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In the paper basic kinds of multi–products of axis versors and vectors in an n–dimensional
space have been identified and named. In addition, two derivative multi–products have
been described. A manner of generating products of any number of versors or vec-
tors for any space dimension has been presented. It has been shown that the result
of multiplication does not depend on the order of multiplication of vectors, but on the
preference of multiplication assumed. Multiplication preference determines the kind of
a multi–product. Identification relationships can be determined between different kinds
of products, which will be discussed in papers to follow.
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1. Introduction

Vectors and basic operations on vectors, their sum and product, are the elementary
problem of mechanics. Operations on vectors have their own specificity. A sum of
vectors is defined for any number of them, while a product is subject to quantitative
limitations. A calculus of vectors is defined by a scalar product for only two vectors
ab. Thus, a question arises why any number of vectors can be added, while it is
customary to perform scalar multiplication on only two. The problem is that the
scalar multiplication of vectors is performed on the axes of an orthogonal system
as a product of versors of the axis (positive unit vectors, lying on the axis), the
product of versors of the same axis being equal to 1, whereas the product of versors
of different axes being equal to 0. This simple model functions well when multiplying
two versors; on the other hand, when three or more versors are multiplied, it loses its
uniqueness. With a multi–product of many vectors the product of versors depends
on a random order of multiplication and can be equal to 0, 1 or one of the versors.

This ambiguity can be prevented if two possible preferences of choice of multi-
plication are distinguished and – as a consequence of this assumption – four basic
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kinds of multi–products of vectors are defined. Such multiplication of vectors is a
unique operation, independent of the order of vectors in a product. The present
work is an expansion of the subject matter of paper [1], containing basic definitions
of multi–products and restricted to a product of three vectors.

2. Assumptions

We are considering a problem a product m of vectors in an orthogonal n-dimensional
space.

Let ai ( i = 1, ...m) be an i-th vector and let its j-th coordinate in an n–
dimensional Cartesian space is aij (j = 1, ...n).

After denoting versors of the coordinate system axis as ej we can write the
projection of the i-th vector onto the j-th axis of the system aij and the vector
itself ai as

aij = aijej (1)

ai =
n∑

j=1

aij =
n∑

j=1

aijej (2)

where the versor of the j-th axis of the system of coordinates
ej = [0, 0....j = 1, ...0, 0]

3. Description of the Problem

A product m of vectors, described in an n-dimensional space by coordinates aij ,
can be written in the following way

a1a2 ....... am =
m∏

i=1

ai =
m∏

i=1

n∑

j=1

aij =
m∏

i=1

n∑

j=1

aij ej (3)

The matrix notation below can be an illustration of equation (3).
Let us introduce a vector of the coordinate system gn, the vector whose projec-

tions onto particular axes of the system are the versors of these axes, that is the
vector of the classical form, or in matrix notation

gn =
n∑

j=1

ej = e1 + e2 + ....... + en

gT
n = [1, 1, ........1] (4)

A vector of the coordinate system can also be written in such a form of the column
matrix of a vector of the coordinate system ĝn containing versors of the axis of the
system that

ĝT
n = [e1, e2, . . . . en] (5)

Let us build a matrix A, whose terms aij are coordinates of the vectors multiplied,
which can be written as: A = [aij ], (i = 1, ...n; j = 1, ...m)

A =




a11 a12 ...... a1n

a21 a22 ...... a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . .
am1 am2 ...... amn


 (6)
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and a matrix Â, whose terms are vectors of projections of the vectors ai onto the
axes of the system, written as products of the corresponding coordinates and versors
of the axis of the form aijej . This matrix can be written as

Â = [aijej ], (i = 1, ...m; j = 1, ...n)

Â =




a11e1 a12e2 ...... a1nen

a21e1 a22e2 ...... a2nen

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1e1 am2e2 ...... amnen


 (7)

In the column matrix â the vectors being multiplied ai (i = 1, ...m) are contained.

âT = [a1, a2, ......am] (8)

The matrix of the vectors multiplied â (8) is a product of the matrix A (6) and the
matrix of the vector of the coordinate system gn (5) or a product of the matrix Â
(7) and the matrix gn (4).

