Velocity Correction in Generalized Hohmann and Bi-elliptic Impulsive Orbital Maneuvers Using Energy Concepts

Osman M. Kamel
Astronomy and Space Science Dept. Faculty of Sciences, Cairo University, Giza, Egypt
Adel S. Soliman
Theoretical Physics Dept. National Research Center, Dokki, Giza, Egypt

Received (30 May 2007)
Revised (15 September 2007)
Accepted (12 February 2008)

Abstract

We applied small tangential impulses due to motor thrusts at peri-apse and apo-apse perpendicular to major axis of the elliptic orbits. Our aim is to obtain a precise final orbit stemming from an initial orbit. We executed these tangential correctional velocities to all the four feasible configurations. The correctional increments of velocities $\Delta v_{A} \&$ Δv_{B} at the points A, B for the Hohmann transfer and at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ for the $\mathrm{Bi}-$ Elliptic transfer induce the precise final orbit. Throughout the treatment we encounter relationships for both cases of transfer that describe the alteration in major axes and eccentricities due to these motor thrusts supplied by a rocket. The whole theory is a correctional improvement process.

Keywords: Orbital mechanics, transfer orbits, velocity corrections

1. Introduction

As it is well known, orbital maneuvers are characterized by a change in orbital velocity. If a velocity increment Δv, which is a vector, is added to a rocket velocity at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, which is also a vector, then new rocket velocity results. If the Δv is added instantaneously, the maneuver is called an impulsive maneuver or transfer orbit [1]. Our process convey features of the estimation theory and differential corrections [2]. The treatment is entirely analytic. We assume that no instantaneous alteration in the radius vector occurs. The central field is gravitational [3]. In our analysis, it is legitimate to use differentials. All the orbits of our eight configurations are elliptic, no circular ones are supposed to be considered. The Hohmann transfer is a two impulse transfer with one transfer orbit, whilst the bi-elliptic is a three impulse transfer with two transfer orbits. For minimum consumption of fuel we do
not exceed three transfer impulses, this renders the problem much less sophisticated. Also coplanar vehicle transfer consumes less fuel than the non-coplanar case [4], [5]. We have eight configurations to consider, for these correctional improvements for the generalized Hohmann and bi-elliptic vehicle orbital transfer [6]. We are capable of deriving four identities expressing $\Delta a_{1}, \Delta a_{T}, \Delta e_{1}, \Delta e_{T}$ as functions of $\Delta v_{A}, \Delta v_{B}$ for each generalized Hohmann system. For the bi-elliptic transfer, we deduce three identities for $\Delta a_{1}, \Delta a_{T}, \Delta a_{T^{*}}$. Moreover we can reveal from the drawings of the four bi-elliptic configurations that $a_{T}=a_{1}+\Delta a_{1}, a_{T^{6}}=a_{T}+\Delta a_{T}, a_{2}=a_{T^{6}}+\Delta a_{T^{6}}$ and that we can evaluate $\Delta v_{A}, \Delta v_{B}, \Delta v_{C}$ as functions of Δa_{1}.

2. Method and results

2.1. Generalized Hohmann case

2.1.1. First configuration

Figure 1

For the first configuration (Fig. 1), we find the following identities:

$$
\begin{align*}
\Delta a_{1} & =\frac{2 v_{A} a_{1}^{2} \Delta v_{A}}{\mu} \tag{1}\\
\Delta a_{1} & =2 a_{1}\left(\frac{a_{1}}{\mu}\right)^{1 / 2}\left(\frac{1+e_{1}}{1-e_{1}}\right)^{1 / 2} \Delta v_{A} \tag{2}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\Delta a_{T} & =\frac{2 v_{B} a_{T}^{2} \Delta v_{B}}{\mu} \tag{3}\\
\Delta a_{T} & =2 a_{T}\left(\frac{a_{T}}{\mu}\right)^{1 / 2}\left(\frac{1-e_{T}}{1+e_{T}}\right)^{1 / 2} \Delta v_{B} \\
a_{T} & =a_{1}+\Delta a_{1} \tag{4}
\end{align*}
$$

Put

$$
\begin{aligned}
b_{1} & =a_{1}\left(1-e_{1}\right) \\
b_{2} & =a_{2}\left(1-e_{2}\right) \\
b_{3} & =a_{1}\left(1+e_{1}\right) \\
b_{4} & =a_{2}\left(1+e_{2}\right)
\end{aligned}
$$

We have,

$$
\begin{align*}
& v_{A}=\left\{\frac{\mu\left(1+e_{1}\right)}{a_{1}\left(1-e_{1}\right)}\right\}^{1 / 2}=\left\{\frac{\mu\left(1+e_{1}\right)}{b_{1}}\right\}^{1 / 2} \\
& v_{B}=\left\{\frac{\mu\left(1-e_{T}\right)}{a_{T}\left(1+e_{T}\right)}\right\}^{1 / 2} \tag{5}
\end{align*}
$$

From geometry of Fig.1,

$$
\begin{array}{ll}
a_{1}\left(1-e_{1}\right)=a_{T}\left(1-e_{T}\right)=b_{1} & \text { i.e. } \\
a_{2}\left(1+e_{2}\right)=\frac{b_{1}}{a_{T}} \tag{6}\\
a_{T}\left(1+e_{T}\right)=b_{4} & \text { i.e. } 1+e_{T}=\frac{b_{4}}{a_{T}}
\end{array}
$$

Therefore,

$$
\begin{equation*}
\frac{1-e_{T}}{1+e_{T}}=\frac{b_{1}}{b_{4}} ; \quad 2 a_{T}=a_{1}\left(1-e_{1}\right)+a_{2}\left(1+e_{2}\right)=b_{1}+b_{4} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta a_{T}=2 a_{T}^{3 / 2}\left\{\frac{b_{1}}{\mu b_{4}}\right\}^{1 / 2} \Delta v_{B} \tag{8}
\end{equation*}
$$

