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In the paper an influence of rolling elements assembly position on stiffnesses of rolling
bearings has been considered. Presented models have been developed to determine val-
ues of bearing load distribution parameters, individual rolling element loads, as well as to
analyze distributions and values of the radial and axial stiffness of bearings as a function
of the bearing rolling element distribution and the direction along which the bearing
radial load resultant vector acts. Slow–speed, low–accelerations and short–period mo-
tions of rolling bearings have been assumed as a characteristic type of motion of rolling
kinematic pairs in manipulators.
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1. Introduction

Analysis of stiffnesses of rolling kinematics pairs is necessary for relevant modeling of
machines dynamics. The stiffnesses of rolling bearings depend on position of rolling
elements during the 3D bearing system motion [13, 14, 19, 21–23]. In order to
investigate the influence of rolling elements position on stiffnesses, it is necessary to
analyze distribution of external loads acting on individual rolling elements during
the bearing motion. In the literature devoted to the modeling of bearings and
rolling bearing systems [6, 11, 12], one finds analysis of the load distribution acting
on rolling elements as a function of the external load for a fixed location of bearing
rolling elements, which is optimal from the viewpoint of theoretical analysis. These
models have been developed on the assumption of a continuous distribution of the
load acting on bearing rolling elements. These models have been defined as static
cases of analysis of the load distribution of bearing rolling elements, [19, 20]. In the
presented algorithm, the above mentioned assumptions have been suppressed.

In the presented paper the considerations deal with an influence of the rolling
element distribution with respect to the direction of the resultant vector of the
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bearing radial loading during the bearing motion on the values of load distribution
parameters and on the distribution and values of stiffness of rolling bearings. The
cases of bearing with a clearance, without a clearance and with pre–loading have
been examined.

2. Assumptions

Let us consider an angular rolling bearing as the most general case and, at the same
time, the most often used type of rolling bearings applied in robot kinematic pairs.
The considerations included in this section concern also radial bearings and radial
bearing systems which are radially or radially and axially loaded, as well as axial
bearings and axial bearing systems. Let us assume that bearing rolling elements
carry a load only along the normal direction to the main and auxiliary working
surfaces and that track deformations occur only in the places of contact of rolling
elements with tracks. Let us also assume that rolling elements are symmetrically
distributed on the track, at each moment they contact with an inner track and outer
track in two opposite points, and that rolling elements do not exhibit any profile
errors of the shape.

3. Theoretical introduction

The external radial loads Nα and the external axial loads Faα of the rolling bear-
ing are transferred by means of bearing rings to rolling elements which are non–
uniformly loaded. The maximum load is assumed by the rolling element whose
center lies on the line the radial force Nα acts. Let us denote an angle of the
bearing rolling element load distribution, measured from the line the radial load
resultant vector Nα acts (for γ(t) = 0 from the maximally loaded rolling element
[19]), by Ψ, whereas ε stands for (ε ≥ 0, theoretically ε ∈ (0,∞)) a coefficient of
the load distribution angle on rolling elements [11, 12]. The coefficient ε can be
expressed by the following relation [11, 12, 19]

ε =
1
2
[1− cos(ψ)] (1)

where Ψ is the load distribution angle on bearing rolling elements [rad].
In rolling bearings the load distribution angle Ψ depends, first of all, on a size

of the clearance in the bearing and can assume theoretically values in the range
0÷ 180o. At the same time, a correctly operating radial or angular bearing, loaded
with a radial or longitudinal force, should have the angle Ψ included in the range
(π/2 ÷ π) [rad], [11]. In practice it has been found and it is assumed [11] that an
angular bearing is correctly loaded from the moment it reaches the loading angle
Ψ ≥ 90o (ε ≥ 0.5).

