous fluid. A numerical solution is obtained for the governing
nonlinear momentum equations using finite differences. The effect of the magnetic field,
the non-Newtonian fluid characteristics, and the particle-phase viscosity on the transient
behavior of the velocity, volumetric flow rates, and skin friction coefficients of both fluid
and particle-phases are studied. It is found that all the flow parameters for both phases
decrease as the magnetic field increases or the flow index decreases. On the other hand,
increasing the particle-phase viscosity increases the skin friction of the particle phase,
but decreases the other flow parameters.
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1. Introduction

The flow of a dusty and electrically conducting fluid through a pipe in the presence
of a transverse magnetic field has important applications such as magnetohydro-
dynamic generators, pumps, accelerators, and flowmeters. The performance and
efficiency of these devices are influenced by the presence of suspended solid parti-
cles in the form of ash or soot as a result of the corrosion and wear activities and/or
the combustion processes in MHD generators and plasma MHD accelerators. When
the particle concentration becomes high, mutual particle interaction leads to higher
particle-phase viscous stresses and can be accounted for by endowing the particle
phase by the so-called particle-phase viscosity. There have been many articles deal-
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ing with theoretical modelling and experimental measurements of the particle-phase
viscosity in a dusty fluid [1-4].

The flow of a conducting fluid in a circular pipe has been investigated by many
authors [5-8]. Gadiraju et al. [5] investigated steady two-phase vertical flow in
a pipe. Dube and Sharma [6] and Ritter and Peddieson [7] reported solutions
for unsteady dusty-gas flow in a circular pipe in the absence of a magnetic field
and particle-phase viscous stresses. Chamkha [8] obtained exact solutions which
generalize the results reported in [6,7] by the inclusion of the magnetic and particle-
phase viscous effects.

A number of industrially important fluids such as muolton plastics, polymers,
pulps and foods exhibit non-Newtonian fluid behavior [9]. Due to the growing
use of these non-Newtonian materials, in various manufacturing and processing
industries, considerable efforts have been directed towards understanding their flow
characteristics. Many of the inelastic non-Newtonian fluids, encountered in chemical
engineering processes, are fluids exhibiting a yield stress that has to be exceeded
before the fluid moves [10]. It is of interest in this paper to study the influence of the
magnetic field as well as the non-Newtonian fluid characteristics on the dusty fluid
flow properties in situations where the particle-phase is considered dense enough to
include the particulate viscous stresses.

In the present study, the unsteady flow of a dusty non-Newtonian Casson fluid
through a circular pipe is investigated in the presence of a uniform magnetic field.
The carrier fluid is assumed viscous, incompressible and electrically conducting.
The particle phase is assumed to be incompressible pressureless and electrically
non-conducting. The flow in the pipe starts from rest through the application of a
constant axial pressure gradient. The governing nonlinear momentum equations for
both the fluid and particle-phases are solved numerically using the finite difference
approximations. The effect of the magnetic field, the non-Newtonian fluid character-
istics and the particle-phase viscosity on the velocity of the fluid and particle-phases
are reported.

2. Governing Equations

Consider unsteady, laminar, axisymmetric horizontal flow of a dusty conducting
non-Newtonian fluid through an infinitely long pipe of radius ”d” driven by a con-
stant pressure gradient. A uniform magnetic field is applied perpendicular to the
flow direction. The magnetic Reynolds number is assumed to be very small and
consequently the induced magnetic field is neglected [11]. We assume that both
phases behave as viscous fluids [8]. In addition, assume that the volume fraction of
suspended particles is finite and constant. Taking into account these and the previ-
ously mentioned assumptions, the governing momentum equations can be written
as

ρ
∂V

∂t
= −∂P

∂z
+

1
r

∂

∂r

(
µr

∂V

∂r

)
+

ρpφ

1− φ
N(Vp − V )− σB2

oV (1)

ρp
∂Vp

∂t
=

1
r

∂

∂r

(
µpr

∂Vp

∂r

)
+ ρpN(V − Vp) (2)

where t is the time, r is the distance in the radial direction, V is the fluid-phase
velocity, Vp is the particle-phase velocity, ρ is the fluid-phase density, ρp is the
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particle-phase density, ∂P/∂z is the fluid pressure gradient, φ is the particle-phase
volume fraction, N is a momentum transfer coefficient (the reciprocal of the relax-
ation time, the time needed for the relative velocity between the phases to reduce
e−1 of its original value (Chamkha [8]), σ is the fluid electrical conductivity, Bo is
the magnetic induction, µp is the particle-phase viscosity which is assumed constant,
and µ is the apparent viscosity of the fluid which is given by,

µ =

(
Kc +

√
τo∣∣∂V
∂r

∣∣

)2

where Kc is the coefficient of viscosity of a Casson fluid, τo is the yield stress, and
|∂V/∂r| is the magnitude of the velocity gradient which is always positive regardless
of the sign of ∂V/∂r. In this work, ρ, ρp, µp, φ and Bo are all constant. It should
be pointed out that the particle-phase pressure is assumed negligible and that the
particles are being dragged along with the fluid-phase.

The initial and boundary conditions of the problem are given as

V (r, 0) = 0, Vp(r, 0) = 0 (3)

∂V (0, t)
∂r

= 0,
∂Vp(0, t)

∂r
= 0, V (d, t) = 0, Vp(d, t) = 0 (4)

where ”d” is the pipe radius.
Equations (1)-(4) constitute a nonlinear initial-value problem which can be made

dimensionless by introducing the following dimensionless variables and parameters
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α = Nd2ρ/Kc is the inverse Stoke’s number,
B = µp/Kc is the viscosity ratio,
τD = τo/God is the Casson number (dimensionless yield stress),
Ha = Bod

√
σ/Kc is the Hartmann number (Sutton [11]).