Whence,

$$
\begin{align*}
\Delta a_{T} & =2 \frac{a_{1}^{3 / 2}}{\sqrt{\mu}}\left\{\frac{b_{1}}{b_{4}}\right\}^{1 / 2}\left[1+2\left(\frac{a_{1}}{\mu}\right)^{1 / 2}\left(\frac{1+e_{1}}{1-e_{1}}\right)^{1 / 2} \Delta v_{A}\right]^{3 / 2} \Delta v_{B} \tag{9}\\
e_{T} & =e_{1}+\Delta e_{1} \tag{10}\\
\Delta e_{1} & =\frac{2 a_{1}\left(1-e_{1}^{2}\right)}{e_{1}}\left(\frac{1}{r_{1}}-\frac{1}{a_{1}}\right) \frac{\Delta v_{A}}{v_{A}} ; r_{1}=a_{1}\left(1-e_{1}\right)=b_{1} \tag{11}\\
\text { i.e. } & \\
\Delta e_{1} & =2\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \Delta v_{A} \tag{12}
\end{align*}
$$

From Eq. (10),

$$
\begin{equation*}
e_{T}=e_{1}+2 \Delta v_{A}\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \tag{13}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
\Delta e_{T} & =\frac{2 a_{T}\left(1-e_{T}^{2}\right)}{e_{T}}\left\{\frac{1}{a_{T}\left(1+e_{T}\right)}-\frac{1}{a_{T}}\right\} \frac{\Delta v_{B}}{v_{B}} \tag{14}\\
\text { i.e. } & \\
\Delta e_{T} & =2\left\{\frac{a_{T}\left(1+e_{T}\right)}{\mu\left(1-e_{T}\right)}\right\}^{1 / 2}\left(e_{T}-1\right) \Delta v_{B} \tag{15}
\end{align*}
$$

whence,

$$
\begin{align*}
\Delta e_{T}= & 2\left\{\frac{b_{4}}{\mu\left(1-e_{1}\right)}\right\}^{1 / 2}\left\{1+2\left\{\frac{b_{3}}{\mu\left(1-e_{1}\right)}\right\}^{1 / 2} \Delta v_{A}\right\}^{1 / 2} \\
& \left\{\left(e_{1}-1\right)+2\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \Delta v_{A}\right\} \Delta v_{B} \tag{16}
\end{align*}
$$

2.1.2. Second configuration

For the second configuration (Fig. 2), we have the following formulae:

Figure 2

$$
\begin{equation*}
a_{1}\left(1-e_{1}\right)=a_{T}\left(1-e_{T}\right)=b_{1} ; a_{2}\left(1-e_{2}\right)=a_{T}\left(1+e_{T}\right)=b_{2} \tag{17}
\end{equation*}
$$

$$
\begin{align*}
v_{A} & =\left\{\frac{\mu\left(1+e_{1}\right)}{b_{1}}\right\}^{1 / 2} ; v_{B}=\left\{\frac{\mu\left(1-e_{T}\right)}{a_{T}\left(1+e_{T}\right)}\right\}^{1 / 2} \tag{18}\\
\Delta a_{1} & =\frac{2 a_{1}^{2} v_{A} \Delta v_{A}}{\mu} \\
\Delta a_{1} & =2 a_{1}^{3 / 2}\left\{\frac{\left(1+e_{1}\right)}{\mu\left(1-e_{1}\right)}\right\}^{1 / 2} \Delta v_{A} \tag{19}\\
\Delta a_{T} & =2 a_{T}^{3 / 2}\left\{\frac{b_{1}}{\mu b_{2}}\right\}^{1 / 2} \Delta v_{B}
\end{align*}
$$

From Eq. (17), we write:

$$
\frac{1-e_{T}}{1+e_{T}}=\frac{a_{1}\left(1-e_{1}\right)}{a_{2}\left(1-e_{2}\right)}=\frac{b_{1}}{b_{2}}
$$

Therefore,

$$
\begin{equation*}
\Delta a_{T}=\frac{2 a_{1}^{3 / 2}}{\sqrt{\mu}}\left\{\frac{b_{1}}{b_{2}}\right\}^{1 / 2}\left[1+2\left(\frac{a_{1}}{\mu}\right)^{1 / 2}\left(\frac{1+e_{1}}{1-e_{1}}\right)^{1 / 2} \Delta v_{A}\right]^{3 / 2} \Delta v_{B} \tag{20}
\end{equation*}
$$

With regard to the eccentricities we have,

$$
\Delta e_{1}=2\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \Delta v_{A} \text { and } e_{T}=e_{1}+\Delta e_{1}
$$

whence

$$
\begin{align*}
e_{T} & =e_{1}+2 \Delta v_{A}\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \tag{21}\\
\Delta e_{T} & =2\left(e_{T}-1\right) \frac{\Delta v_{B}}{v_{B}} \\
\text { i.e. } & \\
\Delta e_{T} & =2\left\{\frac{a_{T}\left(1+e_{T}\right)}{\mu\left(1-e_{T}\right)}\right\}^{1 / 2}\left(e_{T}-1\right) \Delta v_{B} \tag{22}
\end{align*}
$$

After some substitutions,

$$
\begin{align*}
\Delta e_{T}= & 2\left\{\frac{b_{2}}{\mu\left(1-e_{1}\right)}\right\}^{1 / 2}\left\{1+2\left\{\frac{b_{3}}{\mu\left(1-e_{1}\right)}\right\}^{1 / 2} \Delta v_{A}\right\} \\
& \left\{\left(e_{1}-1\right)+2\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \Delta v_{A}\right\} \Delta v_{B} \tag{23}
\end{align*}
$$