In a radial bearing, if the load axial component is high enough, then a clearance is
eliminated, owing to which the bearing operates like an angular bearing and exactly
the same formulas hold. In the case of a radial bearing without axial loading, the
radial bearing can be analyzed like an angular bearing loaded radially if we take
into account a clearance in the bearing and zero deformation of the bearing along
the axial direction (δa = 0), [19]. This case corresponds to the model included in
[12], in which a zero clearance is assumed in the bearing.
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3.1. Main parameters of the model

Fig. 1. shows a construction scheme of the rolling bearing. The load of the i-th
(any) rolling element is a resultant of the radial and axial load. Under the influence
of the external load acting on the bearing and resulting from it deformations in the
places of contact of the rolling elements with the tracks, the displacement of the
shaft center with respect to the mounting longitudinal axis occurs. The place of
contact, whose center lies on the line the radial force Nα acts, is subjected to the
strongest deformation–displacement of the rigs with respect to each other, λmax

0 .

Figure 1 Construction scheme of the rolling bearing

where:

Fi – resultant external load of the i-th rolling element of the bearing [N];
λmax

0 – theoretical, maximum value of the displacement of the bearing rings
with respect to each other, along the direction in which the resultant
radial load acts in the normal direction [mm];

λmax
0 – value of the displacement of the bearing rings with respect to each

other in the place of contact of the maximally loaded bearing rolling
element in the normal direction –in the case where γ(t) = 0, then
λmax

0 [mm].

In general, deformation of each rolling element in the angular or radial rolling
bearing to which radial and axial load is applied, as well as in the radial bearing
loaded with the radial force (then: α = 0, δa = 0, δr = λo + g/2) can be described
with a trigonometric function by means of the following relation [19] (in the case
when γ(t) = 0, formula (2) assumes the form of formula [11] and corresponds to the
case of the static location of bearing rolling elements)

λi = λmax
o

[
1− 1

2ε
(1− cos(γ(t) + iγ))

]
(2)
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where:
i = 0, ..., n
λi – magnitude of deformation of the i-th rolling element along the normal

direction [mm];
γ – angle between subsequent rolling elements in the bearing circumferential

direction [rad];
γ(t) – angle between the direction the radial load resultant vector acts and

the direction on which the maximally loaded bearing rolling element lies
at a given instant of time (Fig. 7). This angle has been introduced in order
to account for an effect of the dynamic distribution of rolling elements on
the presented considerations [rad];

n – number of rolling elements comprised by the angle of the bearing load region Ψ
(taking into account the dynamic distribution of rolling elements) [-];

ε – coefficient of the load distribution angle on rolling elements [-].

In relation (4) the coefficient of the load distribution angle on rolling elements
can be expressed by the formula, [19]

ε =
1
2

[
1 +

δa

δr
tan(αl)− g

2δr

]
(3)

If we assume that the value of the angle γ(t) = 0 in Eq. (3), then an analysis
of the bearing stiffnesses refers to the case of a constant distribution of rolling
elements. This case, met in the literature, has been called a static analysis of the
bearing stiffnesses. If a variability of the angle γ(t) is taken into account, then the
analysis of the stiffnesses is called dynamic [19], as it accounts for a distribution of
rolling bearing elements during motion with respect to the direction along which
the resultant radial load acts. A load distribution angle on rolling elements is
determined from the relation (on the basis of Eqs (1) and (3))

ψ = arccos
[
−δa

δr
tan(αl) +

g

2δr

]
(4)

where:
g – bearing radial clearance [µm];

δa, δr – axial and radial mutual displacements (deformations) of the bearing rings
under axial and radial loading, respectively, depending on a type and design
of the bearing, a way the bearing system is assembled (with pre–loading, with
a clearance, or with a zero clearance), a character of the bearing external loading.

