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We applied small tangential impulses due to motor thrusts at peri-apse and apo-apse
perpendicular to major axis of the elliptic orbits. Our aim is to obtain a precise final
orbit stemming from an initial orbit. We executed these tangential correctional velocities
to all the four feasible configurations. The correctional increments of velocities ∆vA &
∆vB at the points A, B for the Hohmann transfer and at the points A, B, C for the Bi-
Elliptic transfer induce the precise final orbit. Throughout the treatment we encounter
relationships for both cases of transfer that describe the alteration in major axes and
eccentricities due to these motor thrusts supplied by a rocket. The whole theory is a
correctional improvement process.
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1. Introduction

As it is well known, orbital maneuvers are characterized by a change in orbital
velocity. If a velocity increment ∆v, which is a vector, is added to a rocket velocity at
the points A, B, C, which is also a vector, then new rocket velocity results. If the ∆v
is added instantaneously, the maneuver is called an impulsive maneuver or transfer
orbit [1]. Our process convey features of the estimation theory and differential
corrections [2]. The treatment is entirely analytic. We assume that no instantaneous
alteration in the radius vector occurs. The central field is gravitational [3]. In our
analysis, it is legitimate to use differentials. All the orbits of our eight configurations
are elliptic, no circular ones are supposed to be considered. The Hohmann transfer
is a two impulse transfer with one transfer orbit, whilst the bi-elliptic is a three
impulse transfer with two transfer orbits. For minimum consumption of fuel we do



32 Kamel, O.M. and Soliman, A.S.

not exceed three transfer impulses, this renders the problem much less sophisticated.
Also coplanar vehicle transfer consumes less fuel than the non-coplanar case [4], [5].
We have eight configurations to consider, for these correctional improvements for
the generalized Hohmann and bi-elliptic vehicle orbital transfer [6]. We are capable
of deriving four identities expressing ∆a1, ∆aT , ∆e1, ∆eT as functions of ∆vA, ∆vB

for each generalized Hohmann system. For the bi-elliptic transfer, we deduce three
identities for ∆a1, ∆aT , ∆aT ‘ . Moreover we can reveal from the drawings of the
four bi-elliptic configurations that aT = a1 +∆a1, aT ‘ = aT +∆aT , a2 = aT ‘ +∆aT ‘

and that we can evaluate ∆vA, ∆vB , ∆vC as functions of ∆a1.

2. Method and results

2.1. Generalized Hohmann case

2.1.1. First configuration

Figure 1

For the first configuration (Fig. 1), we find the following identities:

∆a1 =
2vAa2

1∆vA

µ
(1)

∆a1 = 2a1

(
a1

µ

)1/2 (
1 + e1

1− e1

)1/2

∆vA (2)



Velocity Correction in Generalized Hohmann ... 33

Similarly,

∆aT =
2vBa2

T ∆vB

µ
(3)

∆aT = 2aT

(
aT

µ

)1/2 (
1− eT

1 + eT

)1/2

∆vB

aT = a1 + ∆a1 (4)

Put

b1 = a1 (1− e1)
b2 = a2 (1− e2)
b3 = a1 (1 + e1)
b4 = a2 (1 + e2)

We have,

vA =
{

µ (1 + e1)
a1 (1− e1)

}1/2

=
{

µ (1 + e1)
b1

}1/2

vB =
{

µ (1− eT )
aT (1 + eT )

}1/2

(5)

From geometry of Fig.1,

a1 (1− e1) = aT (1− eT ) = b1 i.e. 1− eT =
b1

aT

a2 (1 + e2) = aT (1 + eT ) = b4 i.e. 1 + eT =
b4

aT
(6)

Therefore,

1− eT

1 + eT
=

b1

b4
; 2aT = a1 (1− e1) + a2 (1 + e2) = b1 + b4 (7)

and

∆aT = 2a
3/2
T

{
b1

µb4

}1/2

∆vB (8)

Whence,

∆aT = 2
a
3/2
1√
µ

{
b1

b4

}1/2
[
1 + 2

(
a1

µ

)1/2 (
1 + e1

1− e1

)1/2

∆vA

]3/2

∆vB (9)

eT = e1 + ∆e1 (10)

∆e1 =
2a1

(
1− e2

1

)

e1

(
1
r1
− 1

a1

)
∆vA

vA
; r1 = a1 (1− e1) = b1 (11)

i.e.

