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The problem of onset of convective instability in a dielectric micropolar viscoelastic fluid
(Walters’ liquid B′) heated from below confined between two horizontal plates under
the simultaneous action of the rotation of the system, vertical temperature gradient, one
relaxation time and vertical electric field is considered. Linear stability theory is used
to derive an eigenvalue of twelve order, and an exact eigenvalue equation for a neutral
instability is obtained. Under somewhat artificial boundary conditions, this equation can
be solved exactly to yield the eigenvalue relationship from which various critical values
are determined in detail. Critical Rayleigh heat numbers and wave number for the onset
of instability are presented graphically as a function of rotation at a certain value of the
Prandtl number, for various values of the relaxation time, the Rayleigh electric number,
the elastic parameter and micropolar parameters.

Keywords: Instability, viscoelastic, rotation, micropolar, the power series method.

1. Introduction

In recent years, using the theory of micropolar fluids developed by Eringen [1,2],
several authors [3-5] have investigated problems related to stability and turbulence.
As the theory of micropolar fluids encompass a wide variety of fluids (for example:
liquid crystals, polymers, animal blood, etc.), in which randomly oriented bar like
elements, dumbbell molecules or spherical particles are present, and as each volume
element of the fluid undergoes translation as well as rotation, the analysis of the
problems of stability revealed a number of interesting physical phenomena which
are unseen in Newtonian fluids.

Initiating the study of thermal instability of a micropolar fluid layer heated from
below, Ahmadi [6] has shown that there exists cellular convection at the onset of
instability. Assuming that the boundaries are free from shear stress and microro-
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tation, he has obtained an analytical solution in the case of free boundaries. His
analysis shows that the micropolar fluids are more stable than Newtonian ones.
Datta and Sastry [7] have extended the analysis of Ahmadi to the case of heat con-
ducting micropolar fluids. They have found that the heat induced by microrotation
causes instability of the layer, whether the fluid is heated from below or above.
The instability for heating from above is quite a novel phenomenon as it does not
have analogous in Newtonian fluid. While analysing the problem of convective in-
stability of a micropolar fluid layer confined between rigid boundaries, Walzer [8]
has mentioned that the analysis of the instability finds applications in the area of
Geophysics, for example, in understanding the phenomenon of rising of valconic
liquid with bubbles, and convective process inside the earth’s mantle. However, he
has concluded his analysis without any calculation of eigenvalue. Rama Rao [9]
has examined the onset of instability in a heat conducting micropolar fluid layer
confined between rigid boundaries. On obtaining a numerical solution of the eigen-
value problem, he has shown that, in the case of adverse temperature gradient, the
convective cells at the onset of instability are more elongated than those in the case
of positive temperature gradient.

The effect of rotating on thermal convection in micropolar fluids is important in
certain chemical engineering and biochemical situations. Sharma and Kumar [10]
studied the effect of uniform rotation on thermal instability micropolar fluid. They
found that the present of coupling between thermal and micropolar effect might
introduce oscillatory motion in the system.

In technological field there exists an important class of fluids, called non-New-
tonian fluids, which are also being studied extensively because of their practical
applications. One such fluid is called viscoelastic fluid. Walters [11] and Beard and
Walters [12] deduced the governing equations for the boundary flow for a prototype
viscoelastic fluid which they have designated as liquid B′ when this liquid has a very
short memory. Singh and Singh [13] have studied the magneto-hydrodynamic flow
of a viscoelastic fluid past an accelerated plate. Othman [14] has studied the sta-
bility of a rotating layer of viscoelastic dielectric liquid (Walters’ liquid B′) heated
from below. Othman [15] investigated the convective stability of a horizontal layer
of viscoelastic conducting liquid (Walters’ liquid B′) heated from below and rotat-
ing about a vertical axis in the presence of a magnetic field and thermal relaxation.
In these works, more general model of magneto-hydrodynamic free convection flow
which also includes the relaxation time of heat convection and the electric perme-
ability of the electromagnetic field are used. The inclusion of the relaxation time and
electric permeability modify the governing thermal and electromagnetic equations,
changing them from parabolic to hyperbolic type, and there by eliminating the
unrealistic result that thermal disturbance is realized instantaneously everywhere
within a fluid.

