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The paper is concerned with the problem of active stabilisation of a flat rectangular
plate subject to an aerodynamic load coming from a supersonic air flow tangent to the
plate surface. At a suciently high speed, the flow leads to appearance of self–excitated
vibration in the system. Such a phenomenon is called the aeroflutter. The main goal
of the considerations is to examine to what extent it is possible to prevent the panel
from self–excitation and how far it may be suppressed in the non–linear range, if the
instability has already occurred. The concept of stabilisation consists in making use of a
functionally graded material (FGM) containing an active component piezoceramic PZT.
Under electric field, it produces asymmetric longitudinal strain within the cross–section
of the plate which generates bending moment opposing the action of non–conservative
force induced by the flow. Two simplest control strategies based on differential and
proportional feedback are analysed in the paper. The investigation is carried out within
the linear range (effect of stabilisation on the critical threshold) as well as non–linear,
where the quality of near–critical bifurcating solution is determined in terms of activation
of piezoceramic fraction in the FGM structure of the plate.

Keywords: Aeroflutter, self–excitation, bifurcation, functionally graded material, active
stabilisation

1. Introduction

A great deal of theoretical work has been done for over than a half century for the
problem of flutter of panels exposed to air flow parallel to their surface (Lighthill,
[11]), (Kaliski, [9]), (WoroszyÃl, [17]). This phenomenon was, and still is, a research
subject for scientists and engineers dealing with aircraft industry and rocket tech-
nology as missiles and spacecrafts require very thin coverings. Flutter of various geo-
metrical shapes, under various loading conditions including interactions due to mag-
netic and thermal fields is still an interesting and complex investigation challenge
to be met (Solarz, [15]). Coupled electromagnetic effects accompanying aeroflutter
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were studied by Ambartsumian [1] and Kurnik [10] who also thoroughly studied
near–critical (non–linear) behaviour of a rectangular plate undergoing self–excited
vibration after exceeding critical flow speed. Initially, most of the examination effort
was focused on isotropic panels, however advances in material technology quickly
forced researchers to consider new structures such as composite laminates (Dixon
and Mei, [3]). Recently, the class of anisotropic materials has been enriched with
”intelligent” or ”smart” structures capable of generating stress and strain controlled
according to a special algorithm for a given mechanical purpose (e.g. stabilisation
or reduction of vibration amplitude).

Smart composites consist of a matrix material, predominantly polymer, rein-
forced with fibers partly or entirely possessing some properties making them smart,
i.e. controllable by an imput signal (Newnham et al., [12]), (Sporn and Schoencker,
[16]). Laminates containing piezoelectric fibers (most often tiny PZT–piezoceramic
ones) are able to produce elongation, bending or torsion when exposed to an elec-
tric field. Such electromechanical coupling makes the laminates semi, fully adaptive
or self–adjusting structures opposing disadvantageous mechanical interactions from
surrounding environment or internal phenomena disturbing normal operation of a
given system. Smart composites, apart from their load–carrying destination, ex-
hibit enhanced features when compared with their passive counterparts. If needed,
they are to dissipate mechanical energy more intensely (Przybyowicz, [14]).

The problem of dynamic stability of plates and shells exposed to conserva-
tive forces is permanently changing towards new materials and methods of anal-
ysis. Most recently, the studies evolved toward non-homogeneous but different
than multi–layered composites Functionally Graded Materials (FGMs), which are a
new generation of composite materials with continuous distribution of components
within the whole structure. A great deal of theoretical work has been done on
thermal stability of FGM panels subject to aerodynamic loads as well. Supersonic
flutter characteristics were studied by Prakash and Ganapathi (2004), while non–
linear effects in functionally graded panels with von Karman strain–displacement
relations were taken into account by Ibrahim et al. (2008). Also smart FGM solu-
tions have appeared in the area of scientists’ interest. The problem of active FGMs
equipped with piezoelectric materials was examined by He et al. [5], however the
applicability of smart elements (piezoelectrical sensors) to active flutter suppression
was earlier considered by Dongi et al. [4].