â = Aĝn = Âgn (9)

Equation (9) describes the system m of vectors. The product of all the columns
of the left side of (9) corresponds to the left side of equation (3), while the product
of all the rows of the right side of equation (9) corresponds to the right side of
equation (3).

4. Solution

Equation (3) on the left side contains a product of vectors of matrix (8), while on
the right side it is a product of all the lines of the matrix of projections of the
vectors Â (7). Following multiplication and ordering, the right side of equation
(3) is transformed into a sum m element products containing one element of each
line of matrix (7) each. In other words, each element of each line of matrix (7) is
multiplied by each element of each line. In this way, a sum nm of the products is
obtained.

Each of them consists of the product m of the scalar values being various co-
ordinates of successive vectors i = 1, 2, ...m, and the product of versors of different
axes. The sequence of indices of versors of the axis and, at the same time, succes-
sive coordinates in each of these products constitutes a variation with repetitions
u containing m elements and formed of natural numbers 1, 2, ...n, being numbers
of the axes of the system. Thus, following multiplication and ordering, product (3)
can be written as a sum containing nm products of the coordinates aiu and versors
eu

m∏

i=1

ai =
nm∑

k=1

m∏

i=1

aiueu (10)

where

• u = uki, u ∈ N – is the i-th term of the k-th variation with repetitions
uk, composed of m elements, formed on an n–element set of natural numbers
1, 2, ...n
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• nm – is the number of m–element variations with repetitions formed on an
n–element set.

Matrix U of dimensions (nm,m), containing elements uki (11) contains in successive
lines all the m–element variations possible with repetitions uk of natural numbers
formed on an n–element set. Elements uki of this matrix are indices of product
(10).

U =




u11 u12 ...... u1m

u21 u22 ...... u2m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
unm1 unm2 ...... unmm


 (11)

It can be seen that expression (10) is a sum of products of all the elements of any
column of the matrix of projections of vectors Â (7) when a complete permutation
(rearrangement) of all the elements in all the lines is carried out.

The expansion of the right side of equation (10) leads to a conclusion that it is
composed of the sum nm of products, each of which consists of m2 elements:

The first m elements are scalar coordinates aij , making up this product,
The next m elements are the versors of axis ej , accompanying these coordinates.
Thus, the product (9) can be written in the form

m∏

i=1

ai =
nm∑

k=1

m∏

i=1

aiueu =
nm∑

k=1

{
m∏

i=1

aiu

m∏

i=1

eu

}
(12)

The calculation of the product of m scalar coordinates aiu is not a problem, while
an attempt to multiply m versors eu by one another, belonging to n different axes
of the coordinate system, makes us aware of the need to define products of the
axis versors. The more so that we have to deal with a number nm variations with
repetitions. These products constitute m–element variations with repetitions, built
on an n–element set of versors of the system axes.

5. Products of the axis versors

5.1. Kinds of products

A product of two versors of the axis is defined as

ekem =
{

0 if k 6= m
1 if k = m

(13)

When calculating of a greater number of versors, we can see that the result depends
on two factors (aspects).

The first factor is the number of the versors multiplied.
If we have to do with an even number of versors (e.g. m = v), then, as a result

of multiplication, we obtain a scalar value, equal to 0 or 1. Such a product can be
called an even product of v versors.

If we multiply an odd number of versors (e.g. m = d), then, as a result we
obtain a zero vector or a vector equal to one of versors. Such a product will be
called an odd product of d versors.
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The other factor determining the result of a product is the preference of multi-
plication assumed, that is the priority of the product in a situation when we have
to do with the multiplication of several versors, belonging to different or the same
axes. Then, the priority can be given to a product of the same (el el = 1) or
different (elek = 0) versors. A product in which the priority is given to the multi-
plication of homogeneous unit vectors will be called a product of the first kind or a
homo–product of versors and denoted as:

fv
[e] – if it is an even product

fd
[e] – if it is an odd product

A product in which the priority is given to the multiplication of heterogeneous
unit vectors will be called a product of the second kind or a hetero–product of versors
and will be denoted as:

sv
[e] – if it is an even product

sd
[e] – if it is an odd product.

