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This article defines mass moments of inertia and static moments of a rigid body for an
”umbrella” system, i.e. a system comprising of three elements: any plane in space, a
straight line perpendicular to this plane and their point of intersection (pole). From this
system we derive the relationships between mass moments of inertia and static moments
for models with two parallel planes and a line perpendicular to them or models with two
parallel lines and a plane perpendicular to them. A special case of these relationships is
the Steiner’s theorem.

Keywords: Rigid body, mass moments of inertia, static moments, Steiner’s theorem,
”umbrella” system

1. Introduction

The notion, definitions and methods of calculation of mass moments of inertia of
a rigid body belong to the fundamental problems of mechanics. Textbooks usu-
ally describe this problem in a Cartesian coordinate system and for such a system
introduce a notion of the moment of inertia relative to successive planes and the
axes of the system and the point (pole) being the centre of the coordinate system.
In addition, all relationships occurring between these quantities are defined in the
same coordinate system.

In the paper a different model of the system – composed of three elements: a pole,
and a straight line and plane perpendicular to each other – has been introduced.
The layout of the elements there reminds an umbrella.

For this model, mass moments of inertia and static moments of a rigid body have
been defined and fundamental relationships between them have been determined.
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2. Description of the model

Figure 1 Pole - straight line - plane system (the umbrella)

Let us assume any point (pole) O in space and draw through this point any
plane nn and a straight line l, which is perpendicular to this plane. The system of
these three elements: the pole–straight line–plane in space is shown in Fig. 1. The
position of the plane nn in space is determined by a unit vector n perpendicular
to this plane. The position of the straight line l in space is determined by the
unit vector l, lying on this straight line. The position of the point (pole) in space
can be given using its coordinates. Thereby, the pole–straight line–plane system is
univocally determined in space.

In view of the perpendicularity of the plane nn and the straight line l. we state
that the unit vectors n and l are perpendicular and have their absolute values equal.

|n| = |l| = l and n ‖ l (1)

Moments of inertia of any rigid body are products of the second degree of the
parameters of a body of a density ρ filling an area V . Thus, these are scalar
quantities.

In these products there occurs a radius vector r, determining the position of an
elementary mass dm

dm = ρ dv

where: ρ is the volumetric mass density, dv is the elementary volume.
We introduce a notion of the moment of inertia relative to the pole O, the

straight line l and the plane nn in the form of volume integrals from the following
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squares of scalar products and vector products [1]

Io =
∫∫∫

v

r2ρ dv Il =
∫∫∫

v

(l× r)2ρ dv Inn =
∫∫∫

v

(n ∗ r)2ρ dv (2)

The static moments of a body relative to the same system (the pole O – the straight
line l – the plane nn) are moments of the first degree, hence they are vectors and
are equal to, respectively

mo =
∫∫∫

v

rρ dv ml =
∫∫∫

v

(l× r)ρ dv mnn = n
∫∫∫

v

(n ∗ r)ρ dv (3)

3. Relationships between the moments of inertia in relation to the ele-
ments of the model.

Let us consider the square of a vector product (l×r)2 being a sub–integral function
in an expression for the moment of inertia I1 relative to the straight line l. Using
Lagrange’s identity and (1), we can express this function by means of scalar products
(l ∗ r) and (n ∗ r).

(l× r)2 = l2r2 − (l ∗ r)2 = r2 − (n ∗ r)2 (4)

Following multiplication of both sides of expression (4) by ρdv and integration, we
get ∫∫∫

v

(l× r)2ρ dv =
∫∫∫

v

r2ρ dv −
∫∫∫

v

(l ∗ n)2ρ dv (5)

I1 = Io − Inn thus Io = I1 + Inn (6)

Property (6) can be formulated as follows:
The moment of inertia of a rigid body relative to any pole is a sum of the

moments of inertia of this body relative to two, mutually perpendicular elements, a
straight line and a plane drawn through this pole. We now introduce the following
increments of the moments of inertia:

− between straight lines 1 and 2 of as ∆I1−2 = I2 − I1

− between the poles O1 and O2 as ∆Io1−2 = Io2 − Io1 (7)
− between the planes 11 and 22 as ∆I11−22 = I22 − I11

3.1. Conclusion 1

Let us assume that (Fig.2)there is a common plane 11 = 22 (I11 = I22) containing
poles O1 and O2

two straight lines l1 and l2, passing through the poles O1 and O2, respectively,
are parallel to each other and perpendicular to this plane (l1 ‖ l2 and r12⊥ l1).

