
Mechanics and Mechanical Engineering
Vol. 12, No. 1 (2008) 69–78
c© Technical University of Lodz

Higher Orders Instability of a Hollow Jet Endowed with Surface
Tension

Ahmed E. Radwan

Mathematics Department, Faculty of Science,
Ain-Shams University, Cairo, Egypt

Nasreldein A. Ahmed

Department of Basic Sciences, Benha Higher Institute
of Technology, Benha, Egypt

Received (05 September 2007)
Revised (25 October 2007)
Accepted (15 March 2008)

The higher orders instability of a gas cylinder ambient with an incompressible inviscid
liquid endowed with surface tension is analyzed. The perturbation equations up to third
order are derived and solved. The surface displacements, the velocity potentials and the
dispersion relations are derived for each order of axisymmetric perturbation. It is found
that, up to third order, a transition from instability to stability states occurs when
the perturbed wavelength equals the circumference of the gas cylinder. The stability
discussions for the present model have been done and for the nonhollow jet as well. The
hollow jet instability is much larger than that of the nonhollow model. It is found that
the maximum temporal amplification prevailing in the hollow jet is much higher than
that of the full fluid jet. These results are consistent with some data of the experimental
work of Kendall [9], in the first order perturbation.
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1. Introduction

In the last decades some studies have examined the instability of a full jet sur-
rounded by a vacuum [1–8]. Kendall [9] performed an experimental study of the
instability of annular jets in application to astrophysics. Radwan has discussed the
capillary instability of a (viscous [10] and streaming [11]) hollow jet. In separate
studies Chandrasekhar [3] determined the dispersion of non-viscous, non-streaming
hollow cylinder for small axisymmetric perturbations and deduced that the unstable
waves frequency ω grow in according with

ω2 =
T

ρa3

xK1(x)
Ko(x)

(x2 − 1)
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Here ρ and T are the liquid mass density and surface tension coefficient, x (x = ka,
where k is the ordinary wavenumber) is the non-dimension longitudinal wavenum-
ber, a is the gas jet radius, K1(x) and Ko(x) are the modified Bessel functions of
second kind of the first and zero order, respectively.

The present work investigates the higher orders instability of a hollow jet
(a gas cylindrical jet embedded in a liquid) due to the interaction of the capillary
and inertia forces where the liquid inertia is greater than that of the gas.

One has to mention here that the phenomenon of a hollow jet may occur in
nature when a gas escaping from below a liquid layer. For instances in the crust of
the earth when a gas escapes from below an oil layer or in the sea during geological
drillings or when the air is pumped into a fluid layer.

2. Mathematical Formulation and Solution

Consider cylindrical interface of radius a, immersed in an inviscid and incompress-
ible liquid extending radially to infinity. A cylindrical polar coordinates
(r, θ, z) with z-axis coinciding with the axis of the cylinder will be utilized. The
curvature pressure due to surface tension cf. Radwan [11, 12], Ps, at the gas-liquid
interface S is

Ps = −T (∇ · ns), (1)

where ns = ∇F/ |∇F | is a unit outward vector pointing from gas to liquid region and
F (r, θ, z, t) = 0 describe the surface of liquid element at time t. The distribution
of the equilibrium Po, is given by

Po = Pg − T

a
. (2)

The second term in the right side of (2) represents the contribution due to surface
tension while Pg is a gas constant pressure: the hollow cylinder has to be filled
by a gas of constant pressure to insure the equilibrium state. Clearly Pg must be
greater than T/a otherwise the configuration will collapse towards a hollow cylinder
of smaller radius to reach an equilibrium state.