In the case of a zero clearance in the bearing, the quantities δr, δa are the
nominal radial and axial displacements of the bearing rings, respectively, and can
be determined from [11]. The axial displacement reaches its nominal value (δ∗a) in
the case when only the axial component of the external load acts on the bearing.
The radial displacement equals δr = 0. In turn, the nominal radial displacement of
the bearing rings (δ∗r ) is determined when the axial displacement is assumed to be
δa = 0 (ε = 0.5). The axial stiffness is infinitely high then.
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In the case of a preload or a clearance in the bearing, the radial and axial
displacements are defined by

δr = βrδ
∗
r

δa = βaδ∗a
(5)

in which δ∗r , δ∗a are the nominal displacements of the bearing rings (nominal radial
and axial displacements of the bearing shaft), while βr, βa are the bearing radial
and axial stiffness coefficients, respectively.

Expression (5) defines the relation of the radial and axial load and the bearing
operation angle with respect to each other and it is a measure of bearing stiffness.

Figure 2 Load distribution angle coefficient as a function of the dynamic angle γ(t)

When dynamic distribution of the rolling elements has been considered, a phe-
nomenon of variability in the values of distribution parameters of the load acting
on the bearing rolling elements as a function of the angle γ(t) has been found.
Therefore, it is necessary to analyse and to take into account in calculations the
changes in the distribution parameters ε, ψ, zk, z′k and the magnitude of the load
acting on individual rolling elements, and bearing stiffness coefficients as a function
of the angle γ(t). In Fig. 2 a sample result of the analysis of the value of the load
distribution angle coefficient acting on rolling elements as a function of the angle
γ(t) (dynamic rolling element distribution) for the 7206 BE rolling bearing [18] and
the data shown in Table I is presented.

Figure 2 has been plotted for the case when the angular bearing load assumes
the values: Nα = 500 N, Faα = 1.20713Nα tan(αl).

While the value of the angle γ(t) is changing, the values of the load angle coef-
ficient ε are read. A numerical algorithm for determination of the load distribution
parameters acting on rolling elements can be found in [19]. A variability of the load
distribution parameters ψ, zk, z′k (18, 20) as a function of the angle γ(t) follows from
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the presented dependence of the load distribution coefficient ε on the angle γ(t),
Fig. 2.

Formulas (3), (4) allow for determination of parameters of the rolling element
loading region in the general case of the bearing load.

4. Bearing load and deformation

The relations describing the resultant forces the individual bearing rolling elements
are loaded with (Fig. 1, [19]) have form

Fi = Fmax
o

[
1− 1

2ε
(1− cos (γ(t) + iγ))

]m

(6)

where: The resultant load Fi of the i-th rolling element is composed of the radial

i = 1, ..., n, m – coefficient which describes of type of contact area between
rolling element and rolling tracks, [1, 2, 4, 8-10, 23-26]

Fi – resultant loading of the i-th bearing rolling element [N]
Fmax

o – maximum resultant loading acting on a single rolling
element of the bearing [N].

load Pi and the axial load Poi.
The external force Nαcan be described by,[19]

Nα =
+n2∑

i=−n1

Fmax
o

[
1− 1

2ε
(1− cos(γ(t) + iγ))

]m

cos(γ(t) + iγ) cos(αl) (7)

analogously, for axial force

Faα =
+n2∑

i=−n1

Fmax
o

[
1− 1

2ε
(1− cos(γ(t) + iγ))

]m

sin(αl) (8)

where:

i = −n1, ..., 0, ..., +n2

n1 = (ψ + γ(t))/γ

n2 = (ψ − γ(t))/γ

The resultant reaction acting on the i-th rolling element is specified in the form [19]

Fi =
Nα

zk

[
1− 1

2ε
(1− cos(γ(t) + iγ))

]m

(9)

where

zk =
+n2∑

i=−n1

[
1− 1

2ε
(1− cos(γ(t) + iγ))

]m

cos(γ(t) + iγ) cos(αl) (10)
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or by the formula equivalent to Eq. (8)

Fi =
Faα

z′k

[
1− 1

2ε
(1− cos(γ(t) + iγ))