∆e1 = 2

{
a1

(
1− e2

1

)

µ

}1/2

∆vA (12)
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From Eq. (10),

eT = e1 + 2∆vA

{
a1

(
1− e2

1

)

µ

}1/2

(13)

Similarly,

∆eT =
2aT

(
1− e2

T

)

eT

{
1

aT (1 + eT )
− 1

aT

}
∆vB

vB
(14)

i.e.

∆eT = 2
{

aT (1 + eT )
µ (1− eT )

}1/2

(eT − 1)∆vB (15)

whence,

∆eT = 2
{

b4

µ (1− e1)

}1/2
{

1 + 2
{

b3

µ (1− e1)

}1/2

∆vA

}1/2



(e1 − 1) + 2

{
a1

(
1− e2

1

)

µ

}1/2

∆vA



∆vB (16)

2.1.2. Second configuration

For the second configuration (Fig. 2), we have the following formulae:

Figure 2

a1 (1− e1) = aT (1− eT ) = b1; a2 (1− e2) = aT (1 + eT ) = b2 (17)
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vA =
{

µ (1 + e1)
b1

}1/2

; vB =
{

µ (1− eT )
aT (1 + eT )

}1/2

(18)

∆a1 =
2a2

1vA∆vA

µ

∆a1 = 2a
3/2
1

{
(1 + e1)

µ (1− e1)

}1/2

∆vA (19)

∆aT = 2a
3/2
T

{
b1

µb2

}1/2

∆vB

From Eq. (17), we write:

1− eT

1 + eT
=

a1 (1− e1)
a2 (1− e2)

=
b1

b2

Therefore,

∆aT =
2a

3/2
1√
µ

{
b1

b2

}1/2
[
1 + 2

(
a1

µ

)1/2 (
1 + e1

1− e1

)1/2

∆vA

]3/2

∆vB (20)

With regard to the eccentricities we have,

∆e1 = 2

{
a1

(
1− e2

1

)

µ

}1/2

∆vA and eT = e1 + ∆e1

whence

eT = e1 + 2∆vA

{
a1

(
1− e2

1

)

µ

}1/2

(21)

∆eT = 2 (eT − 1)
∆vB

vB

i.e.

∆eT = 2
{

aT (1 + eT )
µ (1− eT )

}1/2

(eT − 1)∆vB (22)

After some substitutions,

∆eT = 2
{

b2

µ (1− e1)

}1/2
{

1 + 2
{

b3

µ (1− e1)

}1/2

∆vA

}



(e1 − 1) + 2

{
a1

(
1− e2

1

)

µ

}1/2

∆vA



∆vB (23)
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2.1.3. Third configuration

Figure 3

For the third configuration (Fig.3), we have the following identities:

a1 (1 + e1) = aT (1 + eT ) = b3; a2 (1− e2) = aT (1− eT ) = b2 (24)

vA =
{

µ (1− e1)
b3

}1/2

(25)

vB =
{

µ (1 + eT )
aT (1− eT )

}1/2

(26)

We find

1 + eT

1− eT
=

a1 (1 + e1)
a2 (1− e2)

=
b3

b2
(27)

∆a1 =
2a

3/2
1√
µ

(
1− e1

1 + e1

)1/2

∆vA (28)

aT = a1 + ∆a1 = a1

{
1 + 2

√
b1

µ (1 + e1)
∆vA

}
(29)

After some substitutions

∆aT =
2a

3/2
1√
µ

{
b3

b2

}1/2
{

1 + 2

√
b1

µ (1 + e1)
∆vA

}3/2

∆vB (30)



Velocity Correction in Generalized Hohmann ... 37

With respect to the eccentricities

∆e1 =
2a1

(
1− e2

1

)

e1

(
1
r1
− 1

a1

)
∆vA

vA
; r1 = a1 (1 + e1) = b3 (31)

i.e.

