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In the paper the author’s energy method was used to examine the cooperation of a
self–induced system with a linear and non–linear system. The conditions when these
can occur were given. Apart from the quantitative research the qualitative research
was presented demonstrating the influence of damping and elasticity on amplitude and
vibration frequency.
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1. Introduction

A self–induced vibratory system is an appliance capable of producing non–decreasing
vibrations, the characteristic of which are: a source of energy, a valve regulating
the energy access to the system, the vibratory system and the valve feedback.

A distinctive feature of the systems is the way of drawing the energy. It allows
to distinguish autonomic self–induced systems from non–autonomic systems, where
the energy consumption takes place due to external forces openly dependent on
time.

In the self–induced system in vibrations dynamic equation, time does not occur
in an open way. The source of energy is constant, not dependent on time and the
energy supply is regulated by the vibratory system itself (that is why such systems
are called self–induced).

Taking into consideration a self-induced system of two degrees of freedom you
can single out the following elements, as presented in the block diagram (Fig. 1):
element I – source of energy, element II – vibratory system connected with feedback
through IV with a regulator II, which controls the energy flow from the source to the
vibratory system. Elements I and III can be linear, element II must be non–linear.
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Figure 1

Technology knows many self–induced systems. They are, among others, vibra-
tions of diggers, cutting tools, turbine paddles, airfoils or vibrations of suspension
bridges, which may lead to the break of the bridge e.g. Tracon Bridge etc. In such
cases steps are taken to eliminate the vibrations. In electrotechnology self–induced
systems are used as amplifiers.

The work discusses mechanical systems with frictional contacts in movable joints
with particular attention devoted to vibrations forced kinematically, as self-induced
vibrations are possible to occur.

The occurrence of the vibrations is conditioned by the form of the frictional con-
tact characteristic. Therefore the selection of the suitable characteristic is essential
in the synthesis of mechanical systems with frictional contact. Vibrations occurring
along with some characteristics of frictional contacts are self–induced vibrations
which, in certain conditions, may cause faster wear, damage or destruction of the
self–induced system.

Let us consider the impact of the self–induced system on the linear system
and next, on the non–linear system. They are systems of two degrees of freedom.
On the basis of the analysis the conditions in which the self-induced vibrations
occur will be settled and the influence of damping on vibration amplitude will be
discussed. The developed energy method will be used to examine the course of
solutions qualitatively and the quantitative asymptotic Krylov–Bogolubov method
will be employed to determine the amplitude and the vibration frequency.

2. Power engineering of self–induced vibrations

One of the most general points of view that can be taken in considerations of any
physical phenomenon is the power engineering point of view. We are, above all,
interested in an energy balance of a given phenomenon.

The condition necessary for the fixed vibrations (i.e. non–decreasing and of
non–increasing amplitude) to occur is the following condition of energy balance
equilibrium: the inflow of energy from the source in a period (or a time unit) is
exactly equal to the loss of energy during the same period of time.

If:

• loss supplement is insufficient, the vibrations will fade

• energy inflow from the source is excessive, the vibrations will increase
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The self–induced mechanism is as follows:
If in the initial phase of the vibratory movement, i.e. along with the lowest

amplitudes, the energy inflow is bigger than the loss, the vibration amplitude will
increase. If this energy inflow–to–energy loss ratio continued, the amplitude would
increase unlimitedly.

In order to obtain a fixed movement, starting from a given amplitude value, the
energy loss is required to increase faster than the inflow from the source. In that
case the energy balance equilibrium is possible to attain.

Figure 2

Fig. 2 is a pictorial presentation of this phenomenon.E+ denotes energy received
from the source, E− denotes energy lost by the vibratory system; they are presented
depending on amplitude a. The point of the curves intersection equals to the energy
balance equilibrium; the ordinate of this point corresponds to the value of the fixed
amplitude ao.

Figure 3

The E+ and E− curves can intersect in more points. All the points of stable
equilibrium, with the exception of the origin of coordinates, indicate possible stable
vibration forms of the system, in which it can generate non-decreasing vibrations.

Considerations regarding E+ and E− curves lead to the conclusion that the
system must be non-linear to enable their intersection. Therefore, every actual self–
induced vibratory system capable of generating vibrations of fixed amplitude must
comprise a non–linear element. It should be emphasized here that non–linearity
can characterize the vibratory system or load as well as the valve mechanism or the
feedback circuit mechanism.
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Figure 4

On a phase plane, closed phase trajectory corresponds to fixed vibrations of self–
induced system. With the time increase, all trajectories in its certain surrounding
head towards it. The above closed trajectory is called a stable limit cycle Fig. 4.