This paper is concerned with active stabilization of a flat rectangular plate under
an aerodynamic load by parallel supersonic flow responsible for self-excitation to
occur in the system at the critical airflow speed. The plate is made of a functionally
graded material containing the active component, which is piezoceramic PZT, and
the passive one (fiber reinforced composite). The method of stabilization is based on
producing asymmetric longitudinal strain within the cross–section of the plate due
to piezoelectric effect, which, consequenltly, generates bending moment to oppose
the non–conservative force, and thus stabilize the system. Two simplest approaches
toward control are analysed in the paper – one based on differential feedback, the
other on proportional.
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2. Formulation of the problem

The considered panel is a simply supported plate subject to tangent airflow across
the line of supports Fig. 1). The internal structure of the panel constitutes a fiber–
reinforced single layer with fibers aligned along the direction of the aerodynamic
load. In fact there are two types of fibers in the structure – passive (carbon)
and active (piezoceramic). Together, they are equally filled through the thickness,
but their individual share varies. Hence, one side of the panel is a fully passive
composite, the other – active. Volume fraction of the active piezoceramic fibers
varies along the cross–section (Fig. 2.), and this variation is ruled by an exponential
function:

η(z) =
(

h− 2z

2h

)n

(1)

Figure 1 Model of a simply supported FGM panel subject to aerodynamic load

where:

z – denotes current position through the cross-section,
h – is the thickness of the panel,
n – the distribution exponent to be freely assumed in the investigations

(e.g. for n = 1, the distribution is linear).

Figure 2 Cross–sectional view to the panel
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The function η directly affects the efficient electromechanical coupling constant dT
31

as well as efficient Young’s modulus Y . According to the simple rule, they are as
follows:

Y (z) = YAη(z) + YP [1− η(z)] and dT
31(z) = dT

31(PZT)η(z) (2)

where the subscripts ”A” and ”P” refer to the layered passive and active component,
respectively.

The governing equation for the panel in its linear formulation has the following
form (Kurnik, [10]):

ρ h
∂2w

∂ t2
+ D

∂4w

∂ x4
+ κ

p0

a0

(
∂ w

∂ t
+ U

∂ w

∂ x

)
= 0 (3)

where the external damping due to interaction with surrounding medium is ne-
glected. Some damping is introduced by the flow itself (the derivative ∂ w/∂ t),
however the influence of this term was long time ago discussed by Houbolt [6], who
suggested its minor effect. Another problem – internal friction in the panel mate-
rial – is excluded in this analysis. It is an purposely made assumption to expose
the effect of the sole active PZT fraction on flutter suppression of the panel. It is,
admittedly, known that the presence of internal damping destabilizes such panels,
especially at high altitudes (Johns and Parks, [8]).

In equation (3):

w – denotes transverse displacement (vibration) of the panel,
ρ – is the average mass density of the panel,
h – its thickness,
D – rigidity of the panel,
κ – adiabatic constant,
p0 – pressure of undisturbed air,
a0 – speed in undisturbed air,
U – speed of the airflow.

The aerodynamic force in (3), see terms inside the parentheses, comes from early
considerations by Ashley and Zartarian [2], who developed the so–called piston
theory for objects moving through compressible media.

Since the material has continuously varying properties, the stiffness D is in fact
the following integral:

D =

h
2∫

−h
2

Y (z) z2 d z

1− v2(z)
(4)

Rewrite, for convenience, the equation of motion into a dimensionless form by in-
troducing following variables:

x̄ =
x

l
, w =

w

h
, t̄ =

t

kt
, kt = l2

√
ρ h

D
(5)



Aeroflutter Suppression in an FGM ... 379

where l is length of the panel. If so, we obtain:

∂2w̄

∂ t̄2
+

∂4w̄

∂ x̄4
+ γ

∂ w̄

∂ t̄
+ υ

∂ w̄

∂ x̄
= 0 (6)

where:

γ = κ
p0

a0

l2√
ρ h D

and υ = U κ
p0

a0

l3

D
(7)

Introduce now ”control” terms, i.e. expressions for the effect brought about by
activation of piezoceramic fibers in the panel. According to laws of piezoelectricity
[13] the strain–stress relation is:




ε1

ε2

ε3

ε4

ε5

ε6




=




1
Y1

− v
Y1

− v
Y3

0 0 0
− v

Y1

1
Y1

− v
Y3

0 0 0
− v

Y3
− v

Y3

1
Y3

0 0 0
0 0 0 1

G4
0 0

0 0 0 0 1
G4

0
0 0 0 0 0 1

G6







σ1

σ1

0
τ4

τ5

τ6




(8)