We next consider perturbation of the equilibrium state using a linearized the-
ory to that one in description of the break-up of the hollow cylinder. Since the
hollow cylinder can be unstable for certain wavelengths for the rotationally sym-
metric modes, so non-axisymmetric modes will not be considered. All physical
variables are normalized with respect to the characteristic length, a (the radius
of the undisturbed column) and the characteristic time (T/ρa3)−

1
2 . At the initial

state, we impose at the gas-liquid surface: rotationally sinusoidal perturbation of
longitudinal wavenumber k and amplitude ηo where ηo << 1. Next we assumed
that the column response only to the action of the surface tension, all other effects
are assumed to be negligible. We also assume that the flow of the fluid is remaining
irrotational and axisymmetric as in the initial state, since the irrotational motion
will persist, see Drazin & Reid [13]. So that the motion can be described by the
velocity potential φ(r, z, t) which satisfies Laplace’s equation

∇2φ = 0 (3)
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at the free surface

r = 1 + η(z, t) (4)

Here η is the non-dimension surface wave amplitude as related to the undisturbed
state. At t = 0, we impose

η(z, 0) = ηo cos(kz) + (1− 1
2
η2

o)− 1 (5)

and
∂η(z, 0)

∂t
= 0 (6)

Equation (3) is subjected to boundary conditions

(
∂

∂t
+ (∇φ · ∇)

)
η =

∂φ

∂r
(7)

and

∂φ

∂t
+

1
2

((
∂φ

∂r

)2

+
(

∂φ

∂z

)2
)

= (1 + η)−1

(
1 +

(
∂η

∂z

)2
)− 1

2

−∂2η

∂z2

(
1 +

(
∂η

∂z

)2
)− 3

2

(8)

at the free surface (4). The velocity potential φ and the surface amplitude η are
then expanded as a perturbation series in terms of ηo << 1:

φ(r, z, t) =
∑
n=1

ηn
o φn(r, z, t) (9)

η(z, t) =
∑
n=1

ηn
o ηn(z, t) (10)

By the use of the expansions (9) and (10) for (3) and (5)–(8) then expanding by
utilizing Taylor series around the undisturbed interface surface r = 1 and equating
the terms of equal powers ηo, one obtains a sequence of sets of equations for φn and
ηn.

First order

∇2φ1 = 0 (11)
φ1, r − η1, t = 0, at r = 1 (12)

φ1, t + η1 + η1, zz = 0, at r = 1 (13)
η1(z, 0) = cos kz (14)

η1, t(z, 0) = 0 (15)
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Second order

∇2φ2 = 0 (16)
φ2, r − η2, t = η1, zφ1, z − η1φ1, rr at r = 1 (17)

φ2, t = −1
2
(φ2

1, r + φ2
1, z) + η2

1 − η2 − η2, zz + η1φ1, tr at r = 1 (18)

η2(z, 0) = −1
4

(19)

η2, t(z, 0) = 0 (20)

Third order

∇2φ3 = 0 (21)

φ3, r = −η3, t + η2φ1, rr + η1φ2 ,rr +
1
2
η2
1φ1, rrr − η2, zφ1, z

−η1, z(η1φ1, rz + φ2, z) at r = 1 (22)

φ3, t = −η3, zz +
3
2
η2
1, zη1, zz + 2η1η2 − η3

1 + η2φ1, tr

+
1
2
η2
1φ1, trr + η1φ2, tr + η1φ1, rφ1, rr + φ1, rφ2, r

+η1φ1, zφ1, zr + φ1, zφ2, z at r = 1 (23)
η3(z, 0) = 0 (24)

η3, t(z, 0) = 0 (25)

The problem is solved in each order, starting with the lowest one. The system of the
first perturbation equations (11)–(15) is solved and are consistent with the classical
results of Chandrasekhar [3].

η1 = cosh(ω1t) cos(kz) (26)

φ1 = ω1
Ko(kr)
kK1(k)

sinh(ω1t) cos(kz) (27)

where

ω2
1 =

k(1− k2)
Ka

Ka = Ko(k)/K1(k)

The solution of the second order perturbation eouations is solved on utilizing the
system of equation (16)–(20). Assuming that the second order perturbation of the
dimensionless surface wave amplitude η2(z, t) is of the form

η2(z, t) = B22(t) cos(2kz) + D2(t) (28)

Here B22(t) is an arbitrary function of time to be determined, while D2(t) is (re-
quired to insure a conservation of mass at t > 0 such that η satisfies (19)) given
by

D2(t) = −1
8
[1 + cosh 2ω1t] (29)
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Using the z-dependence for the Laplacian equation (16) then, apart from the sin-
gular solution, φ2 is determined

