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Dynamic stability of rectangular simply supported plates has been investigated in the
elasto–plastic range. The paper concerns orthotropic plates subjected to combined in–
plane rectangular pulse loading of short duration corresponding usually to the period
of natural fundamental flexural vibrations. Analytical–numerical solution of dynamic
stability of plate being part of a structure has been presented. For orthotropic material
Hill’s criterion of plasticity is applied. The calculations have been performed taking
into account the plastic flow theory for composite material. The static tensile stress–
strain curve has been approximated by bilinear characteristic. On the diagrams the plate
deflection as a function of dynamic load is shown. The large–deflection equations are
solved by Galerkin’s method. Nonlinear differential equations dependent on time have
been computed applying Runge–Kutta fourth–order method.
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1. Introduction

At present the design of thin–walled constructions made of composites is generally
applied in the technology. Lately composites have been used commonly in army, au-
tomotive industry, aircraft industry as well as marine structures. The advantages of
application of composites structures are huge because they include the high strength
and stiffness properties and additionally are light. Despite the high strength the
composites are characterised by very good fatigue life, sound insulation properties
or electromagnetic transparency and can work in the wide scope of temperature
(usually to 120o C).

In the literature the character of load is defined by amplitude, duration and
shape of pulse [6]. The load may be as follows: impact load (the waves phenomena
and takeover of hit energy should be taken into consideration), dynamic load and
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quasi–static load. It has been assumed that the effect of dynamic buckling takes
place at moderate great amplitudes of loading and duration equal or close to the
period of natural fundamental vibrations of structures.

The term of dynamic stability loss contains itself a lot of physical phenomena
and can be defined in many different ways. The constructions can bear the pulse
loading significantly greater than the static buckling load but the dynamic buck-
ling occurs under the condition that construction should include initial deflections
(imperfections).

Seeking the critical dynamic load different criteria can be applied, determined
by the appearance of some particular phenomena during dynamic buckling (for
example obtaining the assumed proper deflection or shortening) or criteria allowing
to find out failure load. Taking into account only the elastic range, in order to
determine critical dynamic load Budiansky–Hutchinson’s criterion [9, 10] or Volmir’s
criterion [19] can be used. According to Budiansky-Hutchinson’s criterion dynamic
stability loss occurs when some dynamic load causes the rapid increase of plate
deflection. Volmir’s criterion assumes the dynamic stability loss of plates (panels,
plated structure) when the plate deflection reaches the value equal to the one or
half plate thickness.

In the literature one can find many works devoted to the analysis of dynamic
stability of structures. Zizicas [23] as the first presented in 1952 theoretical solution
for simply supported plate. Volmir [19] showed response of rectangular plate for
various shapes pulse loading. Authors Weller, Abramovich and Yaffee [1] applied
Budiansky–Hutchinson’s criterion for isotropic plates under sinusoidal pulse. The
scientists Air–Gur and Simonetta in paper [2] analysed composite plate clamped on
all its edges and proposed four criteria of dynamic stability loss. Petry and Fahlbush
[16] obtained many results for isotropic plate considering different pulse duration
and initial imperfection. Those authors proposed failure criterion which assumes
that the construction is dynamic stable under pulse loading when the effective stress
(found by Huber–Mises formula) in each point of construction is not greater than
limit stress of material during dynamic buckling.

The aim of this paper is to investigate dynamic stability of composite plates
considering elasto–plastic range of material. It was desirable to conduct the re-
search on the behaviour of plate subjected to untypical combined load that earlier
was considered only in static solution. Apart from that, in the work the maximal
dynamic load, which the plate can carry, has been searched taking into account the
material characteristics.

2. Problem formulation

In the figure 1 the thin–walled structure subjected to the vertical dynamic force is
shown [21]. The vertical force dependent upon the time causes in the considered
upper flange of the structure the linearly variable dynamic bending moment.

The value of the force N
(2)
x (t) depends on the increase (decrease) of the bending

moment along the structure and is described by the coefficient η (Eq. 2). The force
T2(t) is caused by the torque and the shear force. At simple torsion of the thin
- walled structure the absolute value of the force T2(t) is constant on the whole
periphery of the plate. In study the part of the compressed flange of the structure
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is considered, restricted by the membranes and the webs, treated as a rectangular
plate simply supported on all its edges. This assumption results from the fact that
the thickness of webs and membranes is considerably smaller than the flange one.