And so, for example:

• even products of four versors can be equal to the number zero or one:

f4[elekelek] = (elel)(ekek) = 1 s4[elekelek] = (elek)(elek) = 0

f4[elekeleu] = (elel)ekeu = 0 s4[elelelel] = (elel)(elel) = 1

• odd products of three versors disappear or are versors of the axis:

f3[elekel] = (elel)ek = ek s3[elekel] = (elekel) = 0

f3[elekeu] = elekeu = 0 s3[elelel] = elelel = el

In formula (12) there appears a product of m versors, belonging to n different axes
of the system. This product can be denoted as δk and written in the following form

δk =
m∏

i=1

eu =
m∏

i=1

ebkj

j where
n∑

j=1

bkj = m (14)

The δk thus obtained is a multi–product of m versors, belonging to n different axes
and used for the notation of the product of m vectors.

Let us also note that in any k-th multi–product δk any j-th versor ej may not
occurr, which means that bkj = 0. Then, it should be assumed that for this j

e0
j = 1 (15)

5.2. Definitions of products

Below we present the manner of determining a multi-product of m versors. Depend-
ing on the values assumed by a sequence bkj of index exponents at successive versors
of the axis ej , the multi–product δk (14) belongs to the category of the product
of the first kind (homo–product) or the second kind (hetero–product), described
above. At the same time, we take into consideration whether the multi–product is
an even one (m = v) or an odd one (m = d).

For each k-th multi–product (δk =
∏

eu) (14), corresponding to k-th variation
uk we build a matrix Ek of versors forming this product. The matrix Ek has
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dimensions (m, n). Successive versors eu = [0, 0, ...u = 1, ...0, 0] making up the
k-th product are lines of this matrix.

We also form a column matrix p, containing m elements, whose all elements are
numbers 1, hence pT = [1, 1, ...1, 1]

Now we multiply the matrix

ET
k p = bk (16)

and as a result we obtain a column matrix bk, containing n elements, such that

bT
k = [bk1, bk2, ...bkn] and

∑
bkj = m

Elements of matrix bk are numbers bkj ∈ N , which are index exponents of the
multi–product of versors δk, defined by formula (14).

Making use of equation (14), the four basic kinds of products of versors described
above, were defined:

• an even homo–product fv
[e], i.e. an even product of m = v versors of the first

kind, when m = v, v ∈ {4, 6, 8, ...}. It will appear only when all the index
exponents bkj are even numbers, while it disappears when at least one of the
exponents is an odd number. Then, we will introduce the multi–product of
versors δk as δv

f = fv
[e].

fv
[e] =

n∏

j=1

ebj

j

f
=





1 if ∀
j

bj ∈ {0, 2, 4, ... v}

0 if ∃
j

bj ∈ {1, 3, 5, ... v − 1}
(17)

• an even hetero–product sv
[e], i.e. an even product of m = v versors of the

second kind, when m = v, v ∈ {4, 6, 8, ...}. It will appear only when one of
the index exponents bkj is equal to an even number of multiplied versors v,
while the remaining ones are equal to zero. Then, we will introduce δv

s = sv
[e]

sv
[e] =

n∏

j=1

ebj

j

s=





1 if ∃
j

bj = v

0 if ∀
j

bj < v
(18)

• a homo–product fd
[e], i.e. an odd product of m = d versors of the first kind,

when m = d, d ∈ {3, 5, 7, ...}. It will appear when one of the exponents is
an odd number, while the remaining index exponents bkj are even numbers.
It disappears when more than one of the exponents is an odd number. Then
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δd
f = fd

[e]

fd
[e] =

n∏

j=1

ebj

j

f
=





ek if





∃
k∈{1, 2,...n}

bj ∈ {1, 3, 5, ...d}
and
∀

j 6=k
bj ∈ {0, 2, 4, ...d− 1}

0 if





∃
k∈{1, 2,...n}

bj ∈ {1, 3, 5, ...d}
and
bl ∈ {1, 3, 5, ...d}

(19)

• an odd hetero–product sd
[e], i.e. an odd product of m = d versors of the

second kind, when m = d, d ∈ {3, 5, 7, ...}. It will appear only when one of
the index exponents bkj is equal to an odd number of multiplied versors d,
while the remaining ones are equal to zero. Then δd

s = sd
[e]

sd
[e] =

n∏

j=1

ebj

j

s=





ek if ∃
k∈{1,2,...n}

bk = d

0 if ∀
j

bj < d
(20)