2.1.3. Third configuration

Figure 3

For the third configuration (Fig.3), we have the following identities:

$$
\begin{gather*}
a_{1}\left(1+e_{1}\right)=a_{T}\left(1+e_{T}\right)=b_{3} ; a_{2}\left(1-e_{2}\right)=a_{T}\left(1-e_{T}\right)=b_{2} \tag{24}\\
v_{A}=\left\{\frac{\mu\left(1-e_{1}\right)}{b_{3}}\right\}^{1 / 2} \tag{25}\\
v_{B}=\left\{\frac{\mu\left(1+e_{T}\right)}{a_{T}\left(1-e_{T}\right)}\right\}^{1 / 2} \tag{26}
\end{gather*}
$$

We find

$$
\begin{align*}
\frac{1+e_{T}}{1-e_{T}} & =\frac{a_{1}\left(1+e_{1}\right)}{a_{2}\left(1-e_{2}\right)}=\frac{b_{3}}{b_{2}} \tag{27}\\
\Delta a_{1} & =\frac{2 a_{1}^{3 / 2}}{\sqrt{\mu}}\left(\frac{1-e_{1}}{1+e_{1}}\right)^{1 / 2} \Delta v_{A} \tag{28}\\
a_{T} & =a_{1}+\Delta a_{1}=a_{1}\left\{1+2 \sqrt{\frac{b_{1}}{\mu\left(1+e_{1}\right)}} \Delta v_{A}\right\} \tag{29}
\end{align*}
$$

After some substitutions

$$
\begin{equation*}
\Delta a_{T}=\frac{2 a_{1}^{3 / 2}}{\sqrt{\mu}}\left\{\frac{b_{3}}{b_{2}}\right\}^{1 / 2}\left\{1+2 \sqrt{\frac{b_{1}}{\mu\left(1+e_{1}\right)}} \Delta v_{A}\right\}^{3 / 2} \Delta v_{B} \tag{30}
\end{equation*}
$$

With respect to the eccentricities

$$
\begin{align*}
\Delta e_{1} & =\frac{2 a_{1}\left(1-e_{1}^{2}\right)}{e_{1}}\left(\frac{1}{r_{1}}-\frac{1}{a_{1}}\right) \frac{\Delta v_{A}}{v_{A}} ; r_{1}=a_{1}\left(1+e_{1}\right)=b_{3} \tag{31}\\
\text { i.e. } & \\
\Delta e_{1} & =-2\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \Delta v_{A} \tag{32}\\
e_{T} & =e_{1}+\Delta e_{1}=e_{1}-2\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \Delta v_{A} \tag{33}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\Delta e_{T}=2\left(1+e_{T}\right)\left\{\frac{a_{T}\left(1-e_{T}\right)}{\mu\left(1+e_{T}\right)}\right\}^{1 / 2} \Delta v_{B} \tag{34}
\end{equation*}
$$

Whence

$$
\begin{align*}
\Delta e_{T}= & 2\left\{\frac{b_{2}}{\mu\left(1+e_{1}\right)}\right\}^{1 / 2}\left\{1+2 \sqrt{\frac{b_{1}}{\mu\left(1+e_{1}\right)}} \Delta v_{A}\right\}^{1 / 2} \\
& \left\{\left(1+e_{1}\right)-2 \sqrt{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}} \Delta v_{A}\right\} \Delta v_{B} \tag{35}
\end{align*}
$$

2.1.4. Fourth configuration

Figure 4

For the fourth configuration (Fig. 4), we have the following equalities:

$$
\begin{equation*}
a_{1}\left(1+e_{1}\right)=a_{T}\left(1-e_{T}\right)=b_{3} ; \quad a_{2}\left(1+e_{2}\right)=a_{T}\left(1+e_{T}\right)=b_{4} \tag{36}
\end{equation*}
$$

$$
\begin{align*}
v_{A} & =\left\{\frac{\mu\left(1-e_{1}\right)}{b_{3}}\right\}^{1 / 2} \tag{37}\\
v_{B} & =\left\{\frac{\mu\left(1-e_{T}\right)}{a_{T}\left(1+e_{T}\right)}\right\}^{1 / 2} \tag{38}\\
\Delta a_{1} & =\frac{2 a_{1}^{3 / 2}}{\sqrt{\mu}}\left(\frac{1-e_{1}}{1+e_{1}}\right)^{1 / 2} \Delta v_{A} \tag{39}\\
a_{T} & =a_{1}+\Delta a_{1}=a_{1}\left\{1+2 \sqrt{\frac{b_{1}}{\mu\left(1+e_{1}\right)}} \Delta v_{A}\right\} \tag{40}
\end{align*}
$$

But

$$
\begin{equation*}
\Delta a_{T}=\frac{2 a_{T}^{2} v_{B} \Delta v_{B}}{\mu} \tag{41}
\end{equation*}
$$

Whence after substitution

$$
\begin{equation*}
\Delta a_{T}=\frac{2 a_{1}^{3 / 2}}{\sqrt{\mu}}\left\{\frac{b_{3}}{b_{4}}\right\}^{1 / 2}\left\{1+2 \sqrt{\frac{b_{1}}{\mu\left(1+e_{1}\right)}} \Delta v_{A}\right\}^{3 / 2} \Delta v_{B} \tag{42}
\end{equation*}
$$