+




0 0 d31

0 0 d31

0 0 d33

0 d15 0
d15 0 0
0 0 0







0
0
E




where Poisson’s ratio has been assumed to have the same value. It is to be remem-
bered that all elements of the matrices depend on the z variable. The longitudinal
effect for σ3 = σz = 0 is then:

εx =
1
Y1

σx − v

Y3
σy + d31E

εy =
1
Y1

σy − v

Y3
σx + d31E (9)

where E denotes electric field applied perpendicularly to the panel (electrodes are
on the upper and lower surface) and the main orthotropy directions of PZT coincide
with the x and y axes of the plate. Resolving (9) for stresses, one finds:

σx =
Y1

1− v2
[εx + v εy − d31E(1 + v)]

σy =
Y1

1− v2
[εy + v εx − d31E(1 + v)] (10)

For cylindrical bending of the plate, the moment produced purely by the piezoce-
ramic fraction is:

MA = −E

h
2∫

−h
2

Y1(z) d31(z) z

1− v2(z)
dz = −E ∆ (11)
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The electric field Econtrolling the panel, is proportional to the applied voltage UA:

E =
UA

h
(12)

which, in turn, is proportional to the voltage measured by the sensor attached to
the panel at a given position xs. From sensor considerations related to beams [14],
we know that measured voltage is proportional to curvature of the beam (or a plate
in cylindrical bending), i.e.:

US =
YPVDF d31(PVDF) hs

ε0εPVDF

∂2 w(xs, t)
∂ x2

(13)

where the subscripts ”PVDF” refer to the material the sensor is made of (a piezopoly-
mer based on polyvinylidene fluoride), ε is dielectric permittivity and hs – senor
thickness. Assume at this moment that the control will be based on a simple feed-
back coupling with the output signal (from actuator) is directly proportional the
first time derivative of the input voltage (from sensor), i.e.:

UA = kdU̇S (14)

Covering the entire upper and lower surface of the panel with electrodes, we put
down an expression for the actuating moment:

MA = −kd

YPVDF d31(PVDF) hs

ε0εPVDF

∂3 w(xs, t)
∂ x2 ∂ t

∆ [H(x)−H(x− l)] (15)

where H is the Heaviside function. The moment MA appears in the equation of
motion as the second derivative with respect to x. Thus, its final and dimensionless
form becomes:

dM̄A

dx̄
= −kd

YPVDFd31(PVDF) hs

ε0εPVDF

∂3w̄(x̄sbart)
∂x̄2∂t̄

∆
l2
√

ρhD

[
dδ(x̄)

dt̄
− dδ(x̄− 1)

dt̄

]
(16)

where δ is Kronecker’s Delta function. Substituting the above expression into the
equation of motion, we obtain:

∂2w̄

∂ t̄2
+

∂4w̄

∂ x̄4
+ γ

∂ w̄

∂ t̄
+ υ

∂ w̄

∂ x̄
− cd

∂3 w(xs, t)
∂ x2 ∂ t

[
dδ(x̄)
d t̄

− dδ(x̄− 1)
d t̄

]
= 0 (17)

where

cd = kd

YPVDF d31(PVDF) hs

∈0∈PVDF

∆
l2
√

ρ h D
(18)

3. Analysis of the flutter suppression efficiency

The main intention now is to find the critical speed of airflow at which the sys-
tem loses its stability and exhibits self–excited vibration. To achieve this goal, the
partial differential equation of motion is transformed into two ordinary differen-
tial equations via bimodal Galerkin’s discretization based on two simply–supported
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beam functions since the flutter-type instability is known to be a two–dimensional
definite problem:

w̄(x̄, t̄) = T1(t̄) sin π x̄ + T2(t̄) sin 2 π x̄ (19)

where T1,2(t̄) are arbitrary time functions to be determined. Incorporating Galerkin’s
discretization, one demands:

1∫

0

L [w̄(x̄, t̄)] sin nπ x̄dx̄ = 0 n = 1, 2 (20)

where L represents the operator form of the left hand side of partial differential
equation of motion (16). By introducing new variables: u1 = T1, u2 = Ṫ1, u3 = T2,
u4 = Ṫ2, we transform the thus generated ordinary differential equations of the
second order into a set of four first–order ones. They are as follows:

u̇1 = u2

u̇2 = −π4 u1 − (γ + 2cdπ
3 sin π xs)u2 + 8

3υ u3 − 8 cdπ
3 sin 2π xs · u4

u̇3 = u4

u̇4 = − 8
3υ u1 − 16 π4 u3 − γ u4

(21)

or in a matrix form:



u̇1

u̇2

u̇3

u̇4


 =




0 1 0 0
−π4 α1

8
3υ α2

0 0 0 1
− 8

3υ 0 −16 π4 −γ







u1

u2

u3

u4


 (22)

where:

