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In the article construction and application of the EDP is introduced. This construction
is based on the transformation of the traditional phase space into the energy space.
After this transformation the state vector and its derivative determine the energy flow
plane. The angle between these vectors shows energy flow direction. Application of such
a construction in recognizing the energy flow synchronization is shown.
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1. Introduction

An energy flow as the final effect of the external and internal interactions is very
important aspect of the system dynamics. Observations of the energy state of the
system, or its part gives possibility of the determining and explaining the reasons
of the system behaviour. It allows to control the system dynamics, what is espe-
cially important in the case of the chaotic systems [4, 9, 32]. Such a control can
cause for instance oscillation reduction [7–10, 32], giving possibilities of the system
application.

An energy flow modelling still arouses interests in the scientific world [6, 7, 11–
15, 29–34]. Different methods are applied to solve problems connected with energy
flow: Statistical Energy Analysis [7, 11, 12], Finite Element Method [7], modes
theory [13]. But these methods do not allow for a special kind of a geometrical view
on energy changes, which could develop our intuitional knowledge on energy flow
phenomenon. This intuition is very important especially in modelling the systems,
where we still can not measure energy flow, such as the brain dynamics [25–27], or
applied in medicine diagnostics bioenergy, observed thanks to GDV method based
on Kirlian effect [6, 7, 8].

In this article an application of the EDP in detecting synchronization, nowadays
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one of the most investigated phenomenon [16–25] was shown. Some aspects of
motion, energy flow, synchronization are considered.

2. Introduction to the EDP analysis

The EDP is the traditional dot product function introduced into energy space. The
energy space [2, 3, 33, 34] is constructed in a way, that the norm |~x| of the dynamic
state vector is the function of the energy E, that is accumulated in the system.

After this transformation vector ~x and its derivative
d~x

dt
= ~̇x determine the current

energy flow plane. The angle between these vectors shows energy E changes. In
a particular case, when the amount of the energy accumulated in the system is
constant, the angle between ~x and ~̇x is the right angle. In that case EDP function
applied to these vectors:

~x ◦ ~̇x = 0 (1)

The same construction can be also applied in the energy subspaces, showing the
energy flow in some parts of the system. Consider for instance the particular energy
flow synchronization, when the same amount of the energy flows out and in some
parts of the system. In that case the projection ~xp of the vector ~x on to the
considered subspace, together with the projection ~̇xp of the vector ~̇x, are vectors
with the right inclination angle. EDP function applied to these vectors:

~xp ◦ ~̇xp = 0 (2)

3. Energy flow synchronization in the one DOF vibrating system

The most simple energy flow synchronization phenomena can be observed in the
one DOF vibrating system. Consider the system with the mathematical model:

d~x

dt
= ~̇x =

[
x2

q cos ητ − 2hx2 − α2x1

]
(3)

where:

q =
F

m
; η =

ω

α
; 2h =

c

m
; α =

√
k

m
;

m – mass of the oscillator,
k – spring stiffness,
c – viscotic damping coefficient,
F – external excitation force amplitude,
ω – frequency of the external excitation force.
The phase vector ~xin the standard phase space R2 is represented by two com-

ponents x1; x2.
~x = [x1; x2]
Transform the phase space of the system using the function f : R2 → R2:

f (~x) =




√
k

2√
m

2


 ~x = ~z (4)
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After this transformation the mathematical model of the system in the energy space:

d~z

dt
= ~̇z =




αz2

q

√
m

2
cos ητ − 2hz2 − α2z1


 (5)

To simplify the description of the transformation note, that in the energy space
there are square roots of the potential (z1) or kinetic (z2) energies on each axis.
Note also, that function f transforms energy into vector form.

Assume the solution as:

~z =




√
k

2
A cos (ητ − β)

√
m

2
A sin (ητ − β)


 (6)

then

~̇z =



−α

√
m

2
Aη sin (ητ − β)

q

√
m

2
cos (ητ) + 2h

√
m

2
Aη sin (ητ − β)− α

√
k

2
A cos (ητ − β)


 (7)

Consider the EDP function as:

~z ◦ ~̇z = z1ż1 + z2ż2

Condition
~z ◦ ~̇z = 0 (8)

means that the norm |~z| of the energy state vector ~z has the constant value. In
such a case an amount of the energy accumulated in the system is constant. In the
system there exists continuous energy changes from the kinetic into potential and
vice versa. All the excitation energy is dissipated in the viscous damper. Condition
(8) is satisfied when:

2hAη = q and β =
π

2
(9)

For such a parameter values the system is in the resonance state. It can be seen in
the Fig. 1a and 1b - resonance diagram and EDP diagrams respectively. One can
see that for the excitation frequency η = 1 EDP is equal to zero. The energy flow
in such a case can be seen in the Fig. 2. The vector trajectory is a regular circle.
It means that amount of the energy accumulated in the system is constant. In the
system there exists continuous energy changes from the kinetic into potential and
vice versa. All the excitation energy is dissipated in the viscous damper. Such an
energy flow synchronization is possible only for the resonance state.