∆e1 = −2

{
a1

(
1− e2

1

)

µ

}1/2

∆vA (32)

eT = e1 + ∆e1 = e1 − 2

{
a1

(
1− e2

1

)

µ

}1/2

∆vA (33)

Therefore,

∆eT = 2 (1 + eT )
{

aT (1− eT )
µ (1 + eT )

}1/2

∆vB (34)

Whence

∆eT = 2
{

b2

µ (1 + e1)

}1/2
{

1 + 2

√
b1

µ (1 + e1)
∆vA

}1/2



(1 + e1)− 2

√
a1 (1− e2

1)
µ

∆vA



∆vB (35)

2.1.4. Fourth configuration

Figure 4

For the fourth configuration (Fig. 4), we have the following equalities:

a1 (1 + e1) = aT (1− eT ) = b3; a2 (1 + e2) = aT (1 + eT ) = b4 (36)
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vA =
{

µ (1− e1)
b3

}1/2

(37)

vB =
{

µ (1− eT )
aT (1 + eT )

}1/2

(38)

∆a1 =
2a

3/2
1√
µ

(
1− e1

1 + e1

)1/2

∆vA (39)

aT = a1 + ∆a1 = a1

{
1 + 2

√
b1

µ (1 + e1)
∆vA

}
(40)

But

∆aT =
2a2

T vB∆vB

µ
(41)

Whence after substitution

∆aT =
2a

3/2
1√
µ

{
b3

b4

}1/2
{

1 + 2

√
b1

µ (1 + e1)
∆vA

}3/2

∆vB (42)

As for the eccentricities, we find

∆e1 = −2

{
a1

(
1− e2

1

)

µ

}1/2

∆vA (43)

eT = e1 + ∆e1

i.e.

eT = e1 − 2

{
a1

(
1− e2

1

)

µ

}1/2

∆vA (44)

After substitution and simple reduction, we get

∆eT = 2
{

b4

µ (1 + e1)

}1/2
{

1 + 2

√
b1

µ (1 + e1)
∆vA

}1/2



(e1 − 1)− 2

√
a1 (1− e2

1)
µ

∆vA



∆vB (45)

2.2. Generalized bi–elliptic case

2.2.1. First configuration

For the first configuration of bi–elliptic case (Fig. 5), we have the following identi-
ties:

a1 (1− e1) = aT (1− eT ) = b1

aT (1 + eT ) = aT ‘ (1 + eT ‘) (46)
a2 (1− e2) = aT ‘ (1− eT ‘) = b2
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Figure 5

From (1), we get

aT = aT ‘ +
1
2

(b1 − b2) (47)

eT = 1− b1

aT
(48)

eT ‘ =
2aT − b1 − b2

2aT − b1 + b2
(49)

At point A

∆a1 =
2vAa2

1∆vA

µ
; vA =

{
µ (1 + e1)

b1

}1/2

(50)

aT = a1 + ∆a1 (51)

Whence

aT = a1

[
1 + 2

{
b3

µ (1− e1)

}1/2

∆vA

]

Let

B = 2∆vA

{
b3

µ (1− e1)

}1/2

(52)

Therefore

aT = a1 (1 + B)

aT ‘ = a1 (1 + B)− 1
2

(b1 − b2) (53)

eT = 1− b1

a1 (1 + B)
(54)

eT ‘ =
2a1 (1 + B)− b1 − b2

2a1 (1 + B)− b1 + b2
(55)
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At point C:

∆aT =
2vCa2

T ∆vC

µ

i.e.

∆vC =
∆aT µ

2vCa2
T

(56)

With

vC =
{

µ (1− eT )
aT (1 + eT )

}1/2

Whence

vC =
[

µb1

a1 (1 + B) {2a1 (1 + B)− b1}
]1/2

(57)

and

∆aT = aT ‘ − aT = −1
2

(b1 − b2) (58)

Therefore

∆vC = − (b1 − b2) [µ {2a1 (1 + B)− b1}]1/2

4
√

b1 {a1 (1 + B)}3/2
(59)

At point B:

∆vB =
µ∆aT ‘

2vBa2
T ‘

with vB =
{

µ (1 + eT ‘)
aT ‘ (1− eT ‘)