φ2 = A2(t)Ko(2kr) cos 2kz + F2(t), (30)

where A2(t) and F2(t) are some functions of time. By using equations (26)–(30) for
equation (17) and equating the coefficients of cos 2kz and those which are indepen-
dent of z; we find that A2(t) is given by

A2(t) =
1

2kK1(2k)
[
•
B
22

(t) + P22 sinh 2ω1t] (31)

where dot over the variables indicates the differentiation with respect to the argu-
ment and P22 is defined by

P22 = ω1(1− 2kKa)/4. (32)

By substitution of equations (26)–(32) into equation (18) and identify the coeffi-
cients of the trigonometric functions which occurred there, yields

F2 = B2t + C2 sinh 2ω1t (33)

such that

B2 = −1
8
[3 + ω2

1(1−K2
a)] (34)

C2 = − 1
16ω1

[3 + ω2
1(3 + K2

a)] (35)

Moreover, the identification of the coefficients which are independent of z in the
expression resulting from the substitution of (26)–(32) into (18) degenerates to

B22 = a22 cosh(ω2t) + b22 cosh(2ω1t) + c22 (36)

b22 =
1

4(ω2
2 − 4ω2

1)

(
2ω2

1(1− 2kKa) +
k[2 + ω2

1(3−K2
a)]

Kb

)
(37)

c22 =
k

4ω2
2Kb

[2 + ω2
1(1 + K2

b )] (38)

and

ω2
2 =

2k(1− k2)
Kb

= ω2
1(2k) (39)

where Kb is defined as

Kb = Ko(2k)/K1(2k) (40)

By substituting from equations (36), (29) and (28) into equation (19), the coefficient
a22 is given as

a22 = −(b22 + c22) (41)
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Following the same analysis as that of second order; the solution corresponding to
the third order perturbation can be obtained by the use of the first and second
orders and the system of equations (21)–(25). In view of (28), the third order
amplitude η3(z, t) can be assumed of the form

η3(z, t) = B33(t) cos(3kz) + D3(t) (42)

where D3(t) = 0 in order to satisfy the conservation of mass and that (42) satisfies
(24). Using the z-dependence (see (42)), solving (21) and applying the kinematics
boundary condition (22) (under the present circumstances) we see that φ3(r, z, t)
must be

φ3 = P31(t)
Ko(kr)
kK1(k)

cos kz + [P33(t) + B33(t)]
Ko(3kr)
3kK1(3k)

cos 3kz (43)

which is a finite solution as r tends to infinity.
The use of the continuity condition (23) of the normal component of the total

stress tensor across the boundary surface at the equilibrium position (r = 1) gives

B33(t) = b330 cosh(ω3t) + b331 cosh[(ω2 + ω1)t] + b332 cosh[(ω2 − ω1)t] +
+b333 cosh 3ω1t + b334 cosh(ω1t) (44)

and yields

ω2
3 =

3k(1− 9k2)
Kc

= ω2
1(3k) (45)

where

Kc = Ko(3k)/K1(3k) (46)

and where b33i (i = 0, 1, ....., 4), P31 and P33 are given in the appendix.
Clearly from the dispersion relations (45) and (39) for the third and second order

perturbations, the cut-off wavenumber remains unity as is found as in the linearized
theory of Chandrasekhar [3].

3. Discussions and conclusion

Here we have obtained the capillary instability criteria of a gas jet (of negligible
inertia) immersed in a liquid for the orders third, second and first. These criteria
are found to be the same in all orders of perturbations. We mean that the cut-off
wavenumber i. e. the point at which a transition from oscillation to instability
states occurred, is the same (i. e.k = 1) in the linear and nonlinear perturbations.
This occurs as the perturbed wavelength is equal to the circumference of the gas
cylinder. This behavior is also the same even in the case of full liquid jet ambient
with a gas of totally negligible influence. Also we found here the gas constant
pressure of the gas cylinder has no direct influence on the stability of the hollow jet
but just to cope with the negative pressure due to the curvature of the gas-liquid
interface in the unperturbed state to maintain and keep the existence of the model.