The limit cycle must go through the field points in which the system energy
increases and through the field points in which the energy decreases, or it must lie
on the border of the fields mentioned above.

The self–induced system can also possess a few limit cycles. Such a case is
possible to occur when the system energy increases inside a certain ring encircling
asymptotically a singular point (x = v=0), while on the remaining part of the phase
plane it decreases. The singular point is a non–stable balance point, thus periodical
self–induced vibrations will occur after any little initial disturbance. Such a self-
induced system is called a soft induction system.

If the vibrations occur only after sufficiently big initial disturbance to which
corresponds phase point position C1, this kind of the self–inducing system is called
a hard induction system Fig. 5.

Figure 5
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3. Energy analysis of self–induction system

The impact of the self–induced system on the linear or non–linear mechanical system
was illustrated by a physical model Fig, 6, where the following denotations were
used:

f1(x1)

f2(x1, x2)

( )11 xj &

( )212 ,xxj & &

m2

m1

x2

x1

Figure 6
f1(x1), f2(x1, x2) – elasticity characteristics

ϕ1 (ẋ1) , ϕ2 (ẋ1, ẋ2) – attenuation characteristics

For the physical model Fig. 6, with continuous elasticity and attenuation charac-
teristics non–linear equations were obtained (1). Depending on particular forms of
these characteristics the equations can have periodical solutions.

m1ẍ1 + f1 (x1) + f2 (x1, x2) + ϕ1 (ẋ1) + ϕ2 (ẋ1, ẋ2) = 0
m2ẍ2 − f1 (x1)− f2 (x1, x2)− ϕ2 (ẋ1, ẋ2) = 0

}
(1)

The obtained system of equations (1) will describe decreasing vibrations, if it is a
positive dissipation system and the elasticity characteristics will be positive. The
conditions will be determined by the inequalities (2) and (3).

∂H1

∂x1
> 0

∣∣∣∣∣∣

∂H1
∂x1

∂H1
∂x2

∂H2
∂x1

∂H2
∂x2

∣∣∣∣∣∣
≥ 0 (2)

Φ1ẋ1 + Φ2ẋ2 ≥ 0 (3)

The inequalities (2) indicate that elasticity characteristics derivatives are positive,
and the inequality (3) shows that the system possesses positive dissipation.

4. Cooperation of self–induction system with linear system

The interaction of self–induction system was illustrated by the model in Fig. 3,
where the denotations were introduced (4).

f1 (x1) = k1x1

f2 (x1, x2) = k2 (x1 − x2)
ϕ1 (ẋ1) = −α ẋ1 + β ẋ3

1

ϕ2 (ẋ1, ẋ2) = l (ẋ1 − ẋ2)





(4)
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For the model taken (Fig. 4), with continuous characteristic of a non–linear silencer
ϕ1 (ẋ1) = −α ẋ1 + β ẋ3

1, where α > 0 and β > 0, the non–linear equations were
obtained (5) which depending on the springs and silencers characteristics can have
periodical solutions. Such a periodical solution is the limit regime (limit cycle) of
self–induction vibrations.

m1ẍ1 + k1x1 + k2 (x1 − x2)− α ẋ1 + β ẋ3
1 + l (ẋ1 − ẋ2) = 0

m2ẍ2 + k2 (x1 − x2)− l (ẋ1 − ẋ2) = 0 (5)

The obtained system of equations (5) will describe decreasing vibrations if it is a
dissipation system and the coefficients of the system elasticity are positive. The
conditions are described by the inequalities (2) and (3). In the case considered the
expressions of H1, H2, Φ1, Φ2 are equal (6).

H1 = k1x1 + k2 (x1 − x2)
H2 = −k2 (x1 − x2)
Φ1 = −α ẋ1 + β ẋ3

1 + l (ẋ1 − ẋ2)
Φ2 = −l (ẋ1 − ẋ2)





(6)

After the substitution (6) in (2) and (3) and the execution of proper operations the
inequalities were obtained:

k1 + k2 > 0
k1 · k2 ≥ 0

}
(7)

[
(l − α) + β ẋ2

1

]
ẋ2

1 − 2lẋ1ẋ2 + lẋ2 ≥ 0 (8)

The inequalities (7) are always fulfilled, while the inequality (8) will proceed if

4l2ẋ2
1 − 4l

[
(l − α) + β ẋ2

1

]
ẋ2

1 < 0 (9)

which means with
ẋ2

1 >
α

β
(10)

From the energy analysis, it appears that during the cooperation of the self–
induction system with the linear system the self–induced vibrations of the system
may occur if the inequality is not fulfilled (8). The balance position is the non–stable
position.