]m

(11)

where

z′k =
+n2∑

i=−n1

[
1− 1

2ε
(1− cos(γ(t) + iγ))

]m

sin(αl) (12)

Employing Eqs. (3), (5), (7), (8), (10), (12) and formulas determining the values of
δ∗r , δ∗a the coefficients of radial stiffness βr and axial stiffness βa of the bearing can
be represented as

βr =
1
2ε

(
zk(ε = 0.5)

zk

) 1
m

βa =
2ε− 1

2ε

(
z sin(αl)

z′k

) 1
m

(13)

The values of the stiffness coefficients βr, βa depend on the fact if we carry out
a static or dynamic analysis of the bearing rolling element location (through a
variability of the rolling element load distribution parameters ε, Ψ). If we divide
the radial stiffness coefficient βr by the axial stiffness coefficient βa, Eq. (13), we
get

ε =
1
2

[
1 +

βa

βr

(
zk(ε = 1/2)

zk

) 1
m

(
z′k

z sin(αl)

) 1
m

]
(14)

Equation (14) can be presented in form, [19]

ε =
1
2

[
1 +

βa

βr

(
Faα

Nα tan(αl)

) 1
m

(
zk(ε = 1/2)
z cos(αl)

) 1
m

]
(15)

Equation (15) is used to assign the approximate value of the angle coefficient ε.
Using expression (7), we get

δa

δr
tan(αl) =

βaδ∗a
βrδ∗r

tan(αl) (16)

After substituting Eq. (13) into Eq. (16), one obtains

δa

δr
tan(αl) =

(2ε− 1)δ∗a
δ∗r

(
z sin(αl)zk

zk(ε = 1/2)z′k

) 1
m

tan(αl) (17)

Equation (17) allows one to analyze the relative radial and axial displacements of
the bearing rings as a function of the bearing load distribution.

The nominal displacements for the model under consideration at a zero clearance
in the bearing are in the form, [20]

δ∗r =
λmax

0

cos(αl)
δ∗a =

λmax
0

sin(αl)
(18)
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Relation between force and deformation for the rolling element can be presented as
a function of the stiffness of the bearing rolling elements–raceways contact, Fig. 1.

Fmax
0 = K(λmax

0 )m (19)

It has been assumed that in the unloaded bearing, a point or linear contact under
load transforms into a region of a circular or elliptic contour and a rectangular or
trapezoid region, correspondingly. The features of the contact have been determined
on the basis of classical Hertzian formulas [4, 5, 7-9, 17 ]. Eventually the nominal
displacements, Eq. (13) take the form

δ∗r =
Kr

cos(αl)

[
Nα

zk(ε = 0.5)

]1/m

δ∗a =
Kr

sin(αl)

[
Faα

z sin(αl)

]1/m

(20)

The stiffness coefficient Krcan be described by

Kr =
1

K
1
m

=


 1

(
1

Ki

)1/m

+
(

1
Ko

)1/m




m

(21)

where Ko and Ki are the stiffnesses of contacts of rolling elements with the outer and
inner raceway. Employing Eqs. (18), (3), (7-8), (10) and (12) and the formulas that
determine the nominal displacements δ∗r , /, δ∗a we obtain the coefficients of radial
and axial stiffness

βr =
1
2ε

(
zk(ε = 0.5)

zk

)1/m

βa =
2ε− 1

2ε

(
z sin(αl)

z′k

)1/m

(22)

The coefficients in Eq. (22) take into account the kinematics of rolling elements
and raceways and its influence on the parameters of the load distribution acting on
rolling elements. The radial and axial stiffness of rolling bearings can also be defined
as a ratio between the corresponding load increment and the deflection increment.
Thus, the dimensional stiffness is as follows

cr =
Nα

δr
=

c∗r
βsr

c a =
Faα

δa
=

c∗a
βa

(23)

where the nominal radial and axial stiffness (referred to a zero clearance in the
bearing, i.e., the boundary, desirable state) is as follows

c∗r =
Nα

δ∗r
c∗a =

Faα

δ∗a
(24)