As for the eccentricities, we find

$$
\begin{align*}
\Delta e_{1} & =-2\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \Delta v_{A} \tag{43}\\
e_{T} & =e_{1}+\Delta e_{1} \\
\text { i.e. } & =e_{1}-2\left\{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}\right\}^{1 / 2} \Delta v_{A}
\end{align*}
$$

After substitution and simple reduction, we get

$$
\begin{align*}
\Delta e_{T}= & 2\left\{\frac{b_{4}}{\mu\left(1+e_{1}\right)}\right\}^{1 / 2}\left\{1+2 \sqrt{\frac{b_{1}}{\mu\left(1+e_{1}\right)}} \Delta v_{A}\right\}^{1 / 2} \\
& \left\{\left(e_{1}-1\right)-2 \sqrt{\frac{a_{1}\left(1-e_{1}^{2}\right)}{\mu}} \Delta v_{A}\right\} \Delta v_{B} \tag{45}
\end{align*}
$$

2.2. Generalized bi-elliptic case

2.2.1. First configuration

For the first configuration of bi-elliptic case (Fig. 5), we have the following identities:

$$
\begin{align*}
a_{1}\left(1-e_{1}\right) & =a_{T}\left(1-e_{T}\right)=b_{1} \\
a_{T}\left(1+e_{T}\right) & =a_{T^{\star}}\left(1+e_{T^{\star}}\right) \tag{46}\\
a_{2}\left(1-e_{2}\right) & =a_{T^{\star}}\left(1-e_{T^{\star}}\right)=b_{2}
\end{align*}
$$

Figure 5

From (1), we get

$$
\begin{align*}
a_{T} & =a_{T^{\star}}+\frac{1}{2}\left(b_{1}-b_{2}\right) \tag{47}\\
e_{T} & =1-\frac{b_{1}}{a_{T}} \tag{48}\\
e_{T^{\star}} & =\frac{2 a_{T}-b_{1}-b_{2}}{2 a_{T}-b_{1}+b_{2}} \tag{49}
\end{align*}
$$

At point A

$$
\begin{align*}
\Delta a_{1} & =\frac{2 v_{A} a_{1}^{2} \Delta v_{A}}{\mu} ; \quad v_{A}=\left\{\frac{\mu\left(1+e_{1}\right)}{b_{1}}\right\}^{1 / 2} \tag{50}\\
a_{T} & =a_{1}+\Delta a_{1} \tag{51}
\end{align*}
$$

Whence

$$
a_{T}=a_{1}\left[1+2\left\{\frac{b_{3}}{\mu\left(1-e_{1}\right)}\right\}^{1 / 2} \Delta v_{A}\right]
$$

Let

$$
\begin{equation*}
B=2 \Delta v_{A}\left\{\frac{b_{3}}{\mu\left(1-e_{1}\right)}\right\}^{1 / 2} \tag{52}
\end{equation*}
$$

Therefore

$$
\begin{align*}
a_{T} & =a_{1}(1+B) \\
a_{T^{\star}} & =a_{1}(1+B)-\frac{1}{2}\left(b_{1}-b_{2}\right) \tag{53}\\
e_{T} & =1-\frac{b_{1}}{a_{1}(1+B)} \tag{54}\\
e_{T^{\star}} & =\frac{2 a_{1}(1+B)-b_{1}-b_{2}}{2 a_{1}(1+B)-b_{1}+b_{2}} \tag{55}
\end{align*}
$$

At point C:

$$
\begin{align*}
\Delta a_{T} & =\frac{2 v_{C} a_{T}^{2} \Delta v_{C}}{\mu} \\
\text { i.e. } & \\
\Delta v_{C} & =\frac{\Delta a_{T} \mu}{2 v_{C} a_{T}^{2}} \tag{56}
\end{align*}
$$

With

$$
v_{C}=\left\{\frac{\mu\left(1-e_{T}\right)}{a_{T}\left(1+e_{T}\right)}\right\}^{1 / 2}
$$

Whence

$$
\begin{align*}
v_{C} & =\left[\frac{\mu b_{1}}{a_{1}(1+B)\left\{2 a_{1}(1+B)-b_{1}\right\}}\right]^{1 / 2} \tag{57}\\
\text { and } & =a_{T^{6}}-a_{T}=-\frac{1}{2}\left(b_{1}-b_{2}\right) \\
\Delta a_{T} & ={ }^{2} \tag{58}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\Delta v_{C}=-\frac{\left(b_{1}-b_{2}\right)\left[\mu\left\{2 a_{1}(1+B)-b_{1}\right\}\right]^{1 / 2}}{4 \sqrt{b_{1}}\left\{a_{1}(1+B)\right\}^{3 / 2}} \tag{59}
\end{equation*}
$$

At point B:

$$
\begin{equation*}
\Delta v_{B}=\frac{\mu \Delta a_{T^{\star}}}{2 v_{B} a_{T^{\star}}^{2}} \quad \text { with } \quad v_{B}=\left\{\frac{\mu\left(1+e_{T^{\star}}\right)}{a_{T^{k}}\left(1-e_{T^{\star}}\right)}\right\}^{1 / 2} \tag{60}
\end{equation*}
$$

Whence by substitution

$$
\begin{align*}
& v_{B}=\left[\frac{\mu\left\{2 a_{1}(1+B)-b_{1}\right\}}{b_{2}\left\{a_{1}(1+B)-\frac{1}{2}\left(b_{1}-b_{2}\right)\right\}}\right]^{1 / 2} \tag{61}\\
& \text { and } \\
& a_{2}=a_{T^{6}}+\Delta a_{T^{6}} \tag{62}
\end{align*}
$$

Hence

$$
\begin{equation*}
\Delta a_{T^{*}}=a_{2}-a_{1}(1+B)+\frac{1}{2}\left(b_{1}-b_{2}\right) \tag{63}
\end{equation*}
$$