An important stability problem is the thermal convection in a horizontal thin
layer of fluid heated from below. A detailed account of thermal convection in a hor-
izontal thin layer of Newtonian fluid heated from below, under varying assumptions
of hydrodynamics, has been given by Chandrasekhar [16]. Othman [17] analyzed
the problem of the onset of stability in a horizontal layer of viscoelastic dielectric
fluid (Walters’ liquid B′) under the simultaneous action of a vertical ac electric field
and a vertical temperature gradient without rotation.
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In the present paper our object is to study the thermal instability of a rotating
heat conducting micropolar viscoelastic fluid layer confined between rigid bound-
aries in the presence of ac electric field and thermal relaxation. Hear, we employ
the basic equations of the heat conducting micropolar viscoelastic fluid referred to
a rotating frame.

2. Formulation of the problem

We consider an incompressible, dielectric and infinite micropolar viscoelastic fluid
layer confined between two horizontal surfaces separated by a distance L. Choosing
the origin on the lower boundary, let us introduce the Cartesian co-ordinate system
x, y, z in which z is measurement at right angles to the boundaries. Let the system
be rotating (round the z-axis) with a uniform angular velocity Ω = (0, 0, Ω). The
lower bounding surface at z = 0 and the upper bounding surface at z = L are
maintained at constant temperatures T0 and T1, respectively. The lower surface is
grounded and the upper surface is kept at high alternating (60 HZ) potential whose
root-mean-square value is φ1.

Under the foregoing assumptions the basic equations can be written as Othman
[17]
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and
∇∧ E = 0 or E = −∇φ . (6)

where, fei is the force of electric origin which may be expressed as Landau and
Lifshitz [18]
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taking into account the fact that the free charge density ρe is zero.
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If we replace the pressure

P ∗ = P − 1
2
ρ
∂ε

∂ρ
E2 (8)

The electrostriction term disappear from Eq. (??) which can be rewritten in the
form:
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The mass density and the dielectric constant are assumed to be functions of tem-
perature as follows:

ρ = ρ0 [1− α0(T − T0)] , α0 > 0 (10)

ε = ε0 [1− e(T − T0)] , e > 0 (11)

where α0 and e are usually positive.
It is clear that there exist the following steady solutions (denoted by an over

bar):
ū = v̄ = w̄ = 0 , (12)

σ̄ = 0 , (13)

T = T0 − β0z , (14)

ρ̄ = ρ0[1 + α0β0z] , (15)

ε̄ = ε0[1 + eβ0z] , (16)

Ēx = 0, Ēy = 0, Ēz =
E0

1 + eβ0z
, (17)

φ̄ = −E0

e
log(1 + eβ0z) . (18)

where,

β0 =
T0 − T1

L
, (19)

E0 = − φeβ0

log(1 + eβ0z)
. (20)

are the adverse temperature gradient and the root mean square value of the electric
field at z = 0. If necessary, the modified pressure P̄ ∗ can be determined from

0 = ρ̄gi − ∂P̄ ∗

∂xi
− 1

2
Ē2

z

∂ε

∂xi
. (21)

Let this initial steady state be slightly perturbed where the simple relation
ψ = ψ̄+ψ′ can be expressed any physical quantities ψ after perturbation and prime
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refers to perturbed quantities. Following the usual steps of linear stability theory
we can obtain the following main equations:
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where, ζ = ∂v′
∂x′ − ∂u′

∂y′ = ∇∧ vz is the z-component of vorticity.
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The boundary conditions appropriate for the problem are given by [10]
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Now, introducing the nondimensional variables given by L, kv
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∇2φ +
∂T
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where,
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δ
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3. Normal mode analysis

Following the normal mode analysis we assume that the solutions of Eqs. (29-33)
are given by:

[w, ζ, T, φ, Ω3] = [W (z), Z(z), Θ(z), Φ(z) , G(z)] exp [ct + i(ax + by)] (34)

where, λ =
√

a2 + b2 is the wave number and c is the stability parameter which is,
in general, a complex constant. For solutions having the dependence of the form
(34), Eqs. (29–33) yield
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]
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d
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. (40)

In seeking solutions of these equations we must impose certain boundary conditions
at the lower surface z = 0 and the upper surface z = 1. The most realistic boundary
conditions may be written as

W = DW = Θ = Φ = Z = G = 0 , at z = 0, 1 . (41)

In this paper, however, we shall use somewhat different boundary conditions given
by [21]

W = D2W = Θ = Φ = DZ = G = 0 at z = 0, 1 . (42)
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This case, although admittedly an artificial one to consider, is of importance since its
exact solution is readily obtained. Furthermore, from past experience with problems
of this kind (see for example, Chandrasekhar [16] and Turnbull [20]), one may feel
fairly confident that the general features of the physical situation will be disclosed
by a discussion of this case equally as well as by a discussion of solutions satisfying
less artificial boundary conditions.