Rolling bearing operation angle at which the resultant reaction of the i-th rolling
element acts can be calculated from

αl = arccos
Pi

Fi
(25)

The formulas that can be found in the literature [11, 12, 15, 16] describe nominal
displacements and stiffnesses of bearings for the case of a static or quasi–static posi-
tion of rolling elements and a continuous load distribution between rolling elements
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and raceways. This approximation can be used for high–rotary kinematic pairs.
As can be seen in the above equations, stiffnesses depend also on the fact if we
assume static or dynamic position of bearing rolling elements (by a variability in
parameters of the load distribution of rolling elements ε, ψ). Knowing the bearing
external load distributions and the load values acting on individual rolling elements
as a function of the rolling element location angle γ(t) with respect to the direction
along which the bearing radial load resultant vector acts, it is possible to analyze
an influence of the rolling elements position on stiffnesses coefficients.

Figure 3 Relation between the resultant vector of the external radial load and bearing rolling
element distribution

Figure 4 Kinematics of the bearing rolling element

whereas:

γo – angle between the direction of the resultant vector of the bearing radial load and the line

on which the center of the maximally loaded rolling element lies; this angle is treated as an initial

condition [19, 20] for an analysis of the system (γ(t = tp) = γo [rad]).
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4.1. Relations beetwen the bearing kinematics and position of rolling
elements

The considerations have been carried out on the basis of the kinematics of the
motion of the tracks and rolling elements, the bearing external load distribution
and the initial conditions of the load distribution, the location and the relative
velocity of the tracks and bearing rolling elements. Determination of the relation
between a direction along which the radial load resultant vector acts and a location
of the maximally loaded bearing rolling element as a function of the rolling element
motion character is a factor affecting the bearing stiffnesses.

The direction of the resultant vector of the radial load Nα is expressed as a
function of the angle νNα, Fig. 3, by the expression

ϑNα = A−B arcsin

(
F ζ

pα

Nα

)
(26)

where
F ζ

pα – is the vector of the resultant radial load in the direction of the ζ axis, Fig. 3.
whereas

F ζ
pα F ξ

pα A B

≥ 0 > 0 0 -1
> 0
≤ 0

≤ 0
< 0

π 1

< 0 ≥ 0 2π -1

In the case the dynamic distribution of bearing rolling elements is taken into
account, a relation allowing for calculation of the angular velocity of the rolling
element center as a function of the relative angular velocity of the bearing tracks
should be determined. Assuming that the inner ring rotates with the angular ve-
locity q̇j−1, and the outer ring with the velocity q̇j and that there is no slide on the
tracks, then the circumferential velocity of the rolling element center, (Fig. 3), is

um =
Dm

4

[
q̇j−1

(
1− 2ri cos(αl)

Dm

)
+ q̇j

(
1 +

2ri cos(αl)
Dm

)]
(27)

The angular velocity of the rolling element assembly with a cage with respect to
the bearing axis is

q̇m =
1
2

[
q̇j−1

(
1− 2ri cos(αl)

Dm

)
+ q̇j

(
1 +

2ri cos(αl)
Dm

)]
(28)

where
um – circumferential velocity of the rolling element center [m/s]
Dm – bearing pitch diameter [m]
ri – rolling radius of the i-th rolling element [m]
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As a result of the analysis of Fig. 3, a relation describing the angle between the
direction on which the center of the maximally loaded bearing rolling element lies
and the direction of the resultant vector of the radial load at a given moment of
time, has been formulated

γ(t) = ϑET − ϑNα (29)

where
ϑNα – angle between the direction of the bearing radial load resultant vector

and the axis ξj−1 [rad]
ϑET – angle between the line on which the center of the maximally loaded

bearing rolling element lies and the axis ξj−1 [rad]