5. Cooperation of self–induction system with no–linear system

The impact of the self–induction system on the non–linear mechanical system was
illustrated by the model in fig.2.2 but the elasticity and attenuation characteristics
were taken as non–linear (11).

f1 (x1) = k1x1 + γ1x
3
1

f2 (x1, x2) = k2 (x1 − x2) + γ2 (x1 − x2)
3

ϕ1 (ẋ1) = −α ẋ1 + β ẋ3
1

ϕ2 (ẋ1, ẋ2) = l (ẋ1 − ẋ2) + µ (ẋ1 − ẋ2)
3





(11)
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With the assumptions taken (11), the system of equations (1) for the model in Fig.
3 takes the following form:

m1ẍ1 + k1x1 + γ1x
3
1 + k2 (x1 − x2) + γ2 (x1 − x2)

3 − α ẋ1 + β ẋ3
1

+l (ẋ1 − ẋ2) + µ (ẋ1 − ẋ2)
3 = 0

m2ẍ2 − k2 (x1 − x2)− γ2 (x1 − x2)
3 − l (ẋ1 − ẋ2)− µ (ẋ1 − ẋ2)

3 = 0
(12)

In the equations (12) the functions of elasticity and attenuation take the following
form:

H1 = k1x1 + γ1x
3
1 + k2 (x1 − x2) + γ2 (x1 − x2)

3

H2 = −k2 (x1 − x2)− γ2 (x1 − x2)
3

Φ1 = −α ẋ1 + β ẋ3
1 + l (ẋ1 − ẋ2) + µ (ẋ1 − ẋ2)

3

Φ2 = −l (ẋ1 − ẋ2)− µ (ẋ1 − ẋ2)
3





(13)

After substitution (13) into (2) and (3) and the execution of certain operations the
following was obtained:

k1 + k2 + 3γ1x
2
1 + 3γ2 (x1 − x2)

2
> 0 (14)

(
k1 + 3γ1x

2
1

) [
k2 + 3γ2 (x1 − x2)

2
]
≥ 0 (15)

−α ẋ2
1 + β ẋ4

1 + l (ẋ1 − ẋ2)
2 + µ (ẋ1 − ẋ2)

4 ≥ 0 (16)

After substitution u = x1, v = x1−x2 the inequalities (14) and (15) can be written
in the form of (17) and (18)

−3γ1u
2 − 3γ2v

2 < k1 + k2 (17)

(
k1 + 3γ1u

2
) (

k2 + 3γ2v
2
) ≥ 0 (18)

Depending on the sign γ1, γ2 the following cases can be considered, for which the
inequalities (17) and (18) will be fulfilled.

Case 1: γ1 > 0 i γ2 > 0. The inequalities (17) and (18) are fulfilled on the
whole plane u, v.

Figure 7 Figure 8
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Case 2: γ1 < 0 i γ2 < 0. The inequality (17) is fulfilled in the field lined in Fig.
7, the inequality (18) in the field lined in Fig. 8, and the quantities marked on axes
u, v amount to

uo =
√

k1
−3γ1

, vo =
√

k2
−3γ2

u1 =
√

k1+k2
−3γ1

, v1 =
√

k1+k2
−3γ2

Function F (u, v) = k1 + k2 + 3γ1u
2 + 3γ2v

2

Figure 9 Figure 10

Case 3: γ1 < 0 a γ2 > 0. The inequality (17) is fulfilled in the field lined in Fig.9
and the inequality (18) in the field lined in Fig. 10.

Figure 11 Figure 12

Case 4: γ1 > 0 a γ2 < 0. The inequality (17) is fulfilled in the field lined in Fig.11
and the inequality (18) in the field lined in Fig. 12.
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Figure 13 Figure 14

On the basis of the carried out analysis it is possible to find the field where the
inequalities (17) and (18) are fulfilled simultaneously. Fading vibrations occur in
this field if the inequality (16) is fulfilled at the same time.

For case 1, the field in which the inequalities (17) and (18) are fulfilled simulta-
neously remains the same.

Figure 15

For case 2, the field in which the inequalities (17) and (18) are fulfilled simultane-
ously is the field lined in Fig. 13.

For case 3, it is the field lined in Fig. 14, and for case 4 the field lined in Fig.
15.

