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The paper deals with the dynamic response of thin iso- and orthotropic plates subjected
to in–plane pulse loading. The problem is investigated on the basis of finite element
method using computer code ANSYS8.1. The influence on the dynamic behaviour of
plates of following factors: shape of pulse loading, imperfection sensitivity, time of pulse
duration and material properties is analysed. The dynamic buckling load is estimated
on the basis of different dynamic stability criteria.
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1. Introduction

The dynamic behaviour of plates under in–plane pulse loading depends on the quan-
tity of ”pulse intensity” – it means on its amplitude and duration. Thus following
phenomena may occur:

• impact for pulses of high intensity,

• dynamic buckling for moderate loading amplitudes and pulse duration close
to the period of fundamental natural vibrations,

• quasi-static behaviour for pulses of low intensity and/or long duration.

When the second case is considered one should remember that in dynamic buckling
the bifurcation load (as it is in static case) does not exist, the phenomenon lies
in rapid growth of deflections of imperfect plate. Therefore, it is necessary to
define dynamic critical loads on the basis of assumed dynamic buckling criterion
and further to determine dynamic load factor DLF as a ratio of dynamic to static
buckling load.In world literature one can find many criteria allowing for determining
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dynamic critical or failure loads. Some of them will be discussed in the following
section.

The studies of dynamic buckling of plates started in fifties of the last century.
In Volmir’s books [14], [15] the solutions, obtained in the analytical–numerical way,
were presented for rectangular pulses. The dynamic buckling for pulses of high
intensity usually occurred for modes of greater number of half–waves than in static
case. The considerations were conducted in unlimited elastic range and under as-
sumption that the shape of initial imperfections is identical as the static buckling
mode. Volmir formulated a simple buckling criterion – the dynamic buckling oc-
curs at this mode for which the deflections grow the most rapidly and the dynamic
buckling load corresponds to the pulse amplitude at which the maximal deflection
equals some chosen value.

The special attention should be paid to the work done by Ari–Gur et al. [3]
in which the different approximate criteria allowing for determination of dynamic
buckling are discussed and applied. The analysis of dynamic response of columns
loaded by a pulse compressive load was conducted theoretically and experimentally.
The predominant effect of the initial geometrical imperfections and pulse intensity
on the dynamic buckling load was shown while the effect of material properties
was found insignificant. The papers of Weller and al. [16], Abramovich and Grun-
wald [1], Ari–Gur and Simonetta [2] are the further contribution to the problem
of dynamic buckling of composite plates. In papers mentioned above the fact that
the dynamic buckling loads are not always higher than static ones was strongly
underlined.

Cui et al. [4] investigated experimentally the dynamic buckling mechanism of
plates under fluid–solid slamming. The effect of boundary conditions was also dis-
cussed. In the following paper [5] the experimental results were verified numerically
using the computer code ABAQUS.

In a paper of Petry and Fahlbusch [12] the parametric studies of dynamic buck-
ling of isotropic rectangular plates are performed. The large deflection plate equa-
tions were solved by Galerkin method using Navier’s double Fourier series. The
comparison of the dynamic load factor (DLF) determined according to Budiansky-
Hutchinson criterion and to the stress failure criterion was presented.

More literature on dynamic buckling of plates can be found in the review paper
by Jones [7] and in his book [8].

In this work the dynamic response of thin iso- and orthotropic plates subjected
to in–plane pulse loading of different shapes is investigated using computer code
ANSYS 8.1.

The influence on the dynamic behaviour of plates of following factors: shape of
pulse loading, imperfection sensitivity, time of pulse duration and material proper-
ties will be analysed. The dynamic load factor will be estimated basing on different
dynamic buckling or failure criteria.

2. Some dynamic buckling/ Failure criteria

Dynamic critical load – it means the amplitude of pulse force which at given duration
causes the dynamic buckling - can be very high for plates with small imperfection
and much lower for plates with a significant imperfection.
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• The simplest criterion was proposed by Volmir [14] – the dynamic critical load
corresponds to the amplitude of pulse force (of constant duration) at which
the maximal plate deflection is equal to some constant value k (k = one half
or one plate thickness).

• In many publications dynamic buckling load is determined on the basis of
Budiansky&Hutchinson [6] stability criterion that states: dynamic stability
loss occurs when the maximal plate deflection grows rapidly with the small
variation of the load amplitude.

The dynamic load factor is then defined as the quotient of the dynamic buckling
load and the critical static load for the plate:

DLF =
Ndyn

cr

Nstat
cr

(1)

• Petry and Fahlbusch [12] presented a dynamic failure criterion for isotropic
plates: a dynamic response caused by a pulse load is defined to be dynamic
stable if the condition that the effective stress σeff (found by Huber–Mises for-
mula) is not greater than limit stress σL, is fulfilled at every time everywhere
in the structure. This criterion seems to be rather conservative as a failure
criterion and is valid only for linearly elastic – perfectly plastic materials.

Basing on this dynamic failure criterion one can find the dynamic failure load and
then:

DLFcr =
Ndyn

f

Nstat
cr

or DLFf =
Ndyn

f

Nstat
f

(2)

where Nstat
f - static failure load.

