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The analytic expressions for the displacements, microrotation, stresses and temperature
distribution on the free surface of micropolar thermoelastic medium possessing cubic
symmetry as a result of inclined load have been obtained. The inclined load is assumed
to be a linear combination of a normal load and a tangential load. The Laplace and
Fourier transforms have been employed to solve the problem. A special case of moving
inclined load has been deduced by making the appropriate changes. The variations of the
displacements, microrotation, stresses and temperature distribution with the horizontal
distance have been shown graphically for both the problems.
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1. Introduction

The classical uncoupled theory of thermoelasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction of
this theory does not contain any elastic terms, second, the heat equation is of a
parabolic type, predicting infinite speeds of propagation for heat waves.

Biot [1] introduced the theory of coupled thermoelasticity to overcome the first
shortcoming. The governing equations for this theory are coupled, eliminating the
first paradox of the classical theory. However, both theories share the second short-
coming since the heat equation for the coupled theory is also parabolic.

Two generalizations to the coupled theory were introduced. The first is due to
Lord and Shulman [24] who introduced the theory of generalized thermoelasticity
with one relaxation time by postulating a new law of heat conduction to replace the
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classical Fourier law. This new law contains the heat flux vector as well as its time
derivative. It contains also a new constant that acts as a relaxation time. The heat
equation of this theory is of the wave-type, ensuring finite speeds of propagation for
heat and elastic waves. The remaining governing equations for this theory, namely,
the equations of motion and constitutive relations remain the same as those for
the coupled and uncoupled theories. The second generalization to the coupled
theory of thermoelasticity is what is known as the theory of thermoelasticity with
two relaxation times or the theory of temperature-rate-dependent thermoelasticity.
Műller [26], in a review of the thermodynamics of thermoelastic solids, proposed an
entropy production inequality with the help of which he considered restrictions on
a class of constitutive equations. A generalization of this inequality was proposed
by Green and Laws [7]. Green and Lindsay [8] obtained another version of the
constitutive equations. These equations were also obtained independently and more
explicitly by Suhubi [30]. This theory contains two constants that act as relaxation
times and modify all the equations of the coupled theory, not only the heat equation.
The classical Fourier’s law of heat conduction is not violated if the medium under
consideration has a center of symmetry.

The linear theory of micropolar thermoelasticity was developed by extending the
theory of micropolar continua to include thermal effects by Eringen [3] and Nowacki
[28].

Following various methods, the elastic fields of various loadings, inclusion and
inhomogeneity problems, and interaction energy of point defects and dislocation ar-
rangement have been discussed extensively in the past. Generally all materials have
elastic anisotropic properties which mean the mechanical behavior of an engineering
material is characterized by the direction dependence. However the three dimen-
sional study for an anisotropic material is much more complicated to obtain than
the isotropic one, due to the large number of elastic constants involved in the calcu-
lation. In particular, transversly isotropic and orthotropic materials, which may not
be distinguished from each other in plane strain and plane stress, have been more
regularly studied. A review of literature on micropolar orthotropic continua shows
that Iesan [10], [11], [12] analysed the static problems of plane micropolar strain of
a homogeneous and orthotropic elastic solid, torsion problem of homogeneous and
orthotropic cylinders in the linear theory of micropolar elasticity and bending of
orthotropic micropolar elastic beams by terminal couple. Nakamura [27] applied
finite element method for orthotropic micropolar elasticity. Recently Kumar and
Choudhary [17], [18], [19], [20], [21] have discussed various problems in orthotropic
micropolar continua.

Because a wide class of crystals such as W, Si, Cu, Ni, Fe, Au, Al etc., which are
some frequent by used substances, belong to cubic materials. The cubic materials
have nine planes of symmetry whose normals are on the three coordinate axes and
on the coordinate planes making an angle π/4 with the coordinate axes. With the
chosen coordinate system along the crystalline directions, the mechanical behav-
ior of a cubic crystal can be characterized by four independent elastic constants
A1 , A2 , A3 and A4.