The analysis of formulae (17–20) leads to a conclusion that a product of the second
kind is contained in a product of the first kind and this dependence is binding for
both even and odd products. Thus, we can introduce a third kind of product of
m versors, which is the difference of the homo–product and hetero–product and
denote it as

tv = fv − sv for even products (21)
td = fd − sd for odd products (22)

The, the two derivative products are equal to

• an even product of the third kind tv[e], v ∈ {4, 6, 8, . . .}. It will appear when all
the index exponents bkj are even numbers, but smaller than v. It disappears
when at least one of the exponents is an odd number or equal to v. Then
δv
t = tv[e]

tv[e] =
n∏

j=1

ebj

j

t=





1 if ∀
j

bj ∈ {0, 2, 4, ...v − 2}

0 if





∃
j

bj ∈ {1, 3, 5, ...v − 1}
or
∃
j

bj = v

(23)

• an odd product of the third kind td
[e], d ∈ {3, 5, 7, ...}. It will appear when one

of the exponents is an odd number, but smaller than d, while all the remaining
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index exponents bkj are even numbers. It disappears when more than one of
the exponents is an odd number or when one of the exponents is equal to d.
Then δd

t = td[e]

td
[e] =

n∏

j=1

ebj

j

t=





ek if





∃
k∈{1,2,...n}

bk ∈ {1, 3, 5, ...d− 2}
and
∀

j 6=k
bj ∈ {0, 2, 4, ...d− 1}

0 if





∃
k,l∈{1,2,...n}

bk, bl ∈ {1, 3, 5, ...d}
or
∃
j

bj = d

(24)

6. Multi–products of vectors

Having introduced the multi–product of versors of the axis δk in the form of equation
(14) defined the four basic (17-20) and two derivative (23-24) multi–products of
versors of the axis, we can return to the product of m vectors.

Having taken into consideration (14) in (12) we obtain

m∏

i=1

ai =
nm∑

k=1

m∏

i=1

aiueu =
nm∑

k=1

m∏

i=1

aiu δk (25)

Expression (14) is a multi–product of versors δk, formed for k-th variation with rep-
etitions uk, described in matrix (11). As mentioned above, the kind and value of the
product of m vectors depends on their number and the preference of multiplication
of the axis versors. Thus, the selection of the kind of the multi–product of versors δk

determines the kind of the multi–product of vectors. Thus, using formula (25) and
substituting the multi–products of versors defined earlier, we obtain corresponding
multi–products of vectors. These are, as for the versors, the following products:

• the even multi–product of the first kind of v vectors – fv

• the even multi–product of the second kind of v vectors – sv

• the odd multi–product of the first kind of d vectors – fd

• the odd multi–product of the second kind of d vectors – sd

m∏

i=1

ai =





f
= fv if m = v ∧ δk = δv

f look at (17)
s= sv if m = v ∧ δk = δv

s look at (18)
f
= fd if m = d ∧ δk = δd

f look at (19)
s= sd if m = d ∧ δk = δd

s look at (20)

(26)

and their corresponding differences:

• the even product of the third kind of v vectors - tv
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• the odd products of the third kind of d vectors - td

m∏

i=1

ai =

{
t= tv if m = v ∧ δk = δv

t look at (23)
t= td if m = d ∧ δk = δd

t look at (24)
(27)

7. Conclusions

We return here to the question put in the beginning – what will the multiplication
of more than two vectors by one another result in? Is it possible – by multiplying
m vectors by one another – obtain a result whose value will be independent of the
order in which they are multiplied? It results from the reasoning presented above
that it is possible.

In the paper, kinds of products of versors and vectors have been defined, calcu-
lated in the orthogonal system of axes, determining an n-dimensional space.

These products – of the first kind, the second kind, and their difference , products
of the third kind, both even and odd ones, are – for definite m vectors – constant
and their value does not depend on the order in which they are arranged in the
matrices A (6), Â (7) and â (8).
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Nomenclature

aij the projection of an i-th vector onto a j-th axis of the system of coordinates
gn the vector of the system of coordinates
δk the multi-product of the axis versors
fv the first kind of product of even (m = v) vectors
fd the first kind of product of odd (m = d) vectors
sv the second kind of product of even (v) vectors
sd the second kind of product of odd (d) vectors
tv the third kind of product of even vectors
td the third kind of product of odd vectors