4. Energy flow synchronization in the two DOF vibrating system

Consider the vibrating system consisted of two joined oscillators. The external
harmonic force excites the oscillator µ. This oscillator is joined with the second
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oscillator µ1. The mathematical model of the system is given by four differential
equations of the first order:





ẋ1 = x2

ẋ2 = (F sin ητ − cx2 − c1 (x2 − x4)− σx1 − σ1 (x1 − x3))
1
µ

ẋ3 = x4

ẋ4 = (c1 (x2 − x4) + σ1 (x1 − x3))
1
µ1

(10)

where:
µ, µ1– masses of the oscillators
σ, σ1– stiffness coefficients of the springs
c, c1 – damping coefficients
F – amplitude of the external excitation force
ω – frequency of the external excitation force

η =
ω

α
α =

√
σ

µ
(11)

z1 z1 [W]

z1 [J ]
1/2

a)

b)

Figure 1 a) Resonance diagram, b) EDP diagram, α = 1, h = 0.05, q = 10
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Figure 2 Energy plane, α = 1, h = 0.05, q = 10, µ = 1

The phase vector in the standard phase space R4 is represented by four components:
x1; x2; x3; x4.
Transform the phase space of the system using the given function f : R4 → R4:

f (x1, x2, x3, x4) =





√
σ

2
x1 = z1

√
µ

2
x2 = z2

√
σ1

2
(x3 − x1) = z3

√
µ1

2
x4 = z1

(12)

After this transformation the mathematical model of the system in the energy space
is given by the following differential equations:





ż1 =
√

σ

µ
z1

ż2 = − c

µ
z2 − c1

µ
z2 +

c1√
µµ1

z4 −
√

σ

µ
z1 +

√
σ1

µ
z2 +

F

µ
sin ητ

ż3 =
√

σ1

µ1
z4 −

√
σ1

µ
z2

ż4 = −
√

σ1

µ1
z3 − c1

µ1
z4 +

c1√
µµ1

z2

(13)

To simplify the description of the transformation note, that in the energy space
there are square roots of the potential or kinetic energies on each axis. Note also,
that function ftransforms energy into vector form.

The EDP function for such a system is constructed as follows:

~z ◦ ~̇z = z1ż1 + z2ż2 + z3ż3 + z4ż4 (14)
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Figure 3 a) Energy plane of the oscillator µ system,b) Energy plane of the oscillator µ1 system,
c), d) Combined energy planes, η = 0.875, µ = 1 kg, µ1 = 0.07 kg, σ = 1 N/m, σ1 = 0.07 N/m,
c = 0.1 Ns/m, c1 = 0.0001, Ns/m, F = 2.5 N

4.1. Energy flow and synchronization

The special advantages brings consideration of the energy planes. These subspaces
are the equivalents of the phase planes of the phase space. In our case there are
four interesting planes.

The first one (z1 : z2) – the energy plane of the oscillator µ system.
This plane is obtained after transformation of the plane (x1 : x2). This trans-

formation is linear. One can find eigeinvectors of the transformation as orthogonal
basis vectors [1, 0] and [0, 1], of the space (x1 : x2). Eigenvalues of the transforma-
tion are equal:

λ1 =
√

σ

2
λ2 =

√
µ

2
respectively.

Thus depending on σ and µ the phase space is just only squeezed or stretched
in directions of the eigenvectors.

In Fig. 3a plane (z1 : z2) can be seen. The norm of the vector projection on
that plane shows the energy accumulated in the oscillator µ system. The value of
z1 shows the potential energy of the spring σ, the value of z2 – the kinetic energy
of the mass µ, and by means of these coordinates these energies can be calculated.
One can see the changes from the potential energy into the kinetic one and vice
versa. Note that total amount of the energy accumulated in the oscillator µ system
is not constant. There exists an energy flow between the oscillators µ and µ1. This
flow will be analysed further.