Minagawa [25] discussed the propagation of plane harmonic waves in a cubic
micropolar medium. Kumar and Rani [22] studied time harmonic sources in a ther-
mally conducting cubic crystal. Recently Kumar and Ailawalia [13], [14] discussed
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some source problems in micropolar medium with cubic symmetry.
Kuo [23] and Garg [6] have discussed the problem of inclined load in the theory

of elastic solids. Recently, Kumar and Ailawalia [15], [16] studied the response of
moving inclined load in micropolar theory of elasticity. The deformation due to
other sources such as strip loads, continuous line loads, etc. can also be similarly
obtained. The deformation at any point of the medium is useful to analyze the de-
formation field around mining tremors and drilling into the crust of the earth. It can
also contribute to the theoretical consideration of the seismic and volcanic sources
since it can account for the deformation fields in the entire volume surrounding the
source region. No attempt has been made so far to study the response of inclined
load in micropolar thermoelastic medium possessing cubic symmetry.

2. Problem Formulation

We consider a homogeneous, micropolar generalized thermoelastic solid half-space
with cubic symmetry. We consider a rectangular coordinate system (x, y, z) having
origin on the surface y =0 and y – axis pointing vertically into the medium. Suppose
that an inclined line load F0, per unit length, is acting along the interface on the y
– axis and its inclination with z – axis is θ.

Figure 1

If we restrict our analysis to plane strain parallel to xy – plane with displace-
ment vector −→u = (u1, u2, 0) and microrotation vector

−→
φ = (0, 0, φ3) then the field

equations and constitutive relations for micropolar thermoelastic solid with cubic
symmetry in the absence of body forces, body couples and heat sources can be
written by following the equations given by Minagawa [25] and Lord-Shulman [24]
as,
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B3∇2φ3 + (A3 −A4)
(
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where t22, t21, m23 are the components of normal force stress, tangential force
stress and tangential couple stress respectively. A1, A2, A3, A4, B3 are characteristic
constants of the material, ν = (A1 + 2A2) αT , αT is coefficient of linear expansion, ρ
is the density and j is the microinertia, K∗ is the coefficient of thermal conductivity,
C∗ is the specific heat at constant strain, t0 is the thermal relaxation time and
∇2 = ∂2

∂x2 + ∂2

∂y2 .
Introducing the dimensionless variables defined by the expressions
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in equations (1)-(4) we obtain (dropping the primes),
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Introducing the potential functions defined by
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in equations (10)-(13), where q (x, y, t) and Ψ(x, y, t) are scalar potential func-
tions and

−→
U (x, y, t)is the vector potential function we obtain,

[
∂2

∂x2
+ a11

∂2

∂y2
− ∂2

∂t2
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[
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− ∂2
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Applying the Laplace transform with respect to time ‘t’ defined by

{
q , Ψ , T , φ3

}
(x, y, p) =

∞∫

0
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and then the Fourier transform with respect to ‘x’ defined by
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on equations (15)-(18) and eliminating T̃ and φ̃3 from the resulting expressions we
get, [
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D∗ =
1

a13

[(
a12ξ

2 + p2
) (

ξ2 + a16p
2 − 2a15

)
+ a14a15ξ

2
]

(24)

The roots of equation (21) and (22) are given by

q2
1,2 =

−A∗ ±√A∗2 − 4B∗

2
q2
3,4 =

−C∗ ±√C∗2 − 4D∗

2
(25)

The solutions of equations (22) and (23) satisfying radiation conditions are given
by

q̃ = D1 exp (−q1y) + D2 exp (−q2y) (26)

Ψ̃ = D3 exp (−q3y) + D4 exp (−q4y) (27)

T̃ = a∗1D1 exp (−q1y) + a∗2D2 exp (−q2y) (28)

φ̃3 = a∗3D3 exp (−q3y) + a∗4D4 exp (−q4y) (29)

where

a∗n = a11q
2
n −

(
ξ2 + p2

)

a∗Θ =
1

a14

(
a12ξ

2 + p2 − a13q
2
Θ

)

n = 1, 2, Θ = 3, 4 (30)

3. Boundary Conditions

We consider a normal line load F1, per unit length acting in the positive y-direction
on the interface y = 0 along the z – axis and a line force F2, per unit length acting
at the origin in the positive x - direction, then the boundary conditions at the
horizontal plane y = 0 are,

t22 = −F1ψ1 (x) δ (t) t21 = −F2ψ2 (x) δ (t)

m23 = 0
∂T

∂y
+ hT = 0 (31)

where δ (t) is Dirac delta function and ψ1 (x) and ψ2 (x) specify the vertical and hor-
izontal traction distribution function along x-axis, h is the heat transfer coefficient
where h→∞ for isothermal boundary and h → 0 for insulated boundary.

