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Department of Strength of Materials and Structures

Stefanowskiego 1/15, 90-924 ÃLódź, Poland
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The aim of this paper is the analysis of strain–rate sensitivity in dynamic stability of
thin–walled isotropic columns of closed rectangular cross–section, subjected to in–plane
pulse loading of finite duration. The analysis is performed with the FE Method appli-
cation. The full Lagrange strain tensor is assumed and various material characteristics
are applied. The First Shear Deformation Theory displacement field is employed for
the solution as well as the viscoplasticity constitutive model for material behavior under
high strain rate loading. In the performed analysis the strain–rate effect influence on
the dynamic buckling load is examined and also the initial imperfections of walls, pulse
shape and pulse duration. The applications of some dynamic criteria are compared as
well.
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1. Introduction

The demand for the car body safety has become a matter of considerably concern
of producers and is a contradictory requirement to the need of the car body weight
reduction. These both require optimum design of thin–walled car body structures to
achieve the desired mechanical behavior at low and high strain rates. Dependently
of strain rate the loading can be of various types and also of static or dynamic
character. Especially in thin–walled members it may cause buckling which may be
an effect of suddenly applied loads. This dynamic loading could be discrete type
compression of finite duration. In literature the structure response for this loading
is called dynamic buckling. The purpose of this paper is the analysis of dynamic
viscoplastic behavior of isotropic columns of closed rectangular cross-section, built of
thin-walled rectangular plates subjected to in–plane pulse loading of finite duration
(Fig. 1). The analysis of dynamic stability of isotropic plated structures under
in–plane pulse loading depends on pulse characteristic – it means pulse duration,
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pulse shape and magnitude of its amplitude [6]. The dynamic impulse buckling
occurs when the loading process is of an intermediate amplitude and the pulse finite
duration is close to the period of fundamental natural flexural vibrations. Usually
the effects of dumping are neglected in such cases [6]. The dynamic behavior of a
column, consisting of rectangular thin–walled plates, under in–plane loads involves
rapid deflections growth of walls, which are initially not flat but imperfect. There
is no buckling load and there is no bifurcation point over the loading path, as in
the static case. Therefore the dynamic critical load is defined on the basis of an
assumed dynamic buckling criterion. Very popular and most often used, adopted
from shell structures to plated columns, Budiansky–Hutchinson [4] criterion assumes
that dynamic stability loss occurs when the maximal plate deflection grows rapidly
with the small variation of the load amplitude. The other, Petry–Fahlbusch [14]
failure criterion states that a dynamic response caused by a pulse load is defined
to be dynamic stable if the condition that the effective stress σeff is not greater
than limit stress σL is fulfilled at every time everywhere in the structure. Ari
Gur and Simoneta [1] analyzed laminated plates behaviour under impulse loading
and formulated own criteria of dynamic buckling, two of them of collapse–type
conditions.

In [6] wide review of literature devoted to dynamic buckling of thin–walled struc-
tures is presented as well as own original research results of dynamic buckling of
plated structures – columns with opened and closed cross–sections, are included.
It is worth mentioned that there are a very few works which were published of dy-
namic behaviour of thin–walled plated columns. Similar consideration of dynamic
buckling but of thin–walled shell structures is contained in Simitses’s paper [16].
Królak et al. analyzed thin–walled members under static loading in postbuckling
range but included a number of results of solutions in elastic–plastic range [7]. Pa-
tel et al. analyse dynamic instability of stiffened shell panels applying FEM tool
to obtain the solution [11]. Mania and Kowal–Michalska [10] considered isotropic
columns of flat panel walls under axial pulse compression, especially the influence
of cross–section shape (square versus rectangle) and pulse shape (rectangle, triangle
and sine) on dynamic critical load value. In [8] Mania presents some results of in-
vestigations of orthotropic thin walled columns under dynamic pulse compression.
The materials properties considered in mentioned above and other not cited known
papers and publications are obtained from static tests. The loading rate sensitivity
of many structural materials is well known [5], [13]. However this dynamic material
properties have not been employed in dynamic buckling analysis. As to the au-
thor’s knowledge there is no published solutions of buckling analysis of thin–walled
columns made of strain rate sensitive material. Thereby this paper deals with thin–
walled isotropic column made of material with a viscoplastic characteristic, axially
loaded by compression impulse of finite duration.

2. Solution of the problem

The subject of the study is the short thin–walled column described above and
shown in Fig. 1. It is assumed that the loaded edges of the column are simply
supported and remain straight and parallel during loading. The shape of walls’
initial imperfections fulfill the boundary conditions along all edges of component
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plates and corresponds directly to the first static buckling mode. The ratio of
imperfection amplitude to the thickness of column walls (all walls are of equal
thickness) was in the range (0.01, 0.1). The maximal in–plane dimension of wall
(length or width) to its thickness fulfils the inequality

max{l, b1, b2}/{h1 = h2} ≥ 20

Figure 1 Geometric dimensions (a) and shapes of considered pulses (b)

The transient analysis was performed for pulse of rectangular and sinusoidal shapes
with time duration Tp equal to or close to the period of fundamental natural flexural
vibrations T . For each considered structure this period was obtained from modal
analysis (eigenvalue problem). Zero initial conditions were assumed for velocity and
initial imperfection with chosen amplitude for deflections.