α1 = −γ − 2cdπ
3 sinπ xs

α2 = −8 cdπ
3 sin 2π xs

or implicitly: u̇ = A(υ)u. It is to be emphasized that the ”control” term cd

is not only dependent on the assumed gain kd in the control system, but it is
the dimensionless quantity strongly related to distribution of the active component
through the thickness ∆, see (18), and (11) for the explicit expression of ∆. Assume
that Poisson’s ratio v is poorly changing with z (v = const), which leads, together
with (2), to the following integral for ∆:

∆ =
d31

1− v2

h
2∫

−h
2

{YAη(z) + YP [1− η(z)]} η(z)z dz (23)

The above integral can be easily computed numerically by simple substitution of
given values of the elasticity moduli Y and effective electromechanical coupling
constant d31. Let ζ be the ratio between Young’s modulus of the active piezoceramic
fraction and the passive one:

ζ =
YA

YP
(24)
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It is assumed in further analysis that the ”hardest” is the active component (YA =
6.25 · 1010 Pa), while the passive material has only a fraction of its flexural rigidity
ranging from 0 to 1.

In Fig. 3, two limit cases when the passive component is (theoretically) rigidless
(ζ = 0), and as stiff as the active piezoceramic (ζ = 1). It turns out that discussion
on optimal distribution of the active component through the panel thickness is
fuitless as the curves for ∆ exhibit strongly marked maxima corresponding to some
values of n defining the exponential way in which the piezoceramic component
vanish along the panel cross–section. It is highly recommended to arrange the
FGM structure of the considered panel so that the exponent nwould just secure
those most efficient distributions.

It is possible to find the optimal exponential distributions analytically. Consider
now the case when Young’s moduli of both components is comparable (YA ≈ YP).
In that situation integral (23) has the solution:

∆ =
d31 YA

1− v2

h
2∫

−h
2

η(z)z dz

=
d31 YA

1− v2

h
2∫

−h
2

(
h− 2z

2h

)n

z dz (25)

= −d31 YA h2

1− v2

n

2(n2 + 3n + 2)

Figure 3 Electromechanical efficiency of the FGM panel vs. exponent of the active component
distribution

The maximum value of ∆ takes place, when:

d
dn

(
n

n2 + 3n + 2

)
= 0 (26)
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which is true for n =
√

2 (see the peak of ζ = 1 curve in Fig. 3). If Young’s moduli
vary, the problem of determination of the opimal n becomes slightly complicated as
it leads to the following integral:

∆ =
d31 YA

1− v2

h
2∫

−h
2

[
(1− ζ)

(
h− 2z

2h

)2n

− ζ

(
h− 2z

2h

)n
]

z dz (27)

which yields:

∆ = −d31 YA h2

1− v2

n

2

{
1− ζ

2n2 + 3n + 1
+

1
n2 + 3n + 2

}
(28)

The derivative of (28) with respect to n gives a rational function whose numerator
is to be equaled with zero for extremum. This gives the following polynomial of the
fourth degree:

2 n4 (1 + ζ) + 4n3 (2− ζ) + 7n(1− 2ζ)− 4n(1 + ζ)− 2(2− ζ) = 0 (29)

It has four roots, but their analytical form is too far complex to be explicitly given in
thsese consideration. A better method is illustrating the solution to (29) graphically
for ζ varying within the assumed interval, see Fig. 4.

Figure 4 The most effective exponents of the active fraction distribution in function of the elas-
ticity ratio between Young’s moduli of the active and passive components

It is only to be noted that (29) becomes easily solvable again for the other limit
case, i.e. when ζ = 0. In such circumstances, n = 1/

√
2.

4. Simulation results

Having determined the most effective volume distributions of the active component
in the FGM panel, investigate now the effect of flutter suppression by the proposed
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method based on the strategy incorporating velocity feedback in the control system.
For this purpose, find first the critical airflow speed at which the panel loses its sta-
bility. This can be achieved by tracing eigenvalues of the matrix A of the discretized
equations of motion. The eigenvalues come from the following eigenproblem:

{A(υ)− r I} q = 0 (30)

where r is the eigenvalue to be searched for and q – corresponding eigenvector. The
eigenvalue having the greatest real part decides about stability of the system. It
will be denoted by r1.