Applying Laplace and Fourier transform defined by (20) and (21) on the bound-
ary conditions (31) and using (5)-(8), (14) and (26)-(29), we obtain the expressions
for displacement components, microrotation, force stress, couple stress and temper-
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ature distribution for micropolar thermoelastic solid with cubic symmetry as,

ũ1 = − 1
∆

[iξ{∆1 exp(−q1y) + ∆2 exp(−q2y)}
+q3∆3 exp (−q3y) + q4∆4 exp (−q4y)] (32)
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φ̃3 =
1
∆
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1
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1
∆

[s1∆1 exp (−q1y) + s2∆2 exp (−q2y)

+s3∆3 exp (−q3y) + s4∆4 exp (−q4y)] (36)

m̃23 = −B3ω
2

ρc4
1∆

[a∗3q3∆3 exp (−q3y) + a∗4q4∆4 exp (−q4y)] (37)

T̃ =
1
∆

[a∗1∆1 exp (−q1y) + a∗2∆2 exp (−q2y)] (38)

where

∆ = f1f2 − f3f4 , f1 = s1g
∗
2 − s2g

∗
1 , f2 = a∗3q3r4 − a∗4q4r3,

f3 = r1g
∗
2 − r2g

∗
1 , f4 = a∗3q3s4 − a∗4q4s3, f5 = a∗3q3r4 − a∗4q4r3(39)

∆1,2 = ±g∗2,1

[
f4F1ψ̃1 (ξ)− f5F2ψ̃2 (ξ)

]

∆∗
3,4 = ±a∗4,3q4,3

[
f1F1ψ̃1 (ξ)− f3F2ψ̃2 (ξ)

]

g∗1,2 = a∗1,2 (q1,2 − h) , rn = −ξ2 A2

ρc2
1

+ q2
n − a∗n

rΘ = −iξqΘ

(
1− A2

ρc2
1

)
(40)

sn = iξqn
(A3 + A4)

ρc2
1

, sΘ =
1

ρc2
1

[
A3q

2
Θ + ξ2A4 + (A3 −A4) a∗Θ

]

n = 1, 2 ; Θ = 3, 4 . (41)

3.1. Concentrated force

In order to determine displacements, microrotation, stresses and temperature due to
concentrated force described as Dirac delta function {ψ1 (x) , ψ2 (x)} = δ (x) must
be used with

{
ψ̃1 (ξ) , ψ̃2 (ξ)

}
= 1 . (42)
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3.2. Uniformly distributed force

The solution due to the distributed force applied on the half-space is obtained by
setting

{ψ1 (x) , ψ2 (x)} =
[

1 if |x| ≤ a ,
0 if |x| > a ,

in equations (31). The Fourier transform with respect to the pair (x, ξ) for the case
of a uniform strip load of unit amplitude and width 2a applied at the origin of the
coordinate system (x = y = 0) in dimensionless form after suppressing the primes
becomes {

ψ̃1 (ξ) , ψ̃2 (ξ)
}

=
[
2 sin

(
ξ c1a

ω

)
/ξ

]
, ξ 6= 0 . (43)

3.3. Linearly distributed force

The solution due to linearly distributed force is obtained by substituting

{ψ1 (x) , ψ2 (x)} =
[

1− |x|
a if |x| ≤ a ,

0 if |x| > a ,

in equation (31) where 2a is the width of the strip load. The Fourier transform in
case of linearly distributed force applied at the origin of the system in dimensionless
form is

ψ̃1 (ξ) , ψ̃2 (ξ) =
2

[
1− cos

(
ξ c1a

ω

)]

ξ2c1a
ω

. (44)

The expressions for displacements, stresses and temperature distribution can be
obtained for a concentrated, uniformly and linearly distributed force by replacing
ψ̃n (ξ) (n = 1, 2) from (40)-(42) respectively, in (32)-(38).