Then, according to (6) we can write a relationship between the moments of
inertia Io1, Io2 relative to the poles O1 and O2 and the moments of inertia I1, I2

relative to the straight lines l1 and l2

I11 = Io1 − I1 and I22 = Io2 − I2
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Since I11 = I22 , then
Io2 − Io1 = I2 − I1 (8)

Having used increments (7), we have:

∆Io1−2 = ∆I1−2 for l1 × l2 = 0 and r12 ∗ l1 = 0 (9)

Figure 2 A plane - two straight lines model

An increment of the moment of inertia of a rigid body between any two poles is
the same as An increment of the moment of inertia between two parallel straight
lines passing through these two poles, and perpendicular to the common plane drawn
through these poles.

3.2. Conclusion 2

Let us assume that (Fig. 3)

• there exists a straight line l of a moment of inertia I1 containing the poles O1

and O2

• two planes 11 and 22 passing through the poles O1 and O2, respectively are
parallel and perpendicular to this plane (n1 ‖ n2 and r12 ‖ l)
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Then, according to (6), we can write a relationship between the moments of inertia
Io1, Io2 relative to the poles O1 and O2 and the moments of inertia I11 and I22

relative to both planes 11 and 22.

Il = Io1 − I11 and Il = Io2 − I22

Thus,
Io2 − Io1 = I22 − I11

Having used increments (7), we have:

∆Io1−2 = ∆I11−22 for n1 × n2 = 0, r12 × l = 0 and r12 ∈ l (10)

An increment of the moment of inertia between any two poles is the same as An
increment of the moment of inertia between two parallel planes passing through these
poles and perpendicular to the straight line joining these poles.

Figure 3 A two planes - straight line model

3.3. Conclusion 3

Let us assume that (Fig. 4)

• there are two parallel straight lines l1 and l2 containing the poles O1 and O2,
(l1 ‖ l2)

• two planes 11 and 22 passing through the poles O1 and O2, respectively are
parallel to each other and perpendicular to both straight lines (n1 ‖ n2 and
n1 ‖ l1).
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Figure 4 A two planes - two straight lines model

Let us introduce a third pole O3, lying on the straight line l2 and, simultaneously,
lying in plane 11, the same in which the pole O1 is lying. It can easily be seen that
the poles O1 and O2 satisfy the assumptions of conclusion 2, while the poles O2 and
O3 taken together satisfy the assumptions of conclusion 1.

For the poles O1 and O3, making use of (9), we can write

Io3 − Io1 = I2 − I1

While for the poles O2 and O3, making use of (10), we can write

Io2 − Io3 = I22 − I11

Adding the last two equations, we get

Io2 − Io1 = I2 − I1 + I22 − I11

Having used increments (7), we have:

∆Io1−2 = ∆I1−2 + ∆I11−22 (11)

An increment of the moment of inertia of a rigid body between any two poles is
a sum of two increments:

• an increment of the moment of inertia between two parallel straight lines pass-
ing through these poles and perpendicular to the common plane drawn through
these poles, and
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• an increment of the moment of inertia between two parallel planes passing
through these poles and perpendicular to a straight line joining these poles.

4. Increment of the static moment vector between two poles

We take into consideration two poles O1 and O2 distant from each other by a
segment d. Their mutual position is determined

by distance vectors r12 and r21, O1O2 = r12 and O2O1 = r21, where

r12 = r21 = d and r12 = −r21 (12)

Let vector–radii r1 and r2 determine the position of the elementary mass dm = ρ dv,
as shown in Fig. 5.