Figure 1 The structure loaded by pulse force F(t) causing bending and torsion

Let’s consider a rectangular plate (flange of the construction shown in Fig. 1) of
length a , width b and constant thickness h , simply supported along all its edges,
loaded as shown in Fig. 2. The plate has the initial imperfection w0 in z – direction.
Loading of a plate is described by two coefficients [21]:

η =
N

(2)
x (t)

N
(1)
x (t)

ζ =
T

(
2t)

N
(1)
x (t)

. (1)

In analysed one–layer composite plate it is assumed that the principal directions
of orthotropy coincide with plate edges. Material properties of plates are described
by: E1, E2 – Young’s moduli in 1-th and 2-nd direction respectively, ν21, ν12 –
Poisson’s ratio, G12 – shear modulus in 1-2 plane.

3. Solution of the problem

Using the classical thin plates theory the large-deflection equations have been deliv-
ered and solved by Galerkin’s method [14]. The problem is conducted on the basis
of the analytical-numerical method of solution. Some of the obtained results are
compared with the finite element method calculations (ANSYS 9.0).



312 Czechowski, L

Figure 2 Loading and geometry of a composite plate

for 0 ≤ t ≤ Tp N
(1)
x = N

(1)
dyn for t > Tp N

(1)
x = 0

The nonlinear strain – displacement relations considering the initial imperfection
are assumed as [14]:
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+
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(
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∂y
+

∂v
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+

∂w
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∂w

∂y
− ∂w0

∂x

∂w0

∂y
− 2z

∂2(w − w0)
∂x∂y

where
u, v, w – displacement functions in x, y, z direction, respectively,
w –total deflection,
w0 – initial imperfection,
εxm, εym, γxym – membrane strains,
εxb, εyb, γxyb – bending strains.
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In the analysis the plastic flow theory for orthotropic material is used [7, 8, 12,
13]. The stress and strain variations for composite plate in the elasto-plastic range
considering Prandtl–Reuss equations have been derived in a form [12]:

δσx = R̄11δεx + R̄12δεy + R̄13δγxy

δσy = R̄21δεx + R̄22δεy + R̄23δγxy (3)
δτxy = R̄31δεx + R̄32δεy + R̄33δγxy

where R̄11, R̄12, R̄21, R̄13, R̄31, R̄22, R̄23, R̄32, R̄33 are variable coefficients depend-
ing on the loading, material property and effective stress (See appendix).

The membrane forces N x,N y,N xy and bending and twisting moments M x,M y,M xy

are defined as [14]:

{Nx , Ny, Nxy} =

+ h
2∫

−h
2

{σxm, σym, τxym} dz

(4)

{Mx ,My, Mxy} =

+ h
2∫

−h
2

z {σxb, σyb, τxyb} dz

The differential equations of the dynamic equilibrium of thin plates are [14]:

Nx,x + Nxy,y = ρh
∂2u

∂t2

Ny,y + Nxy,x = ρh
∂2v

∂t2
(5)

(Nxw,x + Nxyw,y −Mx,x −Mxy,y),x

+(Nyw,y + Nxyw,x −My,y −Mxy,x),y = ρh
∂2w

∂t2

where ρ – material density of a plate.

Applying equations (3) and (4), introducing Airy’s force functions

(Nx =
∂2Φ
∂y2

h, Ny =
∂2Φ
∂x2

h, Nxy = − ∂2Φ
∂x∂y

h)

after the neglecting the in-plane terms of inertia

∂2u

∂t2
= 0,

∂2v

∂t2
= 0
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the three equations of the dynamic equilibrium (5) reduce to the one which follows
as:

ρh
∂2w

∂t2
= h

(
∂2Φ
∂y2

∂2w

∂x2
+

∂2Φ
∂x2

∂2w

∂y2
− 2

∂2Φ
∂x∂y

∂2w

∂x∂y

)

−
h
2∫

−h
2

[
∂4(w − w0)

∂x2∂y2

(
2R̄12 + 4R̄33

)
+

∂4(w − w0)
∂x4

R̄11 (6)

+4
∂4(w − w0)

∂x3∂y
R̄13 + 4

∂4(w − w0)
∂x∂y3

R̄23 +
∂4(w − w0)

∂y4
R̄22

]
z2dz

Investigating the behavior of a plate in the elasto-plastic region relations between
stresses and strains have to be known in entire range. In the computations the
experimental tensile stress–strain curve is represented by the empirical equations of
suitable forms. In this paper real static tensile curves have been approximated by
bilinear characteristics for composite material, shown in Fig. 3. The parameters
σ10, σ20are initial yield stresses in 1-th and 2-nd direction, respectively.