4. Particular Cases

Case (4.1): Neglecting micropolarity effect (i.e B3 = j = 0) we obtain the corre-
sponding expressions for displacements, stresses and temperature distribution as,

ũ1 = − 1
∆∗ [iξ {∆∗

1 exp (−q1y) + ∆∗
2 exp (−q2y)}+ q3∆∗

3 exp (−q′3y)] , (45)

ũ2 = − 1
∆∗ [q1∆∗

1 exp (−q1y) + q2 ∆∗
2 exp (−q2y)− iξ∆∗

3 exp (−q′3y)] , (46)

t̃22 =
1

∆∗ [r1∆∗
1 exp (−q1y) + r2∆∗

2 exp (−q2y) + r∗3∆∗
3 exp (−q′3y)] , (47)

t̃21 =
1

∆∗ [s1∆∗
1 exp (−q1y) + s2∆∗

2 exp (−q2y) + s∗3∆
∗
3 exp (−q′3y)] (48)

T̃ =
1

∆∗ [a∗1∆
∗
1 exp (−q1y) + a∗2∆

∗
2 exp (−q2y)] (49)
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where

∆∗ = g∗1 (r2s
∗
3 − r∗3s2)− g∗2 (r1s

∗
3 − r∗3s1)

∆∗
1,2 = ±g∗2,1

[
s∗3F1ψ̃1 (ξ)− r∗3F2ψ̃2 (ξ)

]

∆∗
3 = −F1ψ̃1 (ξ) (s1g

∗
2 − s2g

∗
1) + F2ψ̃2 (ξ) (r1g

∗
2 − r2g

∗
1)

r∗3 = −iξq′3

(
1− A2

ρc2
1

)
s∗3 =

1
ρc2

1

(
A3q

′2
3 + ξ2A4

)

q
′2
3 =

a12ξ
2 + p2

a13
. (50)

Case (4.1a): The expressions for displacements, stresses and temperature can be
obtained for a concentrated, uniformly and linearly distributed force by replacing
ψ̃n (ξ) (n = 1, 2) from (40)-(42) respectively, in (43)-(47).
Case (4.2): Neglecting thermal effect, the expressions for displacements, microro-
tation and stresses are obtained as,

ũ1 = − 1
∆∗∗ [iξ∆∗∗

1 exp (−q′1y) + q3 ∆∗∗
3 exp (−q3y) + q4 ∆∗∗

4 exp (−q4y)] (51)

ũ2 = − 1
∆∗∗ [q′1∆∗∗

1 exp (−q′1y)− iξ {∆∗∗
3 exp (−q3y) + ∆∗∗

4 exp (−q4y)}] (52)

φ̃3 =
1

∆∗∗ [a∗3∆
∗∗
3 exp (−q3y) + a∗4∆

∗∗
4 exp (−q4y)] (53)

t̃22 =
1

∆∗∗ [r∗1∆∗∗
1 exp (−q′1y) + r3∆∗∗

3 exp (−q3y) + r4∆∗∗
4 exp (−q4y)] (54)

t̃21 =
1

∆∗∗ [s∗1∆
∗∗
1 exp (−q′1y) + s3∆∗∗

3 exp (−q3y) + s4∆∗∗
4 exp (−q4y)] (55)

m̃23 = − B3ω
2

ρc4
1∆∗∗ [a∗3q3∆∗∗

3 exp (−q3y) + a∗4q4∆∗∗
4 exp (−q4y)] (56)

where

∆∗∗ = −a∗3q3 (r∗1s4 − r4s
∗
1) + a∗4q4 (r∗1s3 − r3s

∗
1)

∆∗∗
1 = −F1ψ̃1 (ξ) (a∗4q4s3 − a∗3q3s4) + F2ψ̃2 (ξ) (a∗4q4r3 − a∗3q3r4)

∆∗∗
2,3 = ±a∗4,3q4,3

[
s∗1F1ψ̃1 (ξ)− r∗1F2ψ̃2 (ξ)

]

s∗1 = iξq′1
(A3 + A4)

ρc2
1

, r∗1 = −ξ2A2

ρc2
1

+ q
′2
1 , q

′2
1 =

ξ2 + p2

a11
(57)

Case (4.2a): Again the expressions for displacements, microrotation, force stress
and couple stress can be obtained for a concentrated, uniformly and linearly dis-
tributed force by replacing ψ̃n (ξ) (n = 1, 2) from (40)-(42) respectively, in (49)-(54).

1 : If h → 0, (32)-(38) yields the expressions for displacements, microrotation,
stresses and temperature distribution for insulated boundary.