The presented solution was obtained on the basis of the first shear deformation
theory (FSDT ). The displacement field was assumed as follows:

u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t)
v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t) (1)
w(x, y, z, t) = w0(x, y, t)

where u0, v0, w0 are the displacement components along the coordinate directions of
a point on the midplane (z = 0) and ϕx, ϕy denote rotations about the y and x axes,
respectively. In order to determine both out–of–plane and in–plane geometric plate
behaviour under dynamic loading, the full strain tensor (Green–Lagrange strain
tensor) for in–plane deformation was employed:

{ε} =
{

ε(0)
}

+ z
{

ε(1)
}

(2)
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Recalling the Hamilton’s principle for a single column wall, the Euler-Lagrange
equations could be obtained in the following form:

−Nxx,x−Nxy,y − (Nxxu0,x) ,x− (Nyyu0,y) ,y

− (Nxyu0,x) ,y − (Nxyu0,y) ,x +I0u0,tt +I1ϕx,tt = 0
−Nxy,x−Nyy,y − (Nxxv0,x) ,x− (Nyyv0,y) ,y

− (Nxyv0,x) ,y − (Nxyv0,y) ,x +I0v0,tt +I1ϕy,tt = 0 (5)
−Qx,x−Qy,y − (Nxxw0,x) ,x− (Nyyw0,y) ,y

− (Nxyw0,x) ,y − (Nxyw0,y) ,x +q + I0w0,tt = 0
−Mxx,x−Mxy,y +Qx + I1u0,tt +I2ϕx,tt = 0
−Mxy,x−Myy,y +Qy + I1v0,tt +I2ϕy,tt = 0

In (5) Nxx, Nyy, Nxy denote resultants of membrane force, Mxx, Myy, Mxy are
moment resultants, Qx, Qy denote the transverse force resultants [6]. I0, I1, I2 are
the mass moments of inertia defined by integrals (6).
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Generally, for complex geometry, arbitrary boundary conditions and/or nonlinear-
ities, the exact (analytical or variational) solution to the equations (5) cannot be
developed. Therefore a finite element method was chosen to solve the problem.
After some transformations of presented above set of equations (5) (integrating by
parts, rearranging etc.) the weak form of equations of motion, associated with the



Strain–rate Effect in Dynamic Buckling ... 193

FSDT was obtained:
∮
Γ
{[Nxx + Nxxu0,x +Nxyu0,y ] nx

+ [Nxy + Nxyu0,y +Nyyu0,y ] ny}δu0ds = 0∮
Γ
{[Nxy + Nxxv0,x +Nxyv0,y ] nx

+ [Nyy + Nxyv0,x +Nyyv0,y ] ny}δv0ds = 0∮
Γ
{[Qx + Nxxw0,x +Nxyw0,y ] nx

+ [Qy + Nxyw0,x +Nyyw0,y ] ny}δw0ds = 0∮
Γ

(Mxxnx + Mxyny)δϕxds = 0∮
Γ

(Mxynx + Myyny)δϕyds = 0

(7)

Finally after approximation of the primary variables u0, v0, w0, φx, φy with the
shape functions Fi of the form:

Fi =
1
4
{uI(1− s)(1− t) + uJ (1 + s)(1− t)

+uK(1 + s)(1 + t) + uL(1− st)(1 + t)} (8)

the FEM model of analyzed thin–walled column was obtained. In equation (8) s
and t are normalized element local coordinates and uI is the motion of node I of
a four node quadrilateral shell element applied in the meshing. To perform the
calculations for some chosen cases the ANSYS package software was employed [17].
The column of a shape of four wall cubic structure was meshed with a SHELL181
element, which is four nodes isoparametric nonlinear element. This element has six
degrees of freedom: three displacements along the axes of local coordinate system
and three rotations around these axes respectively. However the in–plane rotation
around the axis normal to the element surface is controlled in Allman’s sense [2].

Figure 2 Meshed column model in reference coordinate system
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The uniformly distributed mesh was applied with up to 10000 quadrilateral elements
[8] what allowed to analyze even the high frequency modes in dynamic response of
the column, giving acceptable time of computations (Fig 2).