Knowing, as the initial condition, the angle γo and the angle along which the
resultant radial loading at the initial moment t = tp acts, we can write the following
relation on the basis of Fig.3

ϑET (t = tp) = ϑNα(t = tp) + γo (30)

The angle of the direction along which the resultant vector of the bearing radial load
acts with respect to the axis ξj−1 of the local reference frame ξj−1, ζj−1, τj−1 and
the angle of the direction of the location of the center of the maximally loaded rolling
element with respect to the axis ξj−1 of the local reference frame ξj−1, ζj−1, τj−1

have been described by (Fig. 3)

ϑNα = ϑNα(t = tp) + ∆ϑNα

ϑET = ϑET (t = tp) + ∆ϑET
(31)

Using Eqs. (31), (30) and Fig. 3 we get, [19]

∆γ = ϑNα(t = tp)− ϑNα + ∆ϑET (32)

Eventually, the value of the angle describing the relation between the resultant
radial load direction and the location of the maximally loaded rolling element can
be expressed by the relation

γ(t) = γo − ϑNα + ϑNα(t = tp) + ∆ϑET (33)

A change in the angle ∆LET has been expressed as a function of the change in the
rolling element pitch center path in the following form, Fig. 4

∆LET =
Dm

2
∆ϑET (34)

where ∆LET – change in the rolling element pitch center linear path (along the arc)
during the simulation ∆t = (0, t) [m].

Having substituted Eq.(34) into Eq. (33), we obain

γ(t) = γo − ϑNα + ϑNα(t = tp) +
2∆LET

Dm
(35)

As the rolling element motion is non–uniformly variable in the general case and
the simulation of the bearing motion is conducted by means of numerical iterative



290 Szumiński, P

methods, let us consider the rolling element kinematics in the time interval ∆t =
(ti−1, ti) of the motion. Then, depending on the fact if we have an analytical form of
the linear velocity um(t) or only the values of numerical computations in subsequent
computational steps, the following relations hold

∆LET =
t∑
tp




ti∫

ti−1

umdt ∼= 1
2
∆t(um,i + um,i−1)|∆t→0


 (36)

where

tp – initial time of the motion simulation of the rolling
element distribution, e.g. tp = 0 [s])

∆t = (ti − ti−1) – time interval of the bearing simulation step [s]
um,i, um,i−1 – linear velocities, respectively, at the moment ti, ti−1 of the

time interval ∆t of the simulation of the rolling element
center motion with respect to the bearing axis [m/s].

The integral ∫ umdt in Eq. (36) can be obtained using Eq. (27) and knowing
the forms of the functions describing the time characteristics of the bearing outer
and inner track angular velocities (i.e. q̇j , q̇j−1). The case when the time tp (time
tp, e.g. tp = 0, at which the motion of the rolling assembly starts; static initial
conditions) is assumed as the beginning of the simulation of the dynamic rolling
element distribution and the case when the simulation of the dynamic distribution
of rolling elements starts after the rolling assembly motion lasts for a certain time
t (so–called dynamic initial conditions) have been distinguished. Finally

γ(t) = γo − ϑNα + ϑNα(t = tp) +
t∑
tp

∆t

Dm
(um,i−1 + um,i) (37)

where:
∆t → 0, |γ(t)| ≤ 1/2 γ – period of changes in the angle γ(t) is equal to 1/2γ(t)
γ – circumferential angle between the centers of two subsequent rolling elements

versus the bearing axis [rad]; The above mentioned angular condition distinguishes
the cases when the angle γ(t) exceeds the zero value and the ’boundary’ values
are equal to ±1/2 γ . When the ”boundary” value is exceeded, a change in the
maximally loaded rolling element and, thus, a change in the value of the angle γ(t)
(taking into consideration a periodicity of its changes) is accounted for automati-
cally.