2 : If h →∞, (32)-(38) yields the expressions for displacements, microrotation,
stresses and temperature distribution for isothermal boundary.
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Case: (4.3) Micropolar thermoelastic solid
Taking A1 = λ+2µ+K , A2 = λ , A3 = µ+K , A4 = µ , B3 = γ , (56)
in equation (32)-(38), (43)-(47) and (49)-(54) with (40)-(42) we obtain the corre-

sponding expressions in micropolar thermoelastic isotropic medium, thermoelastic
isotropic medium and micropolar isotropic medium for concentrated, uniformly dis-
tributed and linearly distributed force respectively.

5. Inclined line load

For an inclined line load F0, per unit length, we have (see Figure 1)

F1 = F0 cos θ , F2 = F0 sin θ . (58)

Using (57) in (32)-(38), (43)-(47) and (49)-(54) with (56) and (40)-(42) we obtain
the corresponding expressions in micropolar thermoelastic medium possessing cu-
bic symmetry, micropolar thermoelastic isotropic medium, thermoelastic isotropic
medium and micropolar isotropic medium for concentrated inclined load, uniformly
distributed inclined load and linearly distributed inclined load respectively.

6. Problem II: Moving concentrated normal point load.

We consider a concentrated normal and tangential point load moving along the
surface of micropolar thermoelastic solid possessing cubic symmetry in x and y
directions respectively. The rectangular cartesian coordinates are introduced having
origin on the surface y = 0 and y- axis pointing vertically into the medium. Let
us consider a pressure pulse P (x + Ut) which is moving with a constant velocity
in the negative x direction for an infinite long time so that a steady state prevails
in the neighbourhood of the loading as seen by the observer moving with the load
(Figure 2).

Figure 2

Using Galilean transformations [5] x∗ = x + Ut, y∗ = y, t∗ = t where U is the
magnitude of moving load velocity at the surface of micropolar thermoelastic solid
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possessing cubic symmetry and introducing dimensionless quantities defined by

x′ =
ω∗

c1
x∗ , y′ =

ω∗

c1
y∗, u′1 =

ρc1ω
∗

νT0
u1, u′2 =

ρc1ω
∗

νT0
u2, φ′3 =

ρc2
1

νT0
φ3,

{t′22, t′21} =
{t22, t21}

νT0
, m′

23 =
ω∗

c1νT0
m23 (59)

and applying Fourier transforms defined by (21) in equations (15)-(18), we obtain
the results in case of moving load at the surface of micropolar thermoelastic solid
possessing cubic symmetry. The boundary conditions in this case are

t22 = −F1 δ (x∗) , t21 = −F2δ (x∗) , m23 = 0 ,
∂T

∂y
+ hT = 0

The expressions for displacements, microrotation, stresses and temperature distribu-
tion for micropolar thermoelastic solid possessing cubic symmetry in case of moving
normal and tangential point load are given by (32)-(38) by changing p2 → −ξ2 U2

c2
1

and p → iξ U
c1

in the expressions (24) and ψ̃n (ξ) (n = 1, 2) → 1 in equations (32)
and (38).

Introducing (57) in the resulting expressions we obtain the results of moving
inclined load on the surface of micropolar thermoelastic medium possessing cubic
symmetry.

Similarly we obtain the expressions for moving inclined load in micropolar
thermoelastic isotropic medium, thermoelastic isotropic medium and micropolar
isotropic medium by introducing the above-mentioned changes.

7. Inversion of the Transform

The transformed displacements and stresses are functions of y, the parameters of
Laplace and Fourier transforms pand ξ respectively, and hence are of the form
f̃ (ξ, y, p). To get the function in the physical domain, first we invert the Fourier
transform using

f (x, y, p) =
1
2π

∞∫

−∞
e−iξxf̃ (ξ, y, p) dξ

=
1
π

∞∫

0

{cos (ξx) fe − i sin (ξx) fo} dξ (60)

where fe and fo are even and odd parts of the function f̃ (ξ, y, p) respectively. Thus,
expressions (58) give us the transform f (x, y, p) of the functionf (x, y, t).