Figure 3 Approximated material characteristics for composite

The moment of the entering from the elastic region into elasto–plastic region
is determined by yield criterion. In order to analyse an orthotropic material the
anisotropic criteria have to be considered. In this work Hill’s criterion for or-
thotropic materials has been applied.

For plane stress state Hill’s criterion is written in a form [7, 12, 13, 15]:

σ2
eff = ā1σ

2
1 + ā2σ

2
2 − ā12σ1σ2 + 3ā3τ

2
12, (7)

where, σ, τ are stress components, ā1 ÷ ā3 are parameters of anisotropy and σeff

means effective stress.
For simply supported plate it is assumed that all edges remain straight and

parallel during dynamic buckling.
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The initial and boundary conditions:

• the initial conditions: for t = 0

w = w0
∂w

∂t
= 0

• boundary conditions:

w(x, y)|x=a
x=0 = 0

Mx|x=a
x=0 = 0

Nx(x = 0) =
1
b

b∫

0

Φ,yy (η)dy = −N (1)
x η
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1
b

b∫

0

Φ,yy (η)dy = −N (1)
x (1− η)−N (1)

x η

Nxy|x=a
x=0 =

1
b

b∫

0

Φ,xy dx = 0

w(x, y)|y=b
y=0 = 0

My|y=b
y=0 = 0

Ny|y=b
y=0 =

1
a

a∫

0

Φ,xx (η)dx = 0

Nxy(y = 0) = −1
a

a∫

0

Φ,xy (η)dy = −1
2

b

a
(η − 1)N (1)

x (t)

Nxy(y = b) = −1
a

a∫

0

Φ,xy (η)dy =
1
2

b

a
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x (t)

In order to satisfy boundary conditions the deflection function is taken as:

w(x, y, t) = w11 + w21 = A11(t) sin
πx

a
sin

πy

b
+ A21(t) sin

2πx

a
sin

πy

b
(8)

Assumed two parameters of deflection function (8) results from the possibility of
calculation program but for considered material property and dimensions of plate
this function is significantly.

Before the integration of the dynamic equilibrium equation (5), the plate has
been divided into l× s× t = 10× 10× 4 equal elements pieces and for each element
variable coefficients R̄ l,s,t

11 , R̄ l,s,t
22 , R̄ l,s,t

33 , R̄ l,s,t
12 , R̄ l,s,t

13 , R̄ l,s,t
23 are attributed.
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The differential equations system depending upon the time has been computed
in Mathematica 5.0 code using Runge–Kutta fourth–order method. In Fig. 4 the
flow chart of main program is presented.

Figure 4 The flow chart of the calculation program

4. Results of calculations

The dynamic response for the orthotropic plate subjected to in–plane rectangular
pulse loading is presented. The results are obtained for the case when the principal
directions of orthotropy coincide with the plate edges (ϕ = 0◦, see Fig. 2) taking
into consideration various η parameters and ζ = 0. The density of the material
amounts 2000 kg/m3. In the presented diagrams there are marked:

Tp – duration of pulse loading;
T – period of natural flexural vibrations of considered plate;
η – coefficient of plate loading;
Ncr – static buckling load of the considered plate;
Ndyn – load amplitude;
σcr – static buckling stress of the considered plate;
E1 – Young’s modulus in 1-th (x) direction;
E2 – Young’s modulus in 2-nd (y) direction;
G12 – shear modulus in the 1-2 plane (x-y plane);
w0 max – initial maximal deflection of plate;
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wmax/h – quotient of maximal deflection of plate with respect to the thickness
of considered plate;

σ10, σ20, σθ=45 – initial yield stresses in the directions 1, 2 and rotated by
θ = 45◦ to the x-direction, respectively;

σ0 – initial yield stress in the reference direction;
τ0 – initial yield stresses for the pure shear test;
Ep

1 , Ep
2 , Ep

θ=45 – moduli of linear hardening in the directions 1, 2 and rotated
by θ = 45◦ to the x-direction, respectively;

Gp
12 – shear modulus of linear hardening in the 1-2 plane (x-y plane);

Figure 5 The response of the compressed plate for various ratio of the orthotropy in the elastic
region

The influence of the material orthotropy in the elastic region on the response of
plate is shown in the Fig. 5. In the elasto–plastic region the quotient of Ep