In this paper the authors propose to apply the dynamic failure criterion in case
of orthotropic plates. Then the effective stress has to be determined on the basis of
Hill’s criterion. For plane stress state it can be formulated as follows:

a1 = 1 (3)

a2 =
σ2

xo

σ2
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(4)
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3τ2
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(5)
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2
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where: a1, a2 a3, a12, a3 - coefficients depending on the uniaxial limit stresses in
the principal directions of orthotropy σxo; σyo and limit stress in pure shear τxyo

(see KoÃlakowski&Kowal–Michalska [9]). The effective stress determined by Eq.(2)
is compared with the uniaxial limit stress in the direction of loading σxo .

It should be mentioned that for isotropic materials Hill’s condition transforms
into well known Huber–Mises formula.
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3. Formulation of a problem

In this work the dynamic response of thin rectangular plates subjected to in–plane
pulse loading of different shapes is investigated.

Figure 1 Geometry and loading of a plate

The plates are rectangular with the principal axes of orthotropy parallel to
the plate edges (Tab. 1). It is assumed that the all edges are simply supported.
The unloaded edges remain straight and parallel during loading. Additionally it is
assumed that normal and shear forces disappear along the unloaded edges.

Figure 2 Shapes of pulse loading (in all cases for t > Tp → Nx(t) = 0)

The shape of initial imperfection should fulfil the boundary conditions along all
edges. In numerical calculations different shapes of pulse loading are considered
(Fig. 2).
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4. Discussion of the results from finite elements analysis

The numerical calculations for square iso- and orthotropic plates of dimensions
b = l = 300 [mm]; h = 1.5 [mm] and material properties given in Tab. 1 were
conducted using the computer code ANSYS 8.1. The plates were treated as simply
supported along all edges, that were kept straight during loading. The simply
support boundary conditions in FEM analysis were performed on all edges as zero
displacements normal to the surface of the plate and normal to the appropriate edge
in the plate surface.

The eight–node shell element SHELL91 of six degrees of freedom at each node
was applied. The analysed plates were divided into 50×50 quadrilateral elements
in x–y plane.

At the first stage the modal analysis was performed in aim to determine the pe-
riod of fundamental natural vibrations T (and pulse duration Tp). It was the linear
analysis without damping with Block Lanczos extracting method. Next, by linear
stability analysis, using eigenvalue method, the critical static load Ncr and corre-
sponding buckling mode were determined. The buckling eigen–mode with amplitude
w0max was assumed as the initial imperfection shape of a plate. The amplitudes of
the pulse force were applied as multiples of the static critical load. The structural
dynamic analysis, which allowed to find the response of a plate for pulse loading, was
conducted using the ”Full Transient Dynamic Analysis” with geometric nonlineari-
ties included (see User’s Guide ANSYS [13]). It uses the Newmark time integration
scheme with the Newton–Raphson procedure. The integration time step was taken
as 1/75 ÷ 1/50 of the period T . The initial displacements and velocities were set
to zero. For different values of imperfection amplitude the maximal deflection of a
plate wmax and the values of the effective stress were registered. The results are
presented in figures.

Table 1 Material data
Material E = Ex [GPa] ν = νxy Ey [GPa] νyx G [GPa]
steel 210 0.3 - - -
aluminium 70 0.33 - - -
glass-epoxy 53.781 0.25 17.927 0.083 8.964
Material σx0 [MPa} σy0 [MPa] τxy0 [MPa] ρ [kg/m3]
steel 200 - - 7850
aluminium 100 - - 2950
glass-epoxy 1034 61.7 41.4 2900

In order to verify the assumed FE model the comparative calculations were
conducted. The results obtained were compared with the results found on the basis
of two analytical approaches.

The first calculations were conducted for isotropic steel square plate. The plate
was loaded by pulse of rectangular shape of duration Tp = 0.0122 [s] equal to the
period of fundamental natural vibrations of a plate T . For Ndyn/Ncr = 2 and the
imperfection w0max/h = 0.05 the calculations were performed using ANSYS model
and by the analytical–numerical method basing on Koiter’s asymptotic solution (for
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details see: Kowal–Michalska, Kolakowski, Mania [10]). As a first approximation
a single mode analysis was applied to the problem and the curve marked by stars
was obtained – Fig. 3. The full line curve represents the results obtained by FE
analysis (ANSYS).

Figure 3 The response of a steel plate for rectangular pulse

Next verifying calculations were made for an aluminium plate loaded by sinusoidal
pulse, using the same data as in the paper of Petry and Fahlbusch [12] (Fig. 4).

Figure 4 Comparison of the results obtained using ANSYS software and the results obtained by
Petry and Fahlbusch
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Figure 5 Influence of a pulse shape on the maximal deflection of isotropic plate (pulses of equal
amplitude)

As before almost perfect agreement was achieved. Therefore it can be assumed
that the proposed model and numerical calculations can be applied to the further
dynamic analysis of plate behaviour under pulse loading.