Whence by substitution and some rearrangement

$$
\begin{equation*}
\Delta v_{B}=\sqrt{\frac{\mu b_{2}}{2\left\{2 a_{1}(1+B)-b_{1}\right\}}} \frac{\left\{2 a_{2}-2 a_{1}(1+B)+\left(b_{1}-b_{2}\right)\right\}}{\left\{2 a_{1}(1+B)-\left(b_{1}-b_{2}\right)\right\}^{3 / 2}} \tag{64}
\end{equation*}
$$

Figure 6

2.2.2. Second configuration

For the second configuration of the bi-elliptic (Fig. 6), we get the following equalities:

$$
\begin{align*}
a_{1}\left(1-e_{1}\right) & =a_{T}\left(1-e_{T}\right)=b_{1} \\
a_{T}\left(1+e_{T}\right) & =a_{T^{\star}}\left(1-e_{T^{\star}}\right) \tag{65}\\
a_{2}\left(1+e_{2}\right) & =a_{T^{\star}}\left(1+e_{T^{\star}}\right)=b_{4}
\end{align*}
$$

Then

$$
\begin{align*}
a_{T} & =a_{T^{\star}}+\frac{1}{2}\left(b_{1}-b_{4}\right) \tag{66}\\
a_{T^{\star}} & =a_{T}-\frac{1}{2}\left(b_{1}-b_{4}\right) \tag{67}\\
e_{T} & =1-\frac{b_{1}}{a_{T}} \tag{68}\\
e_{T^{\star}} & =\frac{2 a_{T}-b_{1}-b_{4}}{-2 a_{T}+b_{1}-b_{4}} \tag{69}
\end{align*}
$$

At point A:

$$
\begin{align*}
& v_{A}=\sqrt{\frac{\mu\left(1+e_{1}\right)}{a_{1}\left(1-e_{1}\right)}}=\sqrt{\frac{\mu\left(1+e_{1}\right)}{b_{1}}} \tag{70}\\
& \text { and } \\
& \Delta a_{1}=\frac{2 v_{A} a_{1}^{2} \Delta v_{A}}{\mu}
\end{align*}
$$

whence

$$
\begin{equation*}
\Delta v_{A}=\frac{\sqrt{\mu}}{2 a_{1}^{3 / 2}} \sqrt{\frac{1-e_{1}}{1+e_{1}}} \Delta a_{1} \tag{71}
\end{equation*}
$$

But

$$
\begin{align*}
a_{T} & =a_{1}+\Delta a_{1} \tag{72}\\
a_{T} & =a_{1}\left[1+2 \sqrt{\frac{b_{3}}{\mu\left(1-e_{1}\right)}} \Delta v_{A}\right] \tag{73}
\end{align*}
$$

Let

$$
\begin{equation*}
B=2 \sqrt{\frac{b_{3}}{\mu\left(1-e_{1}\right)}} \Delta v_{A} \tag{74}
\end{equation*}
$$

Therefore

$$
\begin{align*}
a_{T} & =a_{1}(1+B) \tag{75}\\
a_{T^{6}} & =a_{1}(1+B)-\frac{\left(b_{1}-b_{4}\right)}{2} \tag{76}\\
e_{T} & =\frac{a_{1}(1+B)-b_{1}}{a_{1}(1+B)} \tag{77}\\
e_{T^{6}} & =\frac{2 a_{1}(1+B)-b_{1}-b_{4}}{-2 a_{1}(1+B)+b_{1}-b_{4}} \tag{78}
\end{align*}
$$

At point C:

$$
\begin{align*}
\Delta a_{T} & =\frac{2 a_{T}^{2} v_{C} \Delta v_{C}}{\mu} \tag{79}\\
\text { i.e. } & \\
\Delta v_{C} & =\frac{\mu \Delta a_{T}}{2 v_{C} a_{T}^{2}} \tag{80}
\end{align*}
$$

with

$$
\begin{align*}
v_{C} & =\sqrt{\frac{\mu\left(1-e_{T}\right)}{a_{T}\left(1+e_{T}\right)}} \tag{81}\\
\frac{1-e_{T}}{a_{T}\left(1+e_{T}\right)} & =\frac{b_{1}}{a_{1}(1+B)\left\{2 a_{1}(1+B)-b_{1}\right\}} \tag{82}
\end{align*}
$$

whence

$$
\begin{equation*}
v_{C}=\sqrt{\frac{\mu b_{1}}{a_{1}(1+B)\left\{2 a_{1}(1+B)-b_{1}\right\}}} \tag{83}
\end{equation*}
$$

But

$$
\begin{equation*}
\Delta a_{T}=a_{T^{6}}-a_{T}=-\frac{\left(b_{1}-b_{4}\right)}{2} \tag{84}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\Delta v_{C}=\frac{\left(b_{4}-b_{1}\right)}{4 a_{T}^{3 / 2}} \sqrt{\frac{\mu\left(2 a_{T}-b_{1}\right)}{b_{1}}} \tag{85}
\end{equation*}
$$

Or

$$
\begin{equation*}
\Delta v_{C}=\frac{\left(b_{4}-b_{1}\right)}{4\left\{a_{1}(1+B)\right\}^{3 / 2}} \sqrt{\frac{\mu\left\{2 a_{1}(1+B)-b_{1}\right\}}{b_{1}}} \tag{86}
\end{equation*}
$$