Eliminating Z, Θ, Φ and G from Eqs. (35–39), we obtain:
{
[c + (K∗

0 c− Pr)(D2 − λ2)][`c + 2A− (D2 − λ2)][P−1
r c− (D2 − λ2)][c(1 + τ0c)

−(D2 − λ2)](D2 − λ2)2 + λ2(RH + RE)(1 + τ0c)x[c + (K∗
0 c− Pr)(D2 − λ2)] .

[`c + 2A− (D2 − λ2)](D2 − λ2) + δ̄λ2A(RH + RE)[c + K∗
0 c− Pr)(D2 − λ2)] .

(D2 − λ2)2 + K∗
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+4Ω2Pr[`c + 2A− (D2 − λ2)][c(1 + τ0c)− (D2 − λ2)](D2 − λ2)D2

+KA[c + (K∗
0 c− Pr)(D2 − λ2)][c(1 + τ0c)− (D2 − λ2)](D2 − λ2)3

}
W = 0 . (43)

It can be shown from equation (43) that all even order derivatives of W vanish
on the boundaries. The proper solution for W characterizing the lowest mode is:

W = W0 sin πz , (44)

where W0 is a constant. Substituting (44) in (43) and putting π2 + λ2 = b, we
obtain:

λ2RH

{
δ̄b2A[c− b(K∗

0 c− Pr)]− b(1 + τ0c)[c− b(K∗
0 c− Pr)][`c + 2A + b]

}

= λ2RE

{
b(1 + τ0c)[c− b(K∗

0 c− Pr)][`c + 2A + b]− δ̄b2A[c− b(K∗
0 c− Pr)]

− π2(1 + τ0c)[c− b(K∗
0 c− Pr)][`c + 2A + b] + δ̄bAπ2[−b(K∗

0 c− Pr)]
}

+K∗
0 b3P−1

r c[c− b(K∗
0 c− Pr)][c(1 + τ0c) + b][`c + 2A + b] + KAb3[c− b(K∗

0 c− Pr)] .

[c1 + τ0c) + b]− b2[c− b(K∗
0 c− Pr)][`c + 2A + b][cP−1

r + b][c(1 + τ0c) + b]

−4π2Ω2Prb[`c + 2A + b][c(1 + τ0c) + b] . (45)

4. Overstability motions

Since c is, in general, a complex constant we put c = cr + iω, where cr and ω are
real. The marginal state is reached when cr = 0; if ω = 0, one says that principle
of exchange of stabilities is valid otherwise we have overstability and then c = iω
at marginal stability.

Putting c = iω in equation (44), the real and imaginary parts of equation (45)
yield:

R = X + iωY (46)
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There, X and Y are real-valued functions of Pr, τ0, λ, Ω, RE , A, K, δ̄, K∗
0 , ` and

ω, and explicit expansions for these functions are follows:

X =
C1C3 + ω2C2C4

λ2(C2
1 + C2

2 )
, (47)
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λ2(C2
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2 )
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−ω2τ0(1 + Pr`) + 2APr − π2(Pr + ω2Kω∗0τ0 − δ̄APr)
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}

b2 +
{
λ2rE

[
ω2π2(τ0 −K∗

0 `− 2KAτ0 + Pr`τ0)

−ω2(` + 2Aτ0)− 2π2PrA
]

+4π2ω2Ω2Pr(` + 2Aτ0)
}

b+π2λ2ω2rE(`+2Aτ0) , (51)

C4 = 2K∗2
0 b6 +

[
(1 + `)(ω2Kω∗20 P−1

r − Pr) + Kω∗20 (4A− 2ω2τ0 −KωA)− 2
]
b5

+
[
ω2Kω∗20 P−1

r (2A− ω2` τ0)−ω2Kω∗0(2`+2P−1
r +`P−1

r −KωAτ0)+ω2(2τ0−`P−1
r

+`Prτ0) + A(K −KPr − 2Pr − 4)− (1 + P−1
r )