The inequality (16) after substitution u∗ = ẋ2
1, v∗ = (ẋ1 − ẋ2)

2 will take the
following form

−αu∗ + βu∗2 + lv∗ + µv∗2 ≥ 0 (19)



220 Giergiel, J

After the expression is brought to a canonical form

F (u∗, v∗) = −αu∗ + βu∗2 + lv∗ + µv∗2

It will take the following form

βz2

R
+

µw2

R
≥ 1 (20)

Where: z = u∗ − α
2β , w = v∗ + l2

2µ , R = α2

4β + l2

4µ

Figure 16 Figure 17

The inequality (19) is not fulfilled for µ > 0 in the field lined in fig.5.10, for µ < 0
and R > 0 in Fig. 17, and for µ > 0 and R < 0 in Fig. 18.

Figure 18
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The energy analysis results show that if the inequality (19) is not fulfilled it is
possible for the self–induced vibrations to occur depending on the sign µ and R in
the field lined in Fig. 16, Fig. 17, Fig. 18.

If the inequalities (17) and (18) are not fulfilled, then, depending on the signγ1 i γ2,
the increasing vibrations occur in the filed lined in fig.5.7, fig.5.8 and fig.5.9 even
though the condition (19) of positive energy dissipation will be fulfilled.

In the case when the inequalities (17) and (18) are fulfilled simultaneously in
the field lined in Fig. 13, Fig. 14 and Fig. 15, the fading vibrations will occur with
the inequality (19) fulfilled at the same time.

6. Qualitative research

The qualitative research presented here can be employed in mechanical systems
design and operation and provides hints for the mechanical characteristics selection
to avoid self–induced vibrations dangerous for machines or appliances.

In practice it is also interesting what the amplitude and the limit regime vibra-
tion frequency are dependent on and how they change. To determine the amplitude
and the frequency the asymptotic Krylov–Bogolubov method was used. It was as-
sumed that attenuation and non–linearity of the elasticity forces are small. The
calculations were limited to the first approximation. The stationary value of the
amplitude and the frequency obtained from the equations (5) amounts to:

(
A

(1)
1

)2

= 4
3ω2

1

[
α−l(1−λ)2

β

]

dΨ
dt = ω1





(21)

(
A

(1)
1

)2

= 4
3ω2

1

[
α−l(1−λ)2

β+µ(1−λ)4

]

dΨ
dt = ω1 +

3
(

A
(1)
1

)2

8ω1(m1+m2λ2)

[
γ1 + γ2 (1− λ)4

]





(22)

where:

ω2
1 = 1

2

[(
k1+k2

m1
+ k2

m2

)
−

√(
k1+k2

m1
+ k2

m2

)2

− 4 k1k2
m1m2

]

λ = A
(1)
2

A
(1)
1

= k2
k2−ω2

1m2
= (k1+k2)−ω2

1m1
k2





(23)

On the basis of the formulas (21) and (22) it can be concluded that in the first
approximation the amplitude is influenced, above all, by attenuation while the vi-
bration frequency by the elasticity forces.

The amplitude of the limit regime vibrations depends on the characteristic of
the positive and negative silencer. The amplitude can be decreased through the
application of the positive silencer of hard characteristic and through the negative
silencer non-linearity increase.

The application of the positive silencer of soft characteristic causes the increase
of the vibration amplitude. The attenuation coefficient l and µ represents in practice
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the attenuation material coefficient applied e.g. through a layer of rubber or cork
between masses ml and m2.

If the attenuation material is selected in such a way that the counter in the
formula (22) is small, the received vibrations amplitude will be very little. The con-
clusion is that the use of attenuation materials cannot be arbitrary. The frequency
of the system vibrations, as it can be concluded from (23), depends above all on
the non–linearity of the elasticity forces. The bigger the non–linearity, the smaller
the vibrations frequency. It can be easily claimed that with the soft characteristics
of the springs the frequency of the system vibrations is smaller than with the hard
characteristics.

7. Conclusions

The work presented the energy method to research the mechanical systems self–
induced vibrations with one and many degrees of freedom as well as the conditions
needed for them to occur. In conclusion, the above mentioned dependences should
be applied in mechanical systems design and operation to avoid self–induced vi-
brations which are dangerous for constructions. An inappropriate selection of the
construction and operation parameters may result in a failure and in consequence
lead to considerable financial outlays and stoppages. The qualitative research pro-
vides suggestions for the selection of optimal characteristics selection in designing
such systems.
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