At point B:

$$
\begin{equation*}
\Delta v_{B}=\frac{\mu \Delta a_{T^{\star}}}{2 v_{B} a_{T^{\star}}^{2}} \text { with } v_{B}=\sqrt{\frac{\mu\left(1-e_{T^{\iota}}\right)}{a_{T^{\iota}}\left(1+e_{T^{\iota}}\right)}} \tag{87}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{1-e_{T^{\star}}}{a_{T^{\star}}\left(1+e_{T^{\star}}\right)}=\frac{2 a_{T}-b_{1}}{b_{4}\left\{a_{T}-\frac{\left(b_{1}-b_{4}\right)}{2}\right\}} \tag{88}
\end{equation*}
$$

whence

$$
\begin{equation*}
v_{B}=\left[\frac{\mu\left(2 a_{T}-b_{1}\right)}{b_{4}\left\{a_{T}-\frac{\left(b_{1}-b_{4}\right)}{2}\right\}}\right]^{1 / 2} \tag{89}
\end{equation*}
$$

Or

$$
\begin{equation*}
v_{B}=\left[\frac{\mu\left\{2 a_{1}(1+B)-b_{1}\right\}}{b_{4}\left\{a_{1}(1+B)-\frac{\left(b_{1}-b_{4}\right)}{2}\right\}}\right]^{1 / 2} \tag{90}
\end{equation*}
$$

We have

$$
\begin{align*}
a_{2} & =a_{T^{\star}}+\Delta a_{T^{\star}} \tag{91}\\
\text { i.e. } & \\
\Delta a_{T^{\star}} & =a_{2}-a_{1}(1+B)+\frac{\left(b_{1}-b_{4}\right)}{2} \tag{92}
\end{align*}
$$

Whence after substitution and rearrangement

$$
\begin{equation*}
\Delta v_{B}=\sqrt{\frac{\mu b_{4}}{2\left\{2 a_{1}(1+B)-b_{1}\right\}}}\left[\frac{\left\{2 a_{2}-2 a_{1}(1+B)+\left(b_{1}-b_{4}\right)\right\}}{\left\{2 a_{1}(1+B)-\left(b_{1}-b_{4}\right)\right\}^{3 / 2}}\right] \tag{93}
\end{equation*}
$$

2.2.3. Third configuration

For the third configuration of bi-elliptic case (Fig. 7), we find the following relationships:

$$
\begin{align*}
a_{1}\left(1+e_{1}\right) & =a_{T}\left(1+e_{T}\right)=b_{3} \\
a_{T}\left(1-e_{T}\right) & =a_{T^{\star}}\left(1-e_{T^{\star}}\right) \tag{94}\\
a_{2}\left(1+e_{2}\right) & =a_{T^{\star}}\left(1+e_{T^{\star}}\right)=b_{4} \\
e_{T} & =\frac{b_{3}}{a_{T}}-1 \tag{95}\\
e_{T^{\star}} & =\frac{-2 a_{T}+b_{3}+b_{4}}{2 a_{T}-b_{3}+b_{4}} \tag{96}
\end{align*}
$$

Figure 7

At point A:

$$
\begin{align*}
\Delta v_{A} & =\frac{\mu \Delta a_{1}}{2 a_{1}^{2} v_{A}} \text { with } v_{A}=\sqrt{\frac{\mu\left(1-e_{1}\right)}{b_{3}}} \tag{97}\\
\text { i.e. } & \\
\Delta a_{1} & =\frac{2 a_{1}^{3 / 2}}{\sqrt{\mu}}\left(\frac{1-e_{1}}{1+e_{1}}\right)^{1 / 2} \Delta v_{A} \tag{98}\\
a_{T} & =a_{1}+\Delta a_{1}=a_{1}\left[1+2\left\{\frac{b_{1}}{\mu\left(1+e_{1}\right)}\right\}^{1 / 2} \Delta v_{A}\right] \tag{99}
\end{align*}
$$

Let

$$
\begin{align*}
& \xi=2\left\{\frac{b_{1}}{\mu\left(1+e_{1}\right)}\right\}^{1 / 2} \Delta v_{A} \tag{100}\\
& \text { i. e. } \\
& a_{T}=a_{1}(1+\xi) \tag{101}
\end{align*}
$$

At point B:

$$
\begin{equation*}
v_{B}=\sqrt{\frac{\mu\left(1+e_{T}\right)}{a_{T}\left(1-e_{T}\right)}} \tag{102}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\frac{1+e_{T}}{a_{T}\left(1-e_{T}\right)} & =\frac{b_{3}}{a_{1}(1+\xi)\left\{2 a_{1}(1+\xi)-b_{3}\right\}} \tag{103}\\
\text { i.e. } & \\
v_{B} & =\left[\frac{\mu b_{3}}{a_{1}(1+\xi)\left\{2 a_{1}(1+\xi)-b_{3}\right\}}\right]^{1 / 2} \\
\Delta a_{T} & =a_{T^{6}}-a_{T}=\frac{\left(b_{4}-b_{3}\right)}{2} \tag{104}\\
\Delta v_{B} & =\frac{\mu \Delta a_{T}}{2 v_{B} a_{T}^{2}} \tag{105}\\
\Delta v_{B} & =\frac{\sqrt{\mu}\left(b_{4}-b_{3}\right)}{4\left\{a_{1}(1+\xi)\right\}^{3 / 2}}\left\{\frac{2 a_{1}(1+\xi)-b_{3}}{b_{3}}\right\}^{1 / 2} \tag{106}
\end{align*}
$$

At point C:

$$
\begin{equation*}
v_{C}=\left\{\frac{\mu\left(1-e_{T^{\star}}\right)}{a_{T^{\star}}\left(1+e_{T^{\star}}\right)}\right\}^{1 / 2} \tag{107}
\end{equation*}
$$