]
b4 +

[
λ2rE(Prτ0 −Kω∗0 + δ̄K∗

0A)

+2ω2Kω∗0P−1
r (ω2`τ0 − 2A) + ω2(2P−1

r ` + ` + 4Aτ0 + P−1
r −KωAτ0)

]
b3

+
{
λ2rE

[
1 + Pr(` + 2Aτ0)− δ̄A + π2(Kω∗0 − Prτ0)− π2Kω∗0 δ̄A + Kω∗0(ω2`τ0 − 2A)

]

+ω2P−1
r (2A− ω2τ0)− 4π2Ω2Pr(1 + `)

}
b2 +

{
λ2rE

[
2A− ω2`τ0 + π2 δ̄A− 1

+2Kω∗0A− ω2Kω∗0`tau0 − Pr`− 2PrAτ0)
]
+ 4π2Ω2Pr(ω2`τ0 − 2A)

}
b

+π2λ2rEω2`τ0 − 2A . (52)

It is apparent from Eq. (45) that for arbitrary assigned values of Pr, rE , τ0,
λ, Ω, K∗

0 , A, K, δ̄, ` and ω, RH will be complex but the physical meaning of R
required it to be real.
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Consequently, from the condition that R must be real, so we have either

RH = X and ω = 0 (53)

or
RH = X and Y = 0. (54)

From Eq. (53) we obtain the eigenvalue equation for a natural stationary insta-
bility,

RH =
C3

λ2C1
. (55)

In this case
C1 = Pr(Aδ̄ − 1)b3 − 2APrb

2 (56)

C3 = −Prb
6 + APr(Kω − 2)b5 +

[
λ2rEPr(1− δ̄A)− 4π2ω2Pr

]
b3

+
[
λ2rEPr(π2δ̄A− 2A− π2)− 8π2ω2PrA

]
b2 − 2π2Prλ

2rEAb . (57)

For Newtonian viscous fluid RE = A = K = δ̄ = ω = ω = 0, Eq. (55) reduces
to

RH =
b3

λ2
. (58)

which agrees with the classical result (Chandrasekhar [16]). Equation (55) will give
the critical Rayleigh heat number RHC for the onset of stationary instability.

On the other hand Eq. (49) leads,

RH =
C1C3 + ω2C2C4

λ2(C2
1 + C2

2 )
, (59)

and
C1C4 − C2C3 = 0 . (60)

For assigned values of Pr, K∗
0 , τ0, Ω, A, K, δ̄, ` and RE – Eqs. (59) and (60) define

RH as a function of λ, the minimum of this function determines the critical Rayleigh
number RHC for the onset of oscillatory convection (i.e. overstability) should be
compared with that the onset of stationary convection (i.e. ordinary instability).
The type of instability, which takes place in practice, will be that corresponding to
the lower value of the critical Rayleigh heat number.

5. Numerical results

In order to determine the conditions under which instability sets in overstability
Pr, K∗

0 , τ0, Ω, A, K, δ̄, ` and RE were assigned fixed values, and the value of ω
was evaluated numerically from Eq.(60). Using this value of ω, the value of rH was
evaluated numerically from Eq.(59). The procedure was then repeated for various
values of λ in order to locate the minimum of RH . The critical Rayleigh heat
number RHC obtained for both stationary instability and overstability is shown in
Figs.1–4.



180 Thermal Instability in a Rotating Micropolar ...

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2

HCRLog

WLog

0R E =

1000R E =

2000R E =

0.02ôï =

0.05ôï =

Figure 1 Represents the critical Rayleigh heat number RHC as a function of Ω for various values
of τ0 and RE at Pr = 100, A = 0.2, ` = 1, K = 1, δ = 1, ω = 5 and K∗

0 = 0.1
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Figure 2 Represents the critical Rayleigh heat number RHC as a function of Ω for various values
of τ0 and A at Pr = 100, A = 0.2, ` = 1, K = 1, δ = 1, ω = 5 and RE = 1000. ω = 0 represents
the onset of stationary convection
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We have plotted the variation of the critical Rayleigh heat number RHC with
the rotation ω using Eq.(59) satisfying (60) for the onset of over stable case for
values of the dimensionless parameters Pr = 100, δ̄ = 1, 0.5, 0.1, K∗