The simply supported boundary conditions [8], [10] were chosen for the loaded
edges of the column and the uniform compression of impulse type of finite duration,
parallel to the walls, dynamically loaded the structure. The walls of the column
are composed of isotropic plates. The material of column is assumed a structural
steel. The fact that mild steel is strain rate sensitive is well known and in literature
widely documented [13], [15]. It is reported that mild steel under dynamic loading
increases the yield limit and the hardening part of strain–stress curve lies over
static characteristic. Consequently the dynamic ultimate strength is also higher
than in static case. To define this phenomenon by Perzyna viscoplastic constitutive
equation [12] the following approach is performed.

According to Pradtl–Reuss associated flow rule idealization, the strain increment
in the solid in elastoplastic range can be decomposed into elastic and plastic part
[3]:

dεij =
1 + ν

E
dσij − ν

E
dσ0δij +

3
2

dεp
i

σi
(σij − δijσ0) (9)

where in (9) the first two terms simply obey generalized Hooke’s law – elastic strain
part and the last term – is plastic strain component. It relates equivalent plastic
strain increment dεp

ij , effective stress σi and deviatoric stress sij = σij − δijσ0.
Including the time dependence into elastoplastic equation (9) its viscoplastic form
in rate terms is as follows:

dε̇ij =
1 + ν

E
dσ̇ij − ν

E
dσ̇0δij +

3
2

dε̇p
i

σi
ṡij (10)

Next introducing the effect of strain rate in deformation described by equation (10),
Perzyna proposed the constitutive equation for general state of stress in the form
of [12]:

dε̇ij =
1 + ν

E
dσ̇ij − ν

E
dσ̇0δij + γ 〈Φ(F )〉 ∂f

∂σij
(11)

where γ is material viscosity constant and f is the viscoplastic potential. The
function Φ(F ) should be determined from set of experiments. The notation 〈 〉 is
for McCauley’s bracket. For steel, the relation between stress and strain is defined
by Perzyna as:

σ = σ0

[
1 + Φ−1

(
ε̇p

γ∗

)]
(12)

or simply:

σ = σ0

[
1 +

(
ε̇p

γ∗

)m]
(13)

In equation (13) ε̇p means strain rate, m and γ∗ are material constants and δ0 is
current static yield stress. Jones [5] suggests for mild steel m = 0.2 and γ∗ = 40.4.
This values were used in discussed later results of numerical calculations. Static
material characteristic was modeled as bilinear one.
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Figure 3 Dynamic material characteristics obtained with Perzyna constitutive equation (13)

The effect of strain rate on dynamic material characteristics is presented in Fig. 3.
The real material static tensile test curve was approximated with bilinear character-
istic. From this curve with Perzyna constitutive equation, the dynamic character-
istic can be obtained for various strain rates. The stress – strain curves are nearly
equidistant in the flow stress region. It is clearly seen that even for middle strain
rate ε̇p = 1 [1/s] the yield limit raises in 50 %. For impact rates (ε̇p > 102 [1/s])
this effect is more evident.

The critical conditions for dynamic buckling of analyzed columns were deter-
mined on the basis of one of criteria mentioned in the introduction: Budiansky-
Hutchinson [3], Ari–Gur and Simoneta [1] and Petry&Fahlbusch [14]. The dynamic
critical loads obtained from these criteria were compared as well.

3. Numerical results

Some chosen results of numerical calculations are presented in diagrams. The static
material properties of considered material are collected in Table 1.

Table 1
Property Unit Isotropic value
E GPa 200
G GPa 77
ν 0.30
ρ kg/m3 7850

The dynamic load factor – DLF was introduced as a quotient of pulse load
amplitude to the static buckling load for perfect structure. The static buckling
load was determined in the first step of performed investigation, it is in linear
eigenbuckling analysis.

In the performed dynamic buckling analysis the first maximal deflection of col-
umn walls was registered. Usually it took place during the acting pulse load or
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immediately after it was released. The differences of this effect are connected with
the time duration of pulse load and pulse amplitude [6].

Figure 4 Maximal isotropic column deflections versus DLF value (rectangular pulse)

It a column of cubic shape (Fig. 2) with walls of equal thickness was considered
thus the geometry relations were b/l = 1 and b/h = 62. The static buckling stress
for this column was located under assumed yield limit σy = 200 [MPa]. The column
was dynamically compressed with rectangular pulse load which lasted in time equal
to the period of fundamental natural vibration of analyzed column. The graphs
in figure 4 present the maximal column walls deflections as a function of pulse
amplitude (DLF ). The full line relates to transient analysis of material no sensitive
to strain rate. The short dotted line was obtained for the case when the strain rate
effect was included in analyzed material. To determine the dynamic critical load
value the Budiansky–Hutchinson criterion was employed [4]. The critical ranges
according to this criterion are difficult to distinguish for both cases because both
curves almost coincide. Thus the Budiansky–Hutchinson criterion in its basic form
is insufficient. Although from its approach it is obvious that in the critical range
there is a inflection point of ∆wmax/h = f DLF curve. It can be derived with the
application of finite difference method [9]. Following this procedure it was obtained
that the critical DLF cr for strain rate sensitive solution is greater in 28% comparing
with DLF cr for material where this effect was not considered (1.81 versus 1.41
respectively). From the column dynamic response history the maximal registered
strain rate value is equal to 462 [1/s] for the dynamic pulse amplitude DLF = 1.8.