The second interesting plane is (z3 : z4) – the energy plane of the oscillator µ1
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system.

There exist transformations of two kinds which were made on the phase plane
(x3 : x4) to obtain this energy plane.

The first one: instead of the state variable x3 we have the spring σ1 deflection:
z1 = x3 − x1.

The second one is similar to the considered transformation of the plane
(x1 : x2): transformation is linear and one can find eigeinvectors of the transforma-
tion as orthogonal basis vectors [1, 0] and [0, 1]. Eigenvalues of the transformation
are equal:

λ1 =
√

σ1

2
λ2 =

√
µ1

2
respectively.

Thus in time of this part of transformation, depending on σ1 and µ1 the phase
space is just only squeezed or stretched in directions of the given eigenvectors.

In Fig. 3b plane (z3 : z4) can be seen. The projection of the vector on that
energy plane shows the energy accumulated in the oscillator µ1 system. The value
of z3 shows the potential energy of the spring σ1 and the value of z4 – the kinetic
energy of the mass µ1, and by means of these coordinates the energies can be
calculated.

The position of the vector projections on the energy planes
(z1 : z2) and (z3 : z4) at the same moment of time is marked by a small circle.
See that at the same moment the spring σ and spring σ1 have the extremes of
the potential energy, and the same concerns kinetic energies. Note also that the
maximum of the potential energy of the oscillator µ system equals the maximum of
the kinetic energy of the oscillator µ1 system and vice versa.

The energy flow between the main mass µ and the dynamical absorber µ1 can be
seen if you compare Fig. 3c and Fig. 3d, which show the combined energy planes.
Note, that these trajectory projections are regular circles. It means, that energy
accumulated in that parts of the system is constant. It shows some interesting
aspects of the continuous energy flow between oscillator µ and µ1. All the energy,
that flows out the oscillator µ is intercepted by oscillator µ1, and vice versa. The
potential energy of the spring σ transforms into kinetic energy of the oscillator µ, and
vice versa (Fig. 3c).It can be also seen in the Fig. 4e, where for the first resonance
EDP value is equal to zero. The same situation takes place with the potential energy
of the spring σ1 and the kinetic energy of the oscillator µ (Fig. 3d, 4f). It can be seen
in the Fig. 4a, b, e and f, that this energy flow synchronization phenomena takes
place just for the excitation frequencies equal to the system resonance frequencies.
Moreover from the Fig. 4b one can conclude that for these frequencies the energy
of the whole system is constant. Energy flows only between the µ and µ1 systems
and the excitation energy is dissipated in the dampers c and c1.
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Figure 4 a) Resonance diagram, b, c, d, e, f) EDP diagrams, η = 1, µ = 1 kg, µ1 = 0.07 kg,
σ = 1 N/m, σ1 = 0.07 N/m, c = 0.1Ns/m, c1 = 0.0001 Ns/m, F = 2.5 N
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5. Energy flow and synchronization in the chaotic system

Consider the two DOF system with nonlinear spring σ. The mathematical model
of the system is given by four differential equations of the first order:





ẋ1 = x2

ẋ2 =
(
F sin ητ − cx2 − c1 (x2 − x4)− σx3

1 − σ1 (x1 − x3)
) 1

µ
ẋ3 = x4

ẋ4 = (c1 (x2 − x4) + σ1 (x1 − x3))
1
µ1

(15)

0

0

z z [W]

z1 [J ]
1/2

a)

b)

Figure 5 a) Resonance diagram, b) Dot product, µ = 1 kg, µ1 = 0.07 kg, σ = 1 N/m, σ1 = 0.07
N/m, c = 0.1Ns/m, c1 = 0.0001 Ns/m, F = 2.5 N

The transformation of the phase space, to obtain the energy space, in direction of
x is nonlinear. In the considered case we have to show the transformation of the
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space, as function f : R4 → R4, that transforms the phase space the following way:

f (x1, x2, x3, x4) =





√
σ

2
x2

1sign(x1) = z1
√

µ

2
x2 = z2

√
σ1

2
(x3 − x1) = z3

√
µ1

2
x4 = z1

(16)

To simplify the description of the transformation note, that in the energy space
there are square roots of the potential or kinetic energies on each axis. Note also,
that function f transforms energy into vector form. Similarly to the model given
in paragraph 4. one can obtain the mathematical model of the system after this
transformation, but for the nonlinear system it is easier to integrate the mathemat-
ical model (15) and afterwards use the function f to calculate vector coordinates
in the energy space. Both methods were applied to examine the system dynamics,
and the same results were obtained. There exists just only one unsolved problem
with the critical point for the transformed mathematical model, thus these results
are not presented.