Now, for the fixed values of ξ, x and y, the f (x, y, p) in the expression (59) can
be considered as the Laplace transform g (p) of some function g (t). Following Honig
and Hirdes [9], the Laplace transformed function g (p) can be converted as given
below.
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The function g (t) can be obtained by using

g (t) =
1

2πi

C+i∞∫

C−i∞

ept g (p) dp, (61)

where C is an arbitrary real number greater than all the real parts of the singularities
of g (p). Taking p = C + iy, we get

g (t) =
eC t

2π

∞∫

−∞
eity g (C + iy) dy (62)

Now, taking e−C t g (t) as h (t) and expanding it as Fourier series in [0, 2L] , we
obtain approximately the formula

g (t) = g∞ (t) + ED′

where

g∞ (t) =
C0

2
+

∞∑

k=1

Ck , 0 ≤ t ≤ 2L , (63)

Ck =
eC t

L
<

[
e

ikπt
L g

(
C +

ikπ

L

)]
,

ED is the discretization error and can be made arbitrary small by choosing C large
enough. The value of C and L are chosen according to the criteria outlined by Honig
and Hirdes [9].

Since the infinite series in equation (62) can be summed up only to a finite
number of N terms, so the approximate value of g (t) becomes

gN (t) =
C0

2
+

N∑

k=1

Ck , 0 ≤ t ≤ 2L , (64)

Now, we introduce a truncation error ET that must be added to the discretization
error to produce the total approximation error in evaluating g (t) using the above
formula. Two methods are used to reduce the total error. The discretization error
is reduced by using the “Korrecktur”- method, Honig and Hirdes [9] and then
“ε − algorithm” is used to reduce the truncation error and hence to accelerate the
convergence.

The “ Korrecktur” –method formula, to evaluate the function g (t) is

g (t) = g∞ (t)− e−2CLg∞ (2L + t) + ED′ , (65)

where
|ED′ | << |ED| . (66)

Thus, the approximate value of g (t) becomes

gNk
(t) = gN (t)− e−2CLgN ′ (2L + t) , (67)
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where, N ′ is an integer such that N ′ < N .
We shall now describe the ε− algorithm which is used to accelerate the conver-

gence of the series in equation (63). Let N be a natural number and Sm =
m∑

k=1

Ck

be the sequence of partial sums of equation (63). We define the ε−sequence by

ε0,m = 0 , ε1,m = Sm ,

εn+1,m = εn−1,m+1 +
1

εn,m+1 − εn,m
; n,m = 1, 2, 3, ......

It can be shown Honig and Hirdes [9] that the sequence ε1,1 , ε3,1 , ......, εN,1 converge
to g (t) + ED − C0/2 faster than the sequence of partial Sm , m = 1, 2, 3.......The
actual procedure to invert the Laplace transform reduces to the study of equation
(65) together with the ε− algorithm.

The last step is to evaluate the integral in equation (59). The method for
evaluating this integral by Press [29] and which involves the use of Rhomberg’s
integration with adaptive step size. This, also uses the results from successive
refinement of the extended trapezoidal rule followed by extrapolation of the results
to the limit when the step size tends to zero.

8. Numerical Results and Discussions

For numerical computations, we take the following values of relevant parameters for
micropolar cubic crystal as, A1 = 19.6 × 1011 [dyne/cm2]
A3 = 5.6 × 1011 [dyne/cm2]
A2 = 11.7 × 1011 [dyne/cm2]
A4 = 4.3 × 1011 [dyne/cm2]
B3 = 0.98 × 10−4 [dynes].

For the comparison with micropolar isotropic solid, following Eringen [4] and
Dhaliwal and Singh [2], we take the following values of relevant parameters for the
case of Magnesium crystal like material as, ρ = 1.74 [gm/cm3]
λ = 9.4× 1011 [dyne/cm2]
µ = 4.0× 1011 [dyne/cm2]
K = 1.0× 1011 [dyne/cm2]
γ = 0.779× 10−4 [dyne]
j = 0.2× 10−15 [cm2]
C∗ = 0.104× 107 [cal/gm0C]
ν = 0.0268× 109 [dyne/cm2 0C]
T0 = 23 [0C]
K∗ = 1.7 [J/s cm 0C]
t0 = 6.131× 10−13 [s]

The values of tangential displacement U1 = (u1/F0), normal displacement U2 =
(u2/F0), tangential force stress T21 = (t21/F0) normal force stress T22 = (t22/F0),
tangential couple stress M23 = (m23/F0) and temperature distribution T ∗ = (T/F0)
for a micropolar thermoelastic medium possessing cubic symmetry cubic crystal
(MTECC) and micropolar thermoelastic isotropic solid (MTEIS) have been studied
and the variations of these components with distance x have been shown by
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1. solid line (–) for MTECC and θ = 00 ,

2. dashed line (- -) for MTEIS and θ = 00 ,

3. solid line with centered symbol (x–x–x–x) for MTECC and θ = 300 ,

4. dashed line with centered symbol(x- -x- -x) for MTEIS and θ = 300 ,

5. solid line with centered symbol (o–o–o–o) for MTECC and θ = 600 ,

6. dashed line with centered symbol(o- -o- -o) for MTEIS and θ = 600 ,

7. solid line with centered symbol (∗−−∗−−∗−−∗) for MTECC and θ = 900 ,

8. dashed line with centered symbol(∗- -∗- -∗) for MTEIS and θ = 900 .