In Fig. 5. some trajectories of the decisive eigenvalue are shown for growin Mach
number of the airflow. Left picture of Fig. 5 clearly indicates the critical air speed
responsible for the loss of stability as the real part of r1 becomes positive. The right
picture shows trajectories of r1 on the complex plane, where the imaginary part of
r1 as it croses the imaginary axis depicts the initial flutter frequency.

Figure 5 Trajectories of the decisive eigenvalue for differential feedback control

Figure 6 Critical Mach number for the control based on differential feedback
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Fig. 5 presents several curves corresponding to a few of assumed gains in the
control system for the most efficient functional distribution of the active component
(here n =

√
2 for comparable Young’s moduli of both components of the FGM).

Unfortunately, the results reveal disadvantageous effects of the applied stabilisation
method. The real part Re{r1} for non–zero gains kd intersects the zero threshold
for continuously lower flow speed with an increase in the gain. The trajectories on
the right picture in Fig. 5 shift rightwards. A destabilizing effect is obvious. It
is more conveniently shown in Fig. 6, where the critical Mach number versus the
applied gain factor is presented in its dropping shape. The reason for that surprising
and disappointing effect is due to the fact that the velocity feedback introduces
damping-like terms to the equation of motion, which are known to destabilize panels
exposed to aerodynamic loads (Johns and Parks, 1960). Probably, the generation of
counter–bending moment in the FGM structure does not compensate the introduced
damping.

Figure 7 Trajectories of the decisive eigenvalue for proportional feedback

In the light of such a result, another – yet equally simple – control strategy has been
proposed to reach the goal. This time the electric field inducing bending moment
within the entire FGM structure is to be directly proportional to the measured
voltage (related to current curvature of the panel).

UA = kpUS (31)

This is a ”P” control enhancing rigidity of the analysed system. Since it affect terms
in the equation of motion related to stiffness, the Galerkin discretization must be
carried out again. With the new variables u1 employed, it gives:




u̇1

u̇2

u̇3

u̇4


 =




0 1 0 0
α3 −γ α4 0
0 0 0 1

− 8
3υ 0 −16 π4 −γ







u1

u2

u3

u4


 (32)

where:

α3 = −π4 − 2cpπ
3 sin π xs

α4 = 8
(υ

3
− cpπ

3 sin 2π xs

)
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The subsequent analysis proceeds as previously. For easy investigation, the eigen-
values are found once more and illustrated. The results are shown in Fig. 7.

Now, the suppression effect is noticeable. Stronger gains kp make the decisive
eigenvalue trajectories move leftwards (right diagram in Fig. 7) which means that
the real part of r1 intersects the critical threshold for greater speeds of the airflow,
see Fig. 8.

Figure 8 Critical Mach number for the control based on proportional feedback

The suppression effect has been finally achieved. It is yet to be remembered that
such a strategy may shortly lead to dielectric breakdowns within the active piezo-
ceramic fibers if the applied gains kp reach excessively high levels.

5. Concluding remarks

The main goal of the paper was to analyse the efficiency of a method for aeroflutter
suppression of a flat FGM panel containing an active piezoceramic component in
form of tiny fibers reinforcing the composite structure of the panel. Two control
strategies have been analysed in detail. It occurred that differential feedback leads
to disadvantageous results as the critical threshold (airflow speed at which self–
excitated flutter–type vibration occurs) drops for such a strategy. Most probably,
the capability of the approach does not compensate the additional damping–like
effect introduced by the velocity coupling between the input and output signal.
Fortunately, the proportional coupling turned out to be fully effective, endangered
however by electric malfunction due to possible dielectric breakdown if excessive
coefficients of that proportionality were assumed.

An interesting achievement of the study was presentation of a method for es-
timating the best exponential distributions of the active component through the
panel thickness that yield the most pronounced electromechanical effect contribut-
ing to flutter suppression in the panel. The method uniquely indicates the optimal
distributions provided that the electric field is directly applied through the panel
thickness by electrodes attached to both surfaces of the panel. Some results are
derived and proved in a pure analytical manner.
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