0 = 0.1 0.8,
K = 1, ` = 1, τ0 = 0.02, 0.05 and A = 0.2, 0.5. Figure 1 represents the dependence
of RHC on ω for three values of RE = 0, 1000, 2000, τ0 = 0.02, 0.05, δ̄ = 1,
K∗

0 = 0.1 and A = 0.2. Figure 2 represents the dependence of RHC on ω in the
case of RE = 1000. Figure 3 represents the dependence of RHC on ω in the case of
RE = 1000, τ0 = 0.02, 0.05, A = 0.2, K∗

0 = 0.1, 0.8 and δ̄ = 1. Figure 4 represents
the dependence of RHC on ω in the case of RE = 1000, A = 0.2, τ0 = 0.02, 0.05,
K∗

0 = 0.1 and δ̄ = 0.1, 0.5. The flow is stable if RH < RHC and otherwise unstable.
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Figure 3 Represents the critical Rayleigh heat number RHC as a function of Ω for various values
of τ0 and K∗

0 at Pr = 100, A = 0.2, ` = 1, K = 1, δ = 1, ω = 5 and RE = 1000. ω = 0 represents
the onset of stationary convection

Figures 1–4 reveal that the critical Rayleigh heat number RHC decreases with an
increase the Rayleigh electric number rE and the elastic parameter K∗

0 , while RHC

increases with an increase the relaxation time τ0, the rotation ω and the parameters
A, δ̄ (i.e. the onset of stability is delayed as rE and K∗

0 increase, while the onset of
instability is delayed as τ0, ω, δ̄ and A increase). The value of RHC for an oscillatory
instability is greater than that of a stationary instability.

In Figure 5 we have exhibited the dependence of critical wave number λC on
ω for three values of δ̄ = 1, 0.5, 0.1, τ0 = 0.02, 0.05, K∗

0 = 0.1, RE = 1000 and
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A = 0.2. Figure 5 reveals that the critical wave number λC decreases or increases as
δ̄ or τ0 increases. This implies that the width of the cell at the onset of instability
increases with the heat imparted by microrotation, while it reduces as the relaxation
time τ0 increases.

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2

HCRLog

WLog

0.02ôï =

0.05ôï =

1ä =

1.0ä =

Figure 4 Represents the critical Rayleigh heat number RHC as a function of Ω for various values
of τ0 and δ at Pr = 100, A = 0.2, ` = 1, K = 1, A = 0.2, ω = 5 and RE = 1000. ω = 0 represents
the onset of stationary convection

In the case of a Newtonian fluid, it is well known that the rotation introduces
vorticity into the fluid. Then, the fluid moves in the horizontal plates with higher
velocity. On account of this motion the velocity of the fluid perpendicular to the
plates reduces, thus the onset of convection is inhibited. In the case of a micropolar
fluid, free from the rotation of the system, it is apparent that a part of vorticity of
the fluid is spent in inducing rotation to the micropolar additives. This apparent
increase in the viscosity of the fluid reduces the velocity of the fluid, and hence
delays the onset of instability. When the system is subject to low rotation, the
microrotation and the rotation of the system have reinforced each other as the net
effect of these two agents is to curtail the vertical component of the velocity. On the
other hand, in the case of high rotation the motion of the fluid prevails essentially
in the horizontal plates. This motion is reduced by the presence of micropolar
additives. Thus the component of the velocity perpendicular to the horizontal
plates enhances, thereby the system is prone to instability.
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Figure 5 Represents the critical wavenumber λC as a function of Ω for various values of τ0 and
δ at Pr = 100, A = 0.2, ` = 1, K = 1, A = 0.2, ω = 5 and RE = 1000

6. Conclusion

Natural convection of a rotating micropolar viscoelastic fluid heated from below in
the presence of electric field has been analyzed numerically. The study focused on
the effect of a rotating micropolar fluid, elastic parameter, electric field and relax-
ation time on the convection phenomenon. From the above analysis, we conclude
that the micropolar additives, the rotation of the system and the relaxation time
have stabilizing effect while the elastic parameter and the presence of electric field
have distabilising effect. It is also noted from Figs. 1–4 that the critical Rayleigh
heat number for overstability is always greater than the critical Rayleigh heat num-
ber for stationary convection.
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