-8
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8
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1/2
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Figure 6 a) Energy plane of the oscillator µ system,b) Energy plane of the oscillator µ1 system,
η = 1, µ = 1 kg, µ1 = 0.07 kg, σ = 1 N/m, σ1 = 0.07 N/m, c = 0.1Ns/m, c1 = 0.0001 Ns/m,
F = 2.5 N

Dependence of the system dynamics on the excitation force frequency is shown in
the Fig. 5. The resonance and EDP diagrams can be seen in it. One can see (Fig.
5a), that for the η = 1 oscillations amplitude of the vibrations of the oscillator µ is
close to zero. The value of the EDP for η = 1 is also close to zero, while the energy of
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the oscillator µ1 is constant, and not close to zero (Fig. 6). It means, that although
this part of the system is forced by external force whole energy accumulated in the
oscillator µ system is close to zero. It is the case, when the oscillator µ1 works as
the dynamical damper. For the excitation frequency equal to the system µ1 free
vibrations frequency. All energy of the excitation just only flows through the µ
system and is intercepted by µ1 system. What is interesting, the energy of the µ1

system is constant, what can be seen in Fig. 6. Similarly to the one DOF system,
accumulated energy only changes its form from potential into kinetic energy, and
vice versa and the excitation energy is dissipated in the damper and c1. The energy
of the whole system is almost constant, what can be concluded from Fig. 5b.

6. Conclusions

In the article construction and application of the EDP is introduced. An application
of the EDP in detecting synchronization, was shown. Some aspects of motion, en-
ergy flow, synchronization are considered. Transformation of the traditional phase
space into the energy space was shown. It was shown, that after this transformation
the state vector and its derivative determine the energy flow plane. The angle be-
tween these vectors shows energy flow direction. Application of such a construction
in recognizing the energy flow synchronization was shown. It has been proved that
this new kind of space allows for concluding about the energy state of a vibrating
system. The projection of the vector space on energy subspaces showing the amount
of the energy that is accumulated in some parts of the system were considered. It
has been shown that using this kind of spaces, all aspects of the kind of motion
can be concluded about, like from the phase space and, moreover, the energy state,
accumulation, flow and dissipation can be observed. Different types of the energy
flow synchronization were shown.

References

[1] Kapitaniak, T.: Chaos for engineers, Springer-Verlag Berlin Heidelberg 1998.

[2] Da̧browski, A.: The construction of the energy space, Chaos, Solitons and Fractals,
26, 1277-1292, 2005.

[3] Da̧browski, A.: The energy space, energy flow and synchronization, Mechanics and
Mechanical Engineering, 8, (1), 200-218, 2005.

[4] T. Kapitaniak: Controlling Chaos, Academic Press, London, 1996.

[5] Chen, G. and Dong, X.: From Chaos to Order, World scientific, Singapore, 1998.

[6] Maidanik, G. and Becker, K.J.: Dependence of the induced loss factor on the cou-
pling forms and coupling strengths: energy analysis, Journal of Sound and Vibration,
266, 33-48, 2003.

[7] Xu, H.D., Lee, H.P. and Lu, C.: Numerical study on energy transmission for
rotating hard disk systems by structural intensity technique, International Journal of
Technical Sciences, 46, 639-652, 2004.

[8] Pennestr̀ı E.: An application of Chebyshev’s min-max criterion to the optimal design
of a damped dynamic vibration absorber, Journal of Sound and Vibration, 217, 757-
765, 1998.

[9] Da̧browski, A. and Kapitaniak, T.: Using chaos to reduce oscillations, Nonlinear
Phenomena in Complex Systems, 4, (2), p. 206-211, 2001.



28 Da̧browski, A

[10] Da̧browski, A.: New design of the impact damper, Mechanics and Mechanical En-
gineering, 4, (2), (2000), p. 191-196.

[11] Kishimoto, Y., Bernstein, D.S. and Hall, S.R.: Energy flow modeling of inter-
connected structures: a deterministic foundation for statistical energy analysis, Journal
of Sound and Vibration, 183, (3), 407-445, 1995.

[12] B.R.Mace: Power flow between two continuous one-dimensional subsystems: a wave
solution. Journal of Sound and Vibration 154 (1992), 289-320,

[13] D.Sado: Przenoszenie energii w nieliniowo sprzȩżonych ukadach o dwóch stopniach
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