5. Numerical simulations

In order to conduct an exemplary simulation, the radial and axial load have been
assumed as

Nα = J [Ξ + sin(ω2t)]
Faα = Faαo + 1.67Nα tan(αl) (38)

Faαo = Q sin(ω3t + φ)
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where
J,Q – denote the amplitude of the external radial and axial load, correspondingly,
Faαo – value of the external axial load of the bearing,
ω2, ω3 – frequency of changes in the external radial and axial load,
ϕ – phase shift angle of the external load components,
Ξ – parameter of the external load range.

Figure 5 Exemplary coefficients of the bearing load distribution in function of the rolling elements
position

Excitement parameters Value Excitement parameters Value
J [N] 250 ω2 [rad/s] 1
Q [N] 50 ω3 [rad/s] 1
G [rad/s] 15 γo [rad] −π/18
Ξsgη [-] 1.5, 2 φ [rad] 0
ω1 [rad/s] 5 ϑNαp [rad] π/4
ϑNα = π/4 + time/10 [rad]; bearing with a clearance g = 0.

A relative velocity of the rotational motion between the journal and the bush has
been expressed by the relation (the value of the angular velocity of the bearing inner
ring has been assumed to be zero)

q̇ = G[η − sin(ω1t)] (39)
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where:

G – amplitude of the relative velocity [rad/s]
η – parameter of the bearing motion character [-]
ω1 – angular velocity of changes in the relative motion [rad/s]

In Fig. 5 two exemplary coefficients of the bearing load for assumed case of
the bearing external load, Eq. (38), are presented. A value of the bearing load
distribution angle coefficient ε, Fig. 2, also varies, depending on the angle of the
bearing rolling element location γ(t). In turn, changes in individual rolling element
loads exert an influence on the bearing stiffnesses corresponding to them.

Figure 6 Nondimensional coefficients of stiffnesses in function of the rolling elements position for
1st case of the load distribution coefficient, see Fig. 5.

Figure 7 Nondimensional coefficients of stiffnesses in function of the rolling elements position for
2nd case of the load distribution coefficient, see Fig. 5.
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Corresponding to Fig. 5 the bearing radial and axial nondimensional and dimen-
sional stiffnesses coefficients, in function of the rolling element position, are shown
in Figs 6–9.

In the presented figures an influence of the rolling elements position on the
stiffnesses coefficients for different coefficients of the bearing load is visible.

Figure 8 Dimensional coefficients of stiffnesses in function of the rolling elements position for 1st

case of the load distribution coefficient, see Fig. 5.

Figure 9 Dimensional coefficients of stiffnesses in function of the rolling elements position for 2nd

case of the load distribution coefficient, see Fig. 5.

6. Conclusions

In the paper, an analytical model which allows to analyze an influence of disribution
of rolling elements on their loading, and on the stiffnesses coefficients has been
developed.The considerations have been carried out on the basis of the kinematics of
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the motion of the tracks and rolling elements, the bearing external loads distribution
and the location rolling elements during motion.

The present paper discusses the method which is based on the verified and
extended method for the analysis of the rolling bearing load distribution and whose
foundations (for the static or quasi–static rolling element distribution and when
an approximation in the form of the continuous load distribution is assumed) are
included in [6, 11, 12].

The presented model takes into consideration both the cases of floating and
preloaded bearing systems. Slow–speed and short–period motions of rolling bearings
have been assumed as a characteristic type of the motion of rolling kinematic pairs
in manipulators and robots.

Some selected data referring to the 7206 BE angular bearing are included in
Table III.

Parameter: Value:
Number of rolling elements z [-] 12
Radius of rolling element ri [m] 0.00475
Diameter of rolling bearing groove D [m] 0.0365
Angle between rolling elements γ [˚] 30
Bearing operation angle α [˚] 40
Pitch diameter Dm [m] 0.046
Inner diameter Dm1 [m] 0.043
Outer diameter Dm2 [m] 0.051

The remaining data concerning the 7206 BE bearing are to be found in [18].
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