In Fig. 5 the curves showing the maximal dimensionless deflection versus ratio of
dynamic load amplitude to the static critical load (Ndyn/Ncr) for different pulses of
equal amplitude and constant time of pulse duration (equal to the period of natural
flexural vibrations of a plate). As it can be expected the rectangular impulse causes
the fastest growth of the deflection amplitude.

When pulses of equal energy are considered (that means the areas under the
rectangular and sinusoidal shapes in Fig. 2 are equal) it can be seen that for pulses
of short duration the deflections caused by rectangular loading grow more rapidly
but for the duration time equal to the period of natural vibrations (Tp = T ) larger
deflections correspond to the sinusoidal pulse (Fig. 6). The character of dynamic
response of a plate changes with the increasing pulse duration Tp.

The fact that the geometric initial imperfections affect the dynamic response of
a plate in a great extent (Fig. 7) is well known from the literature. The comparison
between the static response of a plate and the dynamic ones for rectangular pulse
loading is shown in Fig. 7. It can be seen that for small imperfections (wo =
0.005h÷ 0.015h), the curves describing the dynamic deflections intersect the static
response and in some range of loading run below it (these results are similar to
those obtained by Volmir [15] for very small imperfection amplitude equal 0.001h).
With the increase of imperfection amplitudes the dynamic deflections become more
pronounced and are much higher than static ones in assumed range of loading.
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Figure 6 Influence of a pulse shape on the maximal deflection of isotropic steel plate (a/b=1;
b/h=200) for different time of pulse duration (pulses of equal energy)

Figure 7 The dynamic response of a plate for a pulse loading for different values of geometric
imperfection amplitudes and the static response
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According to the dynamic buckling criteria, discussed earlier, the dynamic load
factor was determined for a steel plate of material parameters given in Tab. 1.
It shows that the values of DLF found on the basis of Volmir’s or Budiansky–
Hutchinson criterion are very close each other (see Fig. 8). The effective stress
reaches the yield limit when the pulse amplitude equals 2.2 of static buckling load.

Figure 8 Estimation of DLF value according to assumed dynamic buckling criteria

The similar calculations were conducted for square plates made of orthotropic mate-
rial of properties given in Table 1. The results presented in Fig. 9 and Fig. 10 were
obtained for rectangular pulse loading of duration time Tp equal to the period of
natural flexural vibrations of a plate T. It was found that the influence of material
parameters on the dynamic response of a plate of the same dimensions and initial
imperfections is not significant (see the corresponding curves in Fig. 9 and Fig. 7).

Table 2 Values of dynamic load factor

w0max/h DLF
Volmir’s
criterion
wmax = h

DLF
Budiansky-
Hutchinson
criterion

0.01 1.45 1.2-1.6
0.05 1.12 0.8-1.2
0.1 1.11 0.8-1.2

From Fig. 9 it can be found that applying Volmir’s dynamic stability criterion
(wmax = h) the dynamic buckling load is always greater than static one. Following
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Figure 9 Influence of geometric imperfections on dynamic response of orthotropic plate

Budiansky–Hutchinson’s criterion it can be observed that for small imperfection
amplitude (wo = 0.01h) the value of DLF (Eq.1) is greater than one but for larger
imperfections the dynamic buckling load can be estimated as smaller than static
one (see also Table 2).

The non–dimensional effective stress σeff/σx0 (Eq.3), denoted as the stress ratio
in Fig. 10, was determined for the orthotropic plate of initial imperfection w0max =
0.05h. This relation allows one to estimate the pulse amplitude for which the
effective stress reaches the yield limit in the direction of loading (Ndyn = 1.6 Ncr).

Figure 10 Maximal deflection and stress ratio versus amplitude of pulse loading
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5. Final conclusions

The calculations conducted in this paper confirmed the facts well known from the
subject literature – the geometric imperfections, shape and duration time of pulse
loading are the factors that strongly affect the dynamic behaviour of plates. In most
works the influence of pulse shape was investigated under the assumption of equal
amplitude at constant duration time for different pulses and then the rectangular
pulse always causes the largest deflections. In this paper the pulses of equal energy
were also compared. Then it showed that for pulses of short duration the deflections
caused by rectangular loading grow more rapidly but for the duration time equal
to the period of natural vibrations larger deflections correspond to the sinusoidal
pulse.

It should be also noticed that usually the analysis of dynamic stability is per-
formed under the assumption of unlimited elastic range. Taking into account the
dynamic failure criterion it can be easily seen that the limit state (determined by
the moment when the effective stress reaches the limit stress) appears for rather
low values of pulse amplitude.

The influence of material properties on the curves showing the maximal de-
flections versus non–dimensional pulse amplitude is not significant, so the values
of dynamic load factor estimated according to Volmir’s or Budiansky–Hutchinson
criterion stay close for considered materials (isotropic and orthotropic). As it was
shown here the relations describing the effective stress as a function of pulse ampli-
tude and the values of DLF found on the basis of dynamic failure criterion depend
strongly on the applied failure criterion and material data.

The purpose of the analysis conducted by FEM was to verify the applied model
with the results known from the literature in aim to analyse in future complex
thin–walled structures under dynamic pulse loading with application of different
dynamic buckling criteria.
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