After some reductions we get

$$
\begin{align*}
\frac{1-e_{T^{\star}}}{a_{T^{\star}}\left(1+e_{T^{\star}}\right)} & =\frac{2 a_{T}-b_{3}}{b_{4}\left\{a_{1}(1+\xi)+\frac{\left(b_{4}-b_{3}\right)}{2}\right\}} \tag{108}\\
\text { i.e. } & \\
v_{C} & =\left[\frac{\mu\left\{2 a_{1}(1+\xi)\right\}-b_{3}}{b_{4}\left\{a_{1}(1+\xi)+\frac{\left(b_{4}-b_{3}\right)}{2}\right\}}\right]^{1 / 2} \tag{109}\\
\Delta a_{T^{\star}} & =a_{2}-a_{T^{\star}} \tag{110}\\
\text { i.e. } & \\
\Delta a_{T^{\star}} & =\frac{\left(b_{2}+b_{3}\right)}{2}-a_{T} \tag{111}\\
\Delta v_{C} & =\frac{\mu \Delta a_{T^{\star}}}{2 v_{C} a_{T^{\star}}^{2}} \tag{112}
\end{align*}
$$

Finally, we get

$$
\begin{equation*}
\Delta v_{C}=\sqrt{\frac{\mu b_{4}}{2\left\{2 a_{1}(1+\xi)-b_{3}\right\}}}\left[\frac{\left(b_{2}+b_{3}\right)-2 a_{1}(1+\xi)}{\left\{2 a_{1}(1+\xi)+\left(b_{4}-b_{3}\right)\right\}^{3 / 2}}\right] \tag{113}
\end{equation*}
$$

2.2.4. Fourth configuration

Figure 8

For the fourth configuration of bi-elliptic cas (Fig. 8), we deduce the following identities:

$$
\begin{align*}
a_{1}\left(1+e_{1}\right) & =a_{T}\left(1-e_{T}\right)=b_{3} \\
a_{T}\left(1+e_{T}\right) & =a_{T^{\star}}\left(1+e_{T^{\star}}\right) \tag{114}\\
a_{2}\left(1+e_{2}\right) & =a_{T^{\star}}\left(1-e_{T^{\star}}\right)=b_{4} \\
2 a_{T^{\star}} & =2 a_{T}-b_{3}+b_{4} \tag{115}\\
e_{T} & =1-\frac{b_{3}}{a_{T}} \tag{116}\\
e_{T^{\star}} & =\frac{2 a_{T}-b_{3}-b_{4}}{2 a_{T}-b_{3}+b_{4}} \tag{117}
\end{align*}
$$

At point A

$$
\begin{align*}
\Delta v_{A} & =\frac{\mu \Delta a_{1}}{2 a_{1}^{2} v_{A}} \text { with } v_{A}=\sqrt{\frac{\mu\left(1-e_{1}\right)}{b_{3}}} \tag{118}\\
\text { i.e. } & =\frac{2 a_{1}^{3 / 2}}{\sqrt{\mu}}\left(\frac{1-e_{1}}{1+e_{1}}\right)^{1 / 2} \Delta v_{A} \\
\Delta a_{1} & =a_{1}+\Delta a_{1}=a_{1}\left[1+2\left\{\frac{b_{1}}{\mu\left(1+e_{1}\right)}\right\}^{1 / 2} \Delta v_{A}\right] \tag{119}
\end{align*}
$$

Let

$$
\begin{align*}
& \xi=2\left\{\frac{b_{1}}{\mu\left(1+e_{1}\right)}\right\}^{1 / 2} \Delta v_{A} \tag{121}\\
& \text { i. e. } \\
& a_{T}=a_{1}(1+\xi) \tag{122}
\end{align*}
$$

At point B

$$
\begin{equation*}
v_{B}=\sqrt{\frac{\mu\left(1-e_{T}\right)}{a_{T}\left(1+e_{T}\right)}} ; \quad \Delta v_{B}=\frac{\mu \Delta a_{T}}{2 v_{B} a_{T}^{2}} \tag{123}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
v_{B} & =\left[\frac{\mu b_{3}}{a_{1}(1+\xi)\left\{2 a_{1}(1+\xi)-b_{3}\right\}}\right]^{1 / 2} \tag{124}\\
\Delta a_{T} & =a_{T^{\star}}-a_{T}=\frac{\left(b_{4}-b_{3}\right)}{2} \tag{125}
\end{align*}
$$

After some rearrangements, we acquire

$$
\begin{equation*}
\Delta v_{B}=\frac{\sqrt{\mu}\left(b_{4}-b_{3}\right)}{4\left\{a_{1}(1+\xi)\right\}^{3 / 2}}\left\{\frac{2 a_{1}(1+\xi)-b_{3}}{b_{3}}\right\}^{1 / 2} \tag{126}
\end{equation*}
$$

At point C

$$
\begin{equation*}
v_{C}=\left\{\frac{\mu\left(1+e_{T^{\star}}\right)}{a_{T^{\star}}\left(1-e_{T^{\star}}\right)}\right\}^{1 / 2} ; \quad \Delta v_{C}=\frac{\mu \Delta a_{T^{\star}}}{2 v_{C} a_{T^{\star}}^{2}} \tag{127}
\end{equation*}
$$

After substitution, we get

$$
\begin{align*}
\frac{1+e_{T^{\star}}}{a_{T^{\star}}\left(1-e_{T^{\star}}\right)} & =\frac{2 a_{T}-b_{3}}{b_{4}\left\{a_{1}(1+\xi)+\frac{\left(b_{4}-b_{3}\right)}{2}\right\}} \tag{128}\\
\text { i.e. } & \\
v_{C} & =\left[\frac{\mu\left\{2 a_{1}(1+\xi)\right\}-b_{3}}{b_{4}\left\{a_{1}(1+\xi)+\frac{\left(b_{4}-b_{3}\right)}{2}\right\}}\right]^{1 / 2} \tag{129}\\
\Delta a_{T^{\star}} & =a_{2}-a_{T^{\star}} \\
\text { i.e. } & \\
\Delta a_{T^{\star}} & =\frac{\left(b_{2}+b_{3}\right)}{2}-a_{T} \tag{130}
\end{align*}
$$