These variations are shown in Figure 3-26. The computations are carried out for
y = 1.0 in the range 0 ≤ x ≤ 10.0 at t = 1.0 and a = 1.0 In case of moving inclined
load the calculations have been performed for U < c1.

9. Discussions for Various Cases

9.1. Dynamic Inclined load

9.1.1. Concentrated force

The value of tangential displacement, very close to the point of application of source,
increases with increase in the angle of inclination of the source with normal direction.
Also for a particular inclination of the source, the values of tangential displacement
for MTECC and MTEIS are close to each other. These oscillations are oscillatory in
nature and the magnitude of these oscillations decrease with increase in horizontal
distance x. These variations of tangential displacement are shown in Figure 3.

Unlike the values obtained for tangential displacement, the values of normal
displacement near the point of application of source decreases with increase in the
angle of inclination of source with normal direction. But similar to the variations
of tangential displacement these variations are oscillatory in nature and their mag-
nitudes decrease with horizontal distance. These variations of normal displacement
are shown in Figure 4.

It is observed that the nature of force stress, near the point of application of
source, is similar to the nature of displacement components i.e the values of tangen-
tial force stress increases whereas the values of normal force stress decreases (at this
point). These variations of tangential force stress and normal force stress are shown
in Figures 5 and 6 respectively. The variations of both tangential couple stress and
temperature distribution increases sharply in the range 0 ≤ x ≤ 2.0and then oscil-
lates in the range 2.0 ≤ x ≤ 10.0. However the degree of this sharpness decreases
with decrease in angle of inclination for tangential couple stress and increase in
angle of inclination of the source for temperature distribution. These variations of
tangential couple stress and temperature distribution are shown in Figures 7 and 8
respectively.
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Figure 3 Variation of tangential displacement U1 = u1/F0 with distance x. (Concentrated
force)

Figure 4 Variation of normal displacement U2 = u2/F0 with distance x. (Concentrated
force)
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Figure 5 Variation of tangential force stress T21 = t21/F0 with distance x. (Concentrated
force)

Figure 6 Variation of normal force stress T22 = t22/F0 with distance x. (Concentrated
force)
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Figure 7 Variation of tangential couple stress M23 = m23/F0 with distance x. (Concentrated
force)

Figure 8 Variation of temperature T ∗ = T/F0 with distance x. (Concentrated force)
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9.1.2. Uniformly distributed force

The discussions for displacement components are similar to the discussions given in
case of concentrated force. However the variations are similar in nature irrespective
of the angle of inclination of source. It is observed that the values of displacement
components for both the solids are quite close to each other in the range 6.0 ≤
x ≤ 10.0. These variations of tangential displacement and normal displacement on
application of uniformly distributed force are shown in Figures 9 and 10 respectively.

The magnitude of oscillations of tangential force stress increases as the source
moves from normal to tangential direction. For a particular value of angle of inclina-
tion the variations of tangential force stress are more oscillatory for MTECC. These
values are of comparable magnitude in the range 6.0 ≤ x ≤ 10.0 for MTECC and
MTEIS. These variations of tangential force stress are shown in Figure 11. Figure
12 depicts that the values of normal force stress increases sharply when 0 ≤ θ ≤ 600

and the degree of this sharpness decreases with increase in angle of inclination of
source. Also these values of normal force stress for θ = 900lie in a short range as
compared to the values when 0 ≤ θ ≤ 600.

The variations of tangential couple stress and temperature distribution as shown
in Figures 13 and 14 are exactly opposite in nature, with difference in magnitudes,
to the variations obtained for tangential displacement and normal displacement on
application of uniformly distributed force. The values of tangential couple stress lie
in a very short range when θ = 00 whereas the values of temperature distribution are
in a short range when θ = 900 as compared to other values of angle of inclination.