The analytical and numerical analyses of the stability criteria have been shown
that the stability domain is 0 < k < 1 and that of stability is being 1 ≤ k < ∞
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where k = 1 corresponds to (ω = 0) the marginal stability. The maximum mode
of instability is found to be 0.8201 (at k = 0.484) which is in fact too much larger
than that of the full liquid jet in vacuum that found to be 0.3433 (at k = 0.697) (see
Chandrasekhar’s figure 3, p 541. It is found that the hollow cylinder is also much
more stable than the nonhollow jet not only in the axisymmetric domain 1 < k < ∞
but also even in the non-axisymmetric domain 0 < k < ∞ see Radwan (1989) for
linear analysis.

Using the properties and behaviour of the Bessel’s functions as k is too much
less than unity i. e. for very long wavelengths, we get

ω2 = (ln
γk

2
)−1 + ... (47)

where (ln γ) is the Eulerian constant. Moreover, as k → 0, we get

ω2 =
−1

k2 ln k
+ ... (48)

We deduce that the temporal amplification tends to zero with vertical tangent as
k → 0, in contrast for the full liquid jet in vacuum the temporal amplification
approaches zero linearly as k → 0.

In general case for any value of k, the temporal amplification pervaded in the
hollow case is much higher than that pervading in the nonhollow liquid jet, see
Kendall [9].

Appendix

The coefficients b33i (i = 0, 1, 2, ..., 4), b31 and b33 which are carried in equations
(44) and (43) are given explicitly as following.

First b33i (i = 0, 1, 2, ...., 4) are:

b330 = −
4∑

i=1

b33i

b331 =
1

(S2
1 − ω2

3)Kc
[3kq331 − S1P331Kc

b332 =
1

(S2
2 − ω2

3)Kc
[3kq332 − S2P332Kc]

b333 =
1

(9ω2
1 − ω2

3)Kc
[3kq333 − 3ω1P333Kc]

b334 =
1

(ω2
1 − ω2

3)Kc
[3kq334 − ω1P334Kc]

where b33i (i = 0, 1, 2, ...., 4) will be written down later on while S1, S2 and b33i

(i = 0, 1, 2, ...., 4) are defined as

S1 = ω2 + ω1

S2 = ω2 − ω1
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and

q331 = −a22

4
[2 + S2

1 − ω1ω2(1 + KaKb)]

q332 = −a22

4
[2 + S2

2 + ω1ω2(1 + KaKb)]

q333 =
1
32

[2− 3k4 + ω2
1(3− kKa)− 8b22(2 + ω2

1)

+8ω2
1(2b22ω1 + P22)(KaKb − 3)]

q334 =
1
32

[6 + 9k4 + ω2
1(1− 3kKa)− 8ω1(2b22ω1 + P22)(1 + KaKb)

−8(2 + ω2
1)(b22 + c22)]

The coefficients P31(t) and P33(t) are given by

P31 = P311 sinh(S1t) + P312 sinh(S2t) + P313 sinh(3ω1t)
P33 = P331 sinh(S1t) + P332 sinh(S2t) + P333 sinh(3ω1t)

+P334 sinh(ω1t)

where the coefficients b31i and b33i (with i = 1, 2, 3, 4.) are defined by

P311 =
a22

4
[S1 + k(ω1Ka − ω2Kb)]

P312 =
a22

4
[S2 + k(ω2Kb − ω1Ka)]

P313 =
1
32

[8ω1b22(kKa − 2kKb + 3) + 5ω1kKa + 8P22(1− kKb)− ω1(8 + k2)]

P314 =
ω1

32
[5kKb − k2 + 8[−1 + (1− kKb)(2b22 + P22/ω1)

−(1 + kKa)(b22 − 2c22)]]

and

P331 =
a22

4
[S1 − 3k(ω1Ka + ω2Kb)]

P332 =
a22

4
[S2 + 3k(ω1Ka − ω2Kb)]

P333 =
ω1

32
[−2− 3k2 + kKa + 8(1− 3kKb)(2b22 + P22/ω1)

+8b22(1− 3kKa)]

P334 = P333 − ω1

2
(b22 − c22)(1− 3kKa)
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