2/Ep
1 = 1

is assumed. For Ep
2/Ep

1 = 2 the sudden increase of deflection of the plate appears
at Ndyn

∼= 1, 2Ncr and for the two other considered cases at Ndyn
∼= 1, 4Ncr. It

arises so because for such a material property and for Ep
2/Ep

1 = 2 the static buckling
load is the greatest and its value corresponds to 70 % of the initial yield stress in
the reference direction. For Ep

2/Ep
1 = 1 and Ep

2/Ep
1 = 0, 5 curves are almost the

same. In Fig. 6 the maximal deflection of plate dependent on dynamic load for
various coefficient η is presented. For all cases the courses of curves are different
but for η = 0 and η = 0, 5 the rapid growth of deflection follows at Ndyn ≥ 2, 0Ncr.
Considering the pure compression (η = 1) in spite of the lowest critical buckling
stress in this case, the load carrying capacity ends for Ndyn ≥ 1, 8Ncr
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Figure 6 Comparison of the influence of the load coefficient on the maximal deflection of plate

Figure 7 The response of the combined loaded plate for various ratio of the orthotropy in the
elastic region
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In Fig. 6 the maximal deflection of plate dependent on dynamic load for various
coefficient η is presented. For all cases the courses of curves are different but for
η = 0 and η = 0, 5 the rapid growth of deflection follows at Ndyn ≥ 2, 0Ncr.
Considering the pure compression (η = 1) in spite of the lowest critical buckling
stress in this case, the load carrying capacity ends for Ndyn ≥ 1, 8Ncr

Figure 8 Comparison of the obtained results by analytical-numerical method solution with the
result by FEM solution for compressed plate

Analysing the orthotropic plates subjected to the combined load (η = 0) for various
quotients of E2/E1 (shown in Fig. 7) the fastest increase of the response of plate is
observed for E2/E1 = 2 and E2/E1 = 1 at Ndyn ≥ 1, 9Ncr. It occurs similarly for
pure compression (Fig. 5). For E2/E1 < 1 the curves go somewhat gently and for
this material property the plate can carry the greater dynamic load referred to its
critical buckling load. The comparison of the results from the analytical–numerical
solution with the numerical solution obtained by finite elements method for pure
compression is shown in Fig. 8. The received curved are similar each other.

5. Conclusions

The present paper provides the results of the behaviour of orthotropic plate under
rectangular in–plane pulse loading. The main purpose of the work was the esti-
mation of maximal dynamic load for various cases of material property taking into
account elasto–plastic region and the flow theory of plasticity. It can be assumed
that the load carrying capacity of plate reaches its boundary when for given dy-
namic load follows the sudden growth of deflection. It occurs in many considered
cases if in material of the construction there exist many points in which initial yield
limit is exceeded. It was observed that for each way of load the deflection of plate
grows to infinity when the dynamic stress is close to initial yield stress of material.
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Appendix

R̄11 =
E1

(1− η̄ν2
21)

[
1− (2ā1 − ν21η̄ā12)2

9R0

¯̀2
]

R̄12 = R̄21 =
E1η̄

(1− η̄ν2
21)
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ν21 − (2ā1 − ν21η̄ā12)(2ν21ā1 − ā12)

9R̄0

¯̀2
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R̄13 = R̄31 = G12
(ν21η̄ā12 − 2ā1)2ā3

3R̄0

¯̀2ϕ̄2

R̄22 =
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(1− η̄ν2
21)
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η̄ − η̄2 (2ν21ā1 − ā12)2

9R0

¯̀2
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R̄23 = R̄32 = G12
(η̄ā12 − 2ν21η̄ā1)2ā3

3R̄0

¯̀2ϕ̄2

R̄33 = 1− 4ā2
3η̄)

R̄0

G12(1− ν2
21η̄)

E1
ϕ̄2

R0 =
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Ep∗E∗

E∗ − Ep∗

]
4
9
(1− η̄ν2

21)(ā1
¯̀2 + 3ā3ϕ̄

2)

+¯̀2 1
9
(4ā2

1 − 4η̄ν21ā1ā12 + η̄ā2
12) + G∗4ā2

3ϕ̄
2

where
¯̀ = (1− η)

x

a
+ η

ϕ̄ = −1
2

b

a
(η − 1)(1− 2y

b
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Ep∗ =
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E1

E∗ =
E

E1
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