Finally, we get

$$
\begin{equation*}
\Delta v_{C}=\sqrt{\frac{\mu b_{4}}{2\left\{2 a_{1}(1+\xi)-b_{3}\right\}}}\left[\frac{\left(b_{2}+b_{3}\right)-2 a_{1}(1+\xi)}{\left\{2 a_{1}(1+\xi)+\left(b_{4}-b_{3}\right)\right\}^{3 / 2}}\right] \tag{131}
\end{equation*}
$$

Table 1 Generalized Hohmann System

Fig.	Δv_{A}	Δv_{B}	Δa_{1}	Δa_{T}	Δe_{1}	Δe_{T}
1	0.1141	0.0702	0.2321	0.1475	0.2282	0.2044
2	0.0732	0.1138	0.1489	0.2364	0.1464	0.3128
3	0.1012	0.1441	0.1990	0.3246	0.2024	0.2996
4	0.1736	0.0751	0.3414	0.1823	0.3471	0.1492

Table 2 Generalized bi-elliptic System

Fig.	Δa_{1}	Δa_{T}	$\Delta a_{T^{\iota}}$	Δv_{C}	Δv_{B}
1	0.2321	0.3414	0.0497	0.1532	0.0134
2	0.1489	0.1990	0.1758	0.0934	0.0567
3	0.1990	0.3246	0.0010	0.0030	0.1441
4	0.3414	0.3247	0.1423	0.0331	0.1983

3. Numerical Results

We consider the case of "Earth - Mars" transfer orbit, where [8], $a_{1}=1.0000, e_{1}=$ $0.0167, a_{2}=1.5237, e_{2}=0.0934$, the subscript 1 refers to Earth and 2 refers to Mars. In our calculations, we put $\mu=1$ (canonical system).

4. Discussion

We did not investigate the problem pragmatically when the primary mass is situated in the right focus. But by intuition we shall have the same results, and there will be eight feasible configurations, four for the Hohmann transfer and four for the bi-elliptic transfer. We deal with a correctional problem, in which our aim is to obtain a precise final transferred orbit. This is acquired by the application of two differential increments of velocity at points A, B for the Hohmann transfer, and three differential increments of velocity at points A, B, C for the bi-elliptic transfer. These differential increments are produced by motor thrusts of a rocket. The terminal and the transfer orbits are all elliptic. The significance of the analysis lies in its simplicity and correctness of the deduced formulae.

For the generalized Hohmann case we assigned the differential corrections Δa_{1}, Δa_{T}, produced by the differential variations $\Delta v_{A} \& \Delta v_{B}$ in terms of a_{i}, e_{i} $(i=1,2), \Delta v_{A}, \Delta v_{B}$.

With regard to the eccentricity correction $\Delta e_{1}, \Delta e_{T}$, we assigned the velocity corrections $\Delta v_{A}, \Delta v_{B}$ that give rise to the two infinitesimal variations $\Delta e_{1}, \Delta e_{T}$.

In addition we write down the expressions for $a_{T}=a_{1}+\Delta a_{1}, e_{T}=e_{1}+\Delta e_{1}$ in terms of $a_{1}, e_{1}, \Delta v_{A}$, since we deal with a differential variation of velocity at peri-apse.

As for the bi-elliptic generalized transfer, we have three infinitesimal impulses at points $\mathrm{A}, \mathrm{B}, \mathrm{C}$. We deduced the correction Δa_{1} due to the differential change in velocity at point $\mathrm{A}, \Delta v_{A}$, from which we could find $\mathrm{a}_{T}, a_{T^{\prime}}, e_{T}, e_{T^{*}}$ expressed in terms of Δv_{A}.

For the terminal points A, B of the transfer orbits, we can have the relationships between $\Delta a_{T}, \Delta v_{C}$ at point C and $\Delta v_{B} \& \Delta a_{T^{\star}}$ at point B . Whence we could determine $\Delta v_{C}, \Delta v_{B}$ expressed in terms of $a_{i}, e_{i}(i=1,2)$ and Δv_{A}.

We extended the two tables of Art 3 of reference [9], to include the numerical results of all four feasible configurations, namely adding case (3)\&(4).

The above treatment is a first time publication, using energy concepts, in the literature of the subject.

References

[1] Chobotov V.A.: Orbital Mechanics, Third Edition, AIAA, Education series, 2002.
[2] Herrick S.: Astrodynamics, Vol. 1, Van Nostrand, London, 1971.
[3] Roy A. E.: Orbital Motion, Adam Hilger Ltd, Bristol, Second Edition, 1982.
[4] Ting L.: Astronautica Acta 6, 247, 1960.
[5] Lawden D. F.: Optimal transfers between coplanar elliptical orbits, J. of Guidance, 15, 3, Engineering Notes, 1990.
[6] Kamel O. M. and Soliman, A. S.: Bull FAC SCI, Cairo University, 67, pp. 61 71, 1999.
[7] Ramsey A. S.: Dynamics, Part II, Cambridge University Press, 1951.
[8] Murray C.D. and Dermott, S.F.: Solar System Dynamics, Cambridge University Press, 1999.
[9] Kamel O.M. and Soliman A.S.: Velocity Corrections in the Impulsive Transfer Orbits, Paper submitted to Mechanics and Mechanical Engineering International Journal, Technical University of Lodz, Poland.