}1/2

(60)

Whence by substitution

vB =

[
µ {2a1 (1 + B)− b1}

b2

{
a1 (1 + B)− 1

2 (b1 − b2)
}

]1/2

(61)

and
a2 = aT ‘ + ∆aT ‘ (62)

Hence

∆aT ‘ = a2 − a1 (1 + B) +
1
2

(b1 − b2) (63)

Whence by substitution and some rearrangement

∆vB =

√
µb2

2 {2a1 (1 + B)− b1}
{2a2 − 2a1 (1 + B) + (b1 − b2)}
{2a1 (1 + B)− (b1 − b2)}3/2

(64)
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Figure 6

2.2.2. Second configuration

For the second configuration of the bi–elliptic (Fig. 6), we get the following equali-
ties:

a1 (1− e1) = aT (1− eT ) = b1

aT (1 + eT ) = aT ‘ (1− eT ‘) (65)
a2 (1 + e2) = aT ‘ (1 + eT ‘) = b4

Then

aT = aT ‘ +
1
2

(b1 − b4) (66)

aT ‘ = aT − 1
2

(b1 − b4) (67)

eT = 1− b1

aT
(68)

eT ‘ =
2aT − b1 − b4

−2aT + b1 − b4
(69)

At point A:

vA =

√
µ (1 + e1)
a1 (1− e1)

=

√
µ (1 + e1)

b1
(70)

and

∆a1 =
2vAa2

1∆vA

µ

whence

∆vA =
√

µ

2a
3/2
1

√
1− e1

1 + e1
∆a1 (71)
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But

aT = a1 + ∆a1 (72)

aT = a1

[
1 + 2

√
b3

µ (1− e1)
∆vA

]
(73)

Let

B = 2

√
b3

µ (1− e1)
∆vA (74)

Therefore

aT = a1 (1 + B) (75)

aT ‘ = a1 (1 + B)− (b1 − b4)
2

(76)

eT =
a1 (1 + B)− b1

a1 (1 + B)
(77)

eT ‘ =
2a1 (1 + B)− b1 − b4

−2a1 (1 + B) + b1 − b4
(78)

At point C:

∆aT =
2a2

T vC∆vC

µ
(79)

i.e.

∆vC =
µ∆aT

2vCa2
T

(80)

with

vC =

√
µ (1− eT )
aT (1 + eT )

(81)

1− eT

aT (1 + eT )
=

b1

a1 (1 + B) {2a1 (1 + B)− b1} (82)

whence

vC =

√
µb1

a1 (1 + B) {2a1 (1 + B)− b1} (83)

But

∆aT = aT ‘ − aT = − (b1 − b4)
2

(84)

Therefore

∆vC =
(b4 − b1)

4a
3/2
T

√
µ (2aT − b1)

b1
(85)
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Or

∆vC =
(b4 − b1)

4 {a1 (1 + B)}3/2

√
µ {2a1 (1 + B)− b1}

b1
(86)

At point B:

∆vB =
µ∆aT ‘

2vBa2
T ‘

with vB =

√
µ (1− eT ‘)

aT ‘ (1 + eT ‘)
(87)

But
1− eT ‘

aT ‘ (1 + eT ‘)
=

2aT − b1

b4

{
aT − (b1−b4)

2

} (88)

whence

vB =


 µ (2aT − b1)

b4

{
aT − (b1−b4)

2

}



1/2

(89)

Or

vB =


 µ {2a1 (1 + B)− b1}

b4

{
a1 (1 + B)− (b1−b4)

2

}



1/2

(90)

We have

a2 = aT ‘ + ∆aT ‘ (91)
i.e.