Thus we have
r1 = r12 + r2 (13)

We multiply both sides of equation (13) bydm = ρ dv and integrate it
∫∫∫

v

r1ρ dv = r12

∫∫∫

v

ρ dv +
∫∫∫

v

r2ρ dv (14)

Figure 5 Position of the elementary mass in space

It therefore follows that

mo1 = mr12 + mo2

mo2 −mo1 = −mr12

An increment of the static moment vector between the points O1 and O2 is equal
to
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∆mo1−2 = mo2 −mo1 (15)

Then, having taken into account (12)

∆mo1−2 = mr21 (16)

An increment of the static moment vector of a rigid body between any two points
is a vector parallel to the axis drawn through these points, proportional to the mass
of the body and to the distance vector of these points.

Squaring equation (13) we obtain

r1 = r12 + r2

r2
1 = r2

12 + r2
2 + 2r12 ∗ r2

Then multiplying the last equation by dm = ρ dv and integrating, we get
∫∫∫

v

r2
1ρ dv =

∫∫∫

v

r2
12ρ dv +

∫∫∫

v

r2
2ρ dv + 2

∫∫∫

v

(r12 ∗ r2)ρ dv (17)

As it can be proved that
∫∫∫

v

(r12 ∗ r2)ρ dv = r12 ∗
∫∫∫

v

r2ρ dv = r12 ∗mo2 (18)

besides ∫∫∫

v

r2
12ρ dv = r2

12

∫∫∫

v

ρ dv = d2m = md2

equation (17) assumes the form

Io1 = md2 + Io2 + 2 r12 ∗mo2 (19)

We apply the same procedure to the relationship r2 = r21 +r1as to (13) and having
squared and integrated it, we have

Io2 = md2 + Io1 + 2 r21 ∗mo1 (20)

Then, we can write it as

Io2 − Io1 = m d2 + 2 r21 ∗mo1

∆Io1−2 = m d2 + 2 r21 ∗mo1 (21)

Adding equations (19) and (20), we obtain

r12 ∗mo2 + r21 ∗mo1 + md2 = 0

We use relationship (12) r12 = −r21 and transform it into the form
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r12 ∗mo1 + r21 ∗mo2 = md2 (22)

For any two poles of a rigid body distant from each other by a segment d a sum
of scalar products of the static moment vectors going out of these poles and the
distance vectors from the second pole amounts to md2.

We make use of (12) and (13) again and transform expression (22) into

m d2 = r12 ∗ (mo1 −mo2) = r21 ∗ (mo2 −mo1)
m d2 = r12 ∗∆mo2−1 = r21 ∗∆mo1−2 (23)

For any two points of a rigid body distant from each other by a segment d a
scalar product of the vector of distances of these points multiplied by the vector of
increment of the static moment between these points is equal to a product of the
body mass and the square of the distances between these points.

5. Increments of the moments of inertia between two elements of a
system.

Let us return to expression (21)

∆Io1−2 = m d2 + 2 r21 ∗mo1

Let us put expression (23) of the form given below into it

md2 = r21 ∗ (mo2 −mo1)

and reduce similar terms. Having taken into consideration (7) and (12) we have

∆Io1−2 = r21 ∗ (mo1 + mo2) = −r12 ∗ (mo1 + mo2) (24)

Let us introduce a designation of the vector of a sum of the static moments of
a rigid body for any two points

∑
mo1−2 = mo1 + mo2 (25)

We can now the increment of the moment of inertia (24) write in the form

∆Io1−2 = r21 ∗
∑

mo1−2 (26)

An increment of the moment of inertia of a rigid body between any two poles is
equal to a scalar product of the vector of distances of these points and the vector of
a sum of the static moments at these points.