By introducing the above dimensionless variables and parameters as well as the
expression of the fluid viscosity defined above, Eqs. (1)-(4) can be written as (the
bars are dropped),
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V (r, 0) = 0, Vp(r, 0) = 0, (7)
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∂V (0, t)
∂r

= 0,
∂Vp(0, t)

∂r
= 0, V (1, t) = 0, Vp(1, t) = 0 (8)

The volumetric flow rates and skin-friction coefficients for both the fluid and particle
phases are defined, respectively, as (Chamkha [8])

Q = 2
1∫
0
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1∫
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∂r , Cp = −k
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(9)

3. Results and Discussion

Equations (5) and (6) represent a coupled system of nonlinear partial differential
equations which are solved numerically under the initial and boundary conditions
(6), using the finite difference approximations. A linearization technique is first
applied to replace the nonlinear terms at a linear stage, with the corrections in-
corporated in subsequent iterative steps until convergence is reached. Then the
Crank-Nicolson implicit method (Mitchell [12] and Evans [13]) is used at two suc-
cessive time levels. An iterative scheme is used to solve the linearized system of
difference equations. The solution at a certain time step is chosen as an initial
guess for next time step and the iterations are continued till convergence, within a
prescribed accuracy. Finally, the resulting block tridiagonal system is solved using
the generalized Thomas algorithm (Mitchell [12] and Evans [13]). Computations
have been made for α = 1 and k = 10. Grid-independence studies show that the
computational domain 0 < t < ∞ and 0 < r < 1 can be divided into intervals with
step sizes ∆t = 0.0001 and ∆r = 0.005 for time and space respectively. It should
be mentioned that the results obtained herein reduce to those reported by Dube
and Sharma [6] and Chamkha [7] for the cases of non-magnetic, inviscid particle-
phase, and Newtonian fluid. These comparisons lend confidence in the accuracy
and correctness of the solutions.

Figures 1 and 2 present the time evolution of the profiles of the velocity of the
fluid V and dust particles Vp, respectively, for various values of τD and for Ha = 0.5
and B = 0.5. Both V and Vp increase with time and V reaches the steady-state
faster than Vp for all values of τD. It is clear also from Fig. 1 that increasing τD

decreases both V and Vp while its effect on the steady-state time can be neglected.
Figures 3, 4, 5, and 6 present the influence of the magnetic field parameter Ha

on the transient behavior of the fluid-phase volumetric flow rate Q, the particle-
phase volumetric flow rate Qp, the fluid-phase skin friction coefficient C, and the
particle-phase skin friction coefficient Cp for various values of τD and for B = 0.5.
Initially, both phases are at rest, and suddenly; they are set to motion through
the application of a constant pressure gradient. As a result, the shear stress at
the surface of the pipe increases. This explains the obvious increases in Q, Qp, C,
and Cp shown in Figs. 3 through 6, respectively, for all values of the parameter
τD. These parameters continue to increase until the flow stabilizes and steady-state
conditions are attained. The influence of the magnetic field, as shown in Figs.
3 through 6, is to retard the flow of both phases causing their average velocities
and wall shear stresses in the pipe as well as their steady-state times to decrease.
Also, it can be concluded from the figures that increasing τD decreases greatly the
parameters Q, Qp, C, and Cp but slightly increases their steady-state time.
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Figure 1 Time development of V for various values of τD
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Figure 2 Time development of Vp for various values of τD
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Figure 3 Time development of Q for various values of τD and Ha
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Figure 4 Time development of Qp for various values of τD and Ha
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Figure 5 Time development of C for various values of τD and Ha
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Figure 6 Time development of Cp for various values of τD and Ha
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Figure 7 Time development of Q for various values of τD and β
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Figure 8 Time development of Qp for various values of τD and β
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Figure 9 Time development of C for various values of τD and β
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Figure 10 Time development of Cp for various values of τD and β
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Figures 7, 8, 9, and 10 present the influence of the particle-phase viscosity B
on the transient behavior of Q, Qp, C, and Cp for various values of τD and for
Ha = 1. It is clear from the figures that the inclusion of the particle-phase viscous
stresses causes Q, Qp, C to decrease and Cp to increase (see definition of Cp; Eq.
(9)) for all values of τD and t. Also, the approach to steady-state conditions is much
accelerated than that of the case of inviscid particle-phase (B = 0) as clear from
Figs. 7, 8, and 9. Figure 10 shows that increasing B increases Cp but decreases its
steady-state time.

4. Conclusions

The transient MHD flow of a particulate suspension in an electrically conducting
non-Newtonian Casson fluid in a circular pipe with an applied uniform transverse
magnetic field is studied. The governing nonlinear partial differential equations
are solved numerically. The effect of the magnetic field parameter Ha, the non-
Newtonian fluid characteristics (the Casson number τD), and the particle-phase
viscosity B on the transient behavior of the velocity, volumetric flow rates, and
skin friction coefficients of both fluid and particle-phases are studied. It was found
that all these parameters decrease as the strength of the magnetic field or the yield
stress increases. The particle-phase viscosity has an apparent effect on increasing
the skin friction of the particle-phase while decreasing the rest of the parameters.
The approach to steady-state conditions is much decreased when increasing B or
Ha but it is not greatly affected by changing τD.
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