∆aT ‘ = a2 − a1 (1 + B) +
(b1 − b4)

2
(92)

Whence after substitution and rearrangement

∆vB =

√
µb4

2 {2a1 (1 + B)− b1}

[
{2a2 − 2a1 (1 + B) + (b1 − b4)}
{2a1 (1 + B)− (b1 − b4)}3/2

]
(93)

2.2.3. Third configuration

For the third configuration of bi–elliptic case (Fig. 7), we find the following rela-
tionships:

a1 (1 + e1) = aT (1 + eT ) = b3

aT (1− eT ) = aT ‘ (1− eT ‘) (94)
a2 (1 + e2) = aT ‘ (1 + eT ‘) = b4

eT =
b3

aT
− 1 (95)

eT ‘ =
−2aT + b3 + b4

2aT − b3 + b4
(96)
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Figure 7

At point A:

∆vA =
µ∆a1

2a2
1vA

with vA =

√
µ (1− e1)

b3
(97)

i.e.

∆a1 =
2a

3/2
1√
µ

(
1− e1

1 + e1

)1/2

∆vA (98)

aT = a1 + ∆a1 = a1

[
1 + 2

{
b1

µ (1 + e1)

}1/2

∆vA

]
(99)

Let

ξ = 2
{

b1

µ (1 + e1)

}1/2

∆vA (100)

i. e.
aT = a1 (1 + ξ) (101)

At point B:

vB =

√
µ (1 + eT )
aT (1− eT )

(102)
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Therefore

1 + eT

aT (1− eT )
=

b3

a1 (1 + ξ) {2a1 (1 + ξ)− b3} (103)

i.e.

vB =
[

µb3

a1 (1 + ξ) {2a1 (1 + ξ)− b3}
]1/2

∆aT = aT ‘ − aT =
(b4 − b3)

2
(104)

∆vB =
µ∆aT

2vBa2
T

(105)

∆vB =
√

µ (b4 − b3)

4 {a1 (1 + ξ)}3/2

{
2a1 (1 + ξ)− b3

b3

}1/2

(106)

At point C:

vC =
{

µ (1− eT ‘)
aT ‘ (1 + eT ‘)

}1/2

(107)

After some reductions we get

1− eT ‘

aT ‘ (1 + eT ‘)
=

2aT − b3

b4

{
a1 (1 + ξ) + (b4−b3)

2

} (108)

i.e.

vC =


 µ {2a1 (1 + ξ)} − b3

b4

{
a1 (1 + ξ) + (b4−b3)

2

}



1/2

(109)

∆aT ‘ = a2 − aT ‘ (110)
i.e.

∆aT ‘ =
(b2 + b3)

2
− aT (111)

∆vC =
µ∆aT ‘

2vCa2
T ‘

(112)

Finally, we get

∆vC =

√
µb4

2 {2a1 (1 + ξ)− b3}

[
(b2 + b3)− 2a1 (1 + ξ)

{2a1 (1 + ξ) + (b4 − b3)}3/2

]
(113)
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2.2.4. Fourth configuration

Figure 8

For the fourth configuration of bi-elliptic cas (Fig. 8), we deduce the following
identities:

a1 (1 + e1) = aT (1− eT ) = b3

aT (1 + eT ) = aT ‘ (1 + eT ‘) (114)
a2 (1 + e2) = aT ‘ (1− eT ‘) = b4

2aT ‘ = 2aT − b3 + b4 (115)

eT = 1− b3

aT
(116)

eT ‘ =
2aT − b3 − b4

2aT − b3 + b4
(117)

At point A

∆vA =
µ∆a1

2a2
1vA

with vA =

√
µ (1− e1)

b3
(118)

i.e.

∆a1 =
2a

3/2
1√
µ

(
1− e1

1 + e1

)1/2

∆vA (119)

aT = a1 + ∆a1 = a1

[
1 + 2

{
b1

µ (1 + e1)

}1/2

∆vA

]
(120)
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Let

ξ = 2
{

b1

µ (1 + e1)

}1/2

∆vA (121)

i. e.
aT = a1 (1 + ξ) (122)

At point B

vB =

√
µ (1− eT )
aT (1 + eT )

; ∆vB =
µ∆aT

2vBa2
T

(123)

Therefore,

vB =
[

µb3

a1 (1 + ξ) {2a1 (1 + ξ)− b3}
]1/2

(124)

∆aT = aT ‘ − aT =
(b4 − b3)

2
(125)

After some rearrangements, we acquire

∆vB =
√

µ (b4 − b3)

4 {a1 (1 + ξ)}3/2

{
2a1 (1 + ξ)− b3

b3

}1/2

(126)