9.1.3. Linearly distributed force

The variations of tangential and normal components of a quantity are opposite in
nature for a particular value of angle of inclination of the source i.e if the tangen-
tial components (displacement or force stress) are less oscillatory then the normal
components (displacement or force stress) are more oscillatory for a particular value
of θ. It is also observed that the variations of force stress are more oscillatory in
nature as compared to the variations of displacement components. These variations
of tangential displacement, normal displacement, tangential force stress and normal
force stress are respectively shown in Figures 15-18. The variations of tangential
couple stress and temperature distribution are exactly opposite in nature to the
variations of tangential displacement and normal displacement with difference in
magnitudes as was the case discussed on application of uniformly distributed force.
These variations of tangential couple stress and temperature distribution are shown
in Figures 19 and 20 respectively.

9.2. Moving Inclined load

Contrary to the discussions given in case of dynamic inclined load, the variations
of tangential displacement and normal displacement are similar in nature to some
extent for a given value of angle of inclination. These variations of tangential
displacement are a little more oscillatory in nature as compared to the variations
of normal displacement. These variations of tangential displacement and normal
displacement are shown in Figures 21 and 22 respectively.

The variations of normal force stress are smoother in nature in comparison to the
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Figure 9 Variation of tangential displacement U1 = u1/F0 with distance x. (Uniformly
distributed force)

Figure 10 Variation of normal displacement U2 = u2/F0 with distance x. (Uniformly
distributed force)
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Figure 11 Variation of tangential force stress T21 = t21/F0 with distance x. (Uniformly
distributed force)

Figure 12 Variation of normal force stress T22 = t22/F0 with distance x. (Uniformly
distributed force)
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Figure 13 Variation of tangential couple stress M23 = m23/F0 with distance x. (Uniformly
distributed force)

Figure 14 Variation of temperature T ∗ = T/F0 with distance x. (Uniformly distributed
force)
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Figure 15 Variation of tangential displacement U1 = u1/F0 with distance x. (Lineary
distributed force)

Figure 16 Variation of normal displacement U2 = u2/F0 with distance x. (Lineary dis-
tributed force)
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Figure 17 Variation of tangential force stress T21 = t21/F0 with distance x. (Lineary
distributed force)

Figure 18 Variation of normal force stress T22 = t22/F0 with distance x. (Lineary dis-
tributed force)
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Figure 19 Variation of tangential couple stress M23 = m23/F0 with distance x. (Lineary
distributed force)

Figure 20 Variation of temperature T ∗ = T/F0 with distance x. (Lineary distributed force)
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Figure 21 Variation of tangential displacement U1 = u1/F0 with distance x

Figure 22 Variation of normal displacement U2 = u2/F0 with distance x
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Figure 23 Variation of tangential force stress T21 = t21/F0 with distance x

Figure 24 Variation of normal force stress T22 = t22/F0 with distance x
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Figure 25 Variation of tangential couple stress M23 = m23/F0 with distance x

Figure 26 Variation of temperature T ∗ = T/F0 with distance x
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variations of tangential force stress. The difference between the values of tangential
force stress for MTECC and MTEIS is very less at any point for a given value
of angle of inclination but this difference is quite significant in nature for normal
force stress. These variations of tangential force stress and normal force stress when
the inclined load is moving on the surface of solid are shown in Figures 23 and 24
respectively.

It is evident from Figure 25 that the values of tangential couple stress for both
MTECC and MTEIS decrease, near the point of application of source, as the source
moves from normal to tangential direction. The magnitude of these variations also
decreases with increase in magnitude of angle of inclination. Figure 26 depicts that
the values of temperature distribution for MTECC and MTEIS are very close to
each other for a particular direction of application of source.

10. Conclusion

The properties of a body depend largely on the direction of symmetry and the
inclination of applied source. When concentrated force is applied on the surface of
solid the values of tangential displacement, tangential force stress and temperature
distribution increase with increase in angle of inclination of source, near the point
of application of source, whereas the values of their normal counterparts decrease
at the same points with the same variations. Although the values of a quantity
are close to each other for both MTECC and MTEIS for a particular inclination of
source yet it is observed that the variations of tangential and normal components
of displacement or force stress are opposite in nature for any fixed value of angle of
inclination. Unlike the case of dynamic inclined load, when the load is moving on
the surface of solid the variations of normal and tangential displacement are similar
in nature.
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