Analyzing column of similar geometry as the previous one but assuming lower
yield limit - it is σy = 100 [MPa] with other material constants unchanged, leads to
consideration of the problem of dynamic column buckling in elastic–plastic range
even for low DLF values. Results of this analysis are presented in Fig. 5. Also
in this case the critical values of DLF were determined by deriving the root of
second determinant of scatter function ∆wmax/h = f DLF . In this case the critical
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dynamic buckling load according to Budiansky–Hutchinson criterion is greater at
22% for rate sensitive material than for strain rate independent behavior. For both
cases (results shown in Fig. 4 and in Fig. 5) the analysis of column made of
material without strain rate dependence was limited to dynamic amplitudes (DLF )
not greater than 1.6. The greater dynamic impulse amplitude were connected with
large deformations and the plastic solution process was not converged.

Figure 5 Maximal isotropic column deflections versus DLF value (rectangular pulse)

These cases are also a good example for comparison of application of different dy-
namic buckling criteria. As it is shown in Fig. 5 the DLF critical values are 0.83
and 1.01 for not rate sensitive and rate dependent material respectively. These val-
ues were obtained on the basis of the Budiansky-Hutchinson criterion. Both curves
in Fig. 5 display rapid drop – solid one for DLF = 1.2 and dashed for DLF = 1.55.
This is a result of change in buckling mode shape. For dynamic amplitudes lower
than those denoted above, one half–wave deflection occurs on the column walls.
For higher amplitudes more half–waves overlap causing lower deflection amplitude.
For this situation one of Ari–Gur and Simoneta criteria can be used. It defines the
critical condition for dynamic load as such for which the shape change in dynamic
response occurs. According to this condition the dynamic critical loads are 1.2 and
1.55 - for respective material properties. Additionally they are greater in 50% com-
paring with values determined with application of Budiansky–Hutchinson criterion.
Considering all these results the relations between the determined dynamic buck-
ling load and applied criterion can be seen. This is one of basic differences between
dynamic and static buckling analysis where for the last the bifurcation buckling
load exists.

For comparative study the plated walls column of the same geometry as in the
preceding consideration was loaded with sinusoidal compression impulse, acting in
time equal to the period of fundamental natural vibration. Results of this analysis
are shown in Fig. 6 together with results repeated after Fig. 5 for rectangular
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dynamic pulse loading. The sinusoidal pulse amplitude was 1.57 times greater than
rectangle pulse amplitude to achieve the mechanical equality of both pulses. The
maximal deflections of column walls for sinusoidal dynamic compression are about
four times greater than those for rectangular pulse.

Figure 6 Maximal isotropic column deflections versus DLF value – pulse shape influence com-
parison

Figure 7 Maximal equivalent stresses (HMH) versus DLF value for sinusoidal and rectangular
pulses
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It can be explained by the fact that during sinusoidal loading the material has
more time for plastic deformations when for rectangular pulse material achieves the
full load from the very first moment. For sinusoidal pulse the plasticity undergoes
with lower rate. This is confirmed by the stress curves for both examined loadings
depicted in Fig. 7. The curves for sinusoidal impulse increase gradually when for
rectangular pulse, curves local peaks are present. The maximal registered strain
rate is grater for rectangular pulse load than for sinusoidal load and occurs at the
beginning of acting impulse. However the critical DLF values for sinusoidal dynamic
pulse are lower than for rectangular dynamic loading. This agrees with conclusions
presented in [6] and [10].

4. Conclusions

In the paper the representative results of dynamic buckling analysis of thin-walled
isotropic columns under impulse compression were presented. The plated walls of
columns were made of isotropic strain rate sensitive material. For comparative study
two different yield limits were assumed for this material. The special emphasis has
been placed on the consideration of the effect of strain rate material dependence.
The numerical calculations were obtained with Finite Element Method and ANSYS
software package applications. The results of carried out analysis confirm the sen-
sitiveness of the column dynamic response on the pulse shape and pulse duration
(not presented in the paper) on the dynamic buckling load. It was proved that con-
sideration of dynamic material properties in dynamic buckling analysis results in
higher values of critical dynamic buckling loads. Due to lack of bifurcation buckling
load in the dynamic analysis there is the necessity of dynamic buckling criterion as-
sumption. The applied criterion influences the drawn conclusions and DLF critical
value. The study of column with orthotropic walls demonstrates that similar strain
rate sensitivity can be seen in dynamic response and these results will be presented
soon.
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