At point C

vC =
{

µ (1 + eT ‘)
aT ‘ (1− eT ‘)

}1/2

; ∆vC =
µ∆aT ‘

2vCa2
T ‘

(127)

After substitution, we get

1 + eT ‘

aT ‘ (1− eT ‘)
=

2aT − b3

b4

{
a1 (1 + ξ) + (b4−b3)

2

} (128)

i.e.

vC =


 µ {2a1 (1 + ξ)} − b3

b4

{
a1 (1 + ξ) + (b4−b3)

2

}



1/2

(129)

∆aT ‘ = a2 − aT ‘

i.e.

∆aT ‘ =
(b2 + b3)

2
− aT (130)

Finally, we get

∆vC =

√
µb4

2 {2a1 (1 + ξ)− b3}

[
(b2 + b3)− 2a1 (1 + ξ)

{2a1 (1 + ξ) + (b4 − b3)}3/2

]
(131)
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Table 1 Generalized Hohmann System

Fig. ∆vA ∆vB ∆a1 ∆aT ∆e1 ∆eT

1 0.1141 0.0702 0.2321 0.1475 0.2282 0.2044
2 0.0732 0.1138 0.1489 0.2364 0.1464 0.3128
3 0.1012 0.1441 0.1990 0.3246 0.2024 0.2996
4 0.1736 0.0751 0.3414 0.1823 0.3471 0.1492

Table 2 Generalized bi–elliptic System

Fig. ∆a1 ∆aT ∆aT ‘ ∆vC ∆vB

1 0.2321 0.3414 0.0497 0.1532 0.0134
2 0.1489 0.1990 0.1758 0.0934 0.0567
3 0.1990 0.3246 0.0010 0.0030 0.1441
4 0.3414 0.3247 0.1423 0.0331 0.1983

3. Numerical Results

We consider the case of “Earth – Mars” transfer orbit, where [8], a1 = 1.0000, e1 =
0.0167, a2 = 1.5237, e2 = 0.0934, the subscript 1 refers to Earth and 2 refers to
Mars. In our calculations, we put µ = 1 (canonical system).

4. Discussion

We did not investigate the problem pragmatically when the primary mass is situated
in the right focus. But by intuition we shall have the same results, and there
will be eight feasible configurations, four for the Hohmann transfer and four for
the bi–elliptic transfer. We deal with a correctional problem, in which our aim is
to obtain a precise final transferred orbit. This is acquired by the application of
two differential increments of velocity at points A, B for the Hohmann transfer,
and three differential increments of velocity at points A, B, C for the bi–elliptic
transfer. These differential increments are produced by motor thrusts of a rocket.
The terminal and the transfer orbits are all elliptic. The significance of the analysis
lies in its simplicity and correctness of the deduced formulae.

For the generalized Hohmann case we assigned the differential corrections ∆a1,
∆aT , produced by the differential variations ∆vA &∆vB in terms of ai, ei

(i = 1, 2), ∆vA, ∆vB .
With regard to the eccentricity correction ∆e1, ∆eT , we assigned the velocity

corrections ∆vA, ∆vB that give rise to the two infinitesimal variations ∆e1, ∆eT .
In addition we write down the expressions for aT = a1 + ∆a1, eT = e1 + ∆e1

in terms of a1, e1, ∆vA, since we deal with a differential variation of velocity at
peri–apse.

As for the bi–elliptic generalized transfer, we have three infinitesimal impulses
at points A, B, C. We deduced the correction ∆a1 due to the differential change in
velocity at point A, ∆vA , from which we could find aT , aT ‘, eT , eT ‘ expressed in
terms of ∆vA.
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For the terminal points A, B of the transfer orbits, we can have the relation-
ships between ∆aT , ∆vC at point C and ∆vB &∆aT ‘ at point B. Whence we could
determine ∆vC , ∆vB expressed in terms of ai, ei (i = 1, 2) and ∆vA.

We extended the two tables of Art 3 of reference [9], to include the numerical
results of all four feasible configurations, namely adding case (3)&(4).

The above treatment is a first time publication, using energy concepts, in the
literature of the subject.
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