If the assumptions of conclusion 1 (Fig. 2) are satisfied, i.e. when the poles O1

and O2 are the points of intersection of the two parallel straight lines l1 and l2 with
a straight lines perpendicular to it, then according to (19) we have

∆Io1−2 = ∆I1−2

which means that
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∆I1−2 = r21 ∗
∑

mo1−2 (27)

An increment of the moment of inertia of a rigid body between two parallel
straight lines is equal to a scalar product of the vector of distances of the two nearest
points of these straight lines and the vector of a sum of the static moments at these
points.

If one of these points (e.g. pole 1) is the centre of mass of a body, the static mo-
ment at this point is equal to zero (mo1 = 0), then – having taken into consideration
(23) – from equation (27) we obtain Steiner’s theorem

I2 = I1 + md2

where:

I2 is the moment of inertia of a body in relation to a straight line
parallel to the central axis,

I1 is the moment of inertia of a body with respect to a straight line,
being the central line,

d is the distance of both parallel straight lines.

If the assumptions of conclusion 2 are met (Fig. 3), i.e. when the poles O1 and
O2 are points of intersection of two parallel planes 11 and 22 with a straight line
perpendicular to them, then – according to (10) – we have

∆Io1−2 = ∆I11−22

which means that

∆I11−22 = r21 ∗
∑

mo1−2 (28)

An increment of the moment of inertia of a rigid body between two parallel planes
is equal to a scalar product of the vector of distances of the traces of these lines with
a straight line perpendicular to it and the vector of a sum of the static moments at
these points.

If one of these points (e.g. pole 1) is the centre of mass of a body, we notice
again that the static moment at this point is equal to zero (mo1 = 0), then – having
taken into consideration (23) – we obtain the following relationship from equation
(28)

I22 = I11 + md2 (29)

where:

I22 is the moment of inertia of a body in relation to any plane parallel
to the plane containing the centre of mass of the body

I11 is the moment of inertia of a body in relation to the plane containing
the centre of mass of the body

d is the distance between the parallel planes
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The moment of inertia of a rigid body in relation to any plane is equal to the
moment of inertia in relation to a plane parallel to it and passing through the centre
of mass of the body increased by a product of the mass of the body and a square of
the distances between the planes.

In this case, when the pole O1 is the centre of mass of a body – after substituting
(mo1 = 0) and taking into account relationship (23) – it results from equation (27)
that

Io2 = Io1 + md2 (30)

where:

Io2 is the moment of inertia of a body in relation to any pole
Io1 is the moment of inertia of a body in relation to the pole–centre

of mass
d is the distance between both poles.

The moment of inertia of a rigid body in relation to any pole is equal to the
moment of inertia in relation to the pole which is the centre of mass of the body
increased by a product of the mass of the body and the square of the distances between
both poles.

6. Summary

The formulae derived before (26–28) can be written as one and formulated as one
general statement

An increment of the moment of inertia of a rigid body between two parallel planes
or straight lines is the same as an increment of the moment of inertia between
two poles which are traces of these planes (straight lines) with a common normal,
whereas an increment of the moment of inertia of a rigid body between any two poles
is equal to a scalar product of the vector of the distances between these points and
the vector of a sum of the static moments at these points.

7. Final Conclusions

In the paper it has been proved that in a rigid body there are relationships between
products of the second degree, moments of inertia in relation to any pole–straight
line–plane system and products of the first degree, vectors of the static moments
calculated in relation to the same system. These relationships are independent of
the position of the pole–straight line–plane system in relation to a Cartesian or any
other coordinate system assumed in this body since these relationships are scalar
products of the vectors and the latter are independent of a system of reference.

In the paper relationships between increments of the mass moments of inertia
of a body and scalar products of the vectors of the mutual position of the system
elements and the vectors of the static moments of a rigid body.

In addition, well-known Steiner’s theorem, concerning the moments of inertia
between two parallel axes, one of which is the central axis, results from these rela-
tionships as a special case.
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Nomenclature

Io, Inn, Il mass moments of inertia relative to the pole O,
the plane nn and the straight line l

mo, mnn, ml static moments of a body to the same system
m mass of a rigid body


