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The paper deals with analysis of dynamic buckling of thin–walled beam-columns with
various open and closed cross–sections subjected to lengthwise compressive rectangular
pulse loading. The results were obtained with finite difference method and compared
with finite elements method.
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1. Introduction

Since 1960’s, many works have described dynamic stability phenomenon as the re-
sponse with respect to continuous structures i.e.: plates, shells, beams, columns,
beam–columns, etc.. According to world literature, dynamic buckling can be de-
termined only by using criterion of stability, because it appears without bifurcation
point. One of the most famous is Volmir criterion [13], [9] at which the dynamic
buckling stress occurs when the value of deflection is equal to plate thickness. An-
other criterion formulated by Budiansky and Hutchinson [3], [9] determines stability
loss as a moment when small increase of load causes rapid growth of deflection. On
the basis of plate stability analysis, Ari–Gur and Simonetta [2], [9] proposed four
criteria introducing ”load intensity” term corresponding to either loading or dis-
placement pulse amplitude. Generally, they noticed that for high pulse intensities
the dynamic buckling phenomenon is observed, but for low pulse intensities, quasi–
static oscillations appear. However, this problem with respect to plate structures
subjected to dynamic pulse loading is neglected in the world literature.

The approach to the solution of dynamic buckling phenomenon in this paper is
based on the theory of orthotropic plates subjected to in–plane compression. The
theory was adopted to obtain equilibrium equations for quasi–orthotropic beam–
columns under compression. The solution was reached with finite difference method.
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According to the general assumptions, the members are composed of thin plates
made of isotropic or quasi-orthotropic material, subjected to axial compression of
dynamic pulse loading. Structures are assumed as simply supported at the ends,
but in case of open cross–sections, the beam–columns are simply supported at the
lengthwise edges of plates 1 and 3, along axis x. In Fig. 1.a-b, members with closed
section (square and trapezoidal section) are shown and in Fig. 1.c-d with open
section (Z and C section). Pulse duration corresponds to period of free vibrations
for the first static buckling mode.

Figure 1 Types of analysed beam–columns: a) square, b) trapezoidal, c) Z-section, d) C-section.
In figure, general dimensions and the way of loading are shown

2. Formulation of the problem

As it was described, every beam–column consists of plates. At one edge, i.e. x = a,
constant amplitude of load is applied (Fig. 2). All edges at x = 0 and x = a are
assumed to be simply supported.
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2.1. Basic relations of thin platss theory

Mathematical description of this problem can be reduced to formulate dynamic equi-
librium equations taking into account boundary conditions. In addition, boundary
conditions are assumed for joined edges of two plates.

Figure 2 Scheme of loading with local coordinate system; Nx0i, Nx0i+1 – loading amplitudes

For assumed model, membrane strains in the middle surface of single plate can be
written as follows:

εxm = u, x +
1
2
(υ, x2 + w, x2)

εm
y = υ, y +

1
2
w, y2 (1)

γb
xy = υ, x + u, y + w, x w, y

where: u, υ, w – plate displacements in x, y, z directions respectively.
Forces and moments in the middle surface, corresponding to strains (??), can

be written according to the following relations [8], [9]:

Nx = K11ε
b
x + K12ε

b
y

Ny = K21ε
b
x + K22ε

b
y (2)

Nxy = K66γ
b
xy

where: Nx, Ny, Nxy – sectional membrane forces,

Mx = D11w, xx + D12w, yy

My = D21w, xx + D22w, yy (3)
Mxy = D66w, xy

where:Mx, My,Mxy – bending and twisting moments, Dij – bending stiffness
coefficients, Kij – tension–compression stiffness coefficients.
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Using Hamilton principle and formulas (1), (2) and (q3), the equilibrium equa-
tions can be express as follows:

Nx, x + Nxy, y = ρh
∂2u(x, y, t)

∂t2
(4)

Nxy, x + Ny, y + (Nx, xυ, x), x = ρh
∂2υ(x, y, t)

∂t2
(5)

Mx, xx + My, yy + 2Mxy, xy + (Nxw, x) x

+(Nyw, y), y + (Nxyw, x),y +(Nxyw, y), x = ρh
∂2w(x, y, t)

∂t2
(6)

The boundary conditions were considered for all the structure as simply supported
at the edges:

• at the loaded ends, i.e. x=a:

wi = 0; ui,y = 0; υi = 0;
∑

i

bi∫

0

biNxdy =
∑

i

biN
0
x ; Mxi = 0 (7)

• at the unloaded ends, i.e. x=0:

wi = 0; ui = 0; υi = 0; Mxi = 0 (8)

Additionally, kinematic and static interaction conditions on the longitudinal edges
of adjacent were written [8].

2.1.1. Initial conditions (at t=0)

• for displacements:

ui(x, y, t = 0) = υi(x, y, t = 0) = 0 (9)

wi(x, y, t = 0) = w0 i(x, y) (10)

• for displacements velocities:

∂ui(x, y, t = 0)
∂t

=
∂υi(x, y, t = 0)

∂t
=

∂wi(x, y, t = 0)
∂t

= 0 (11)

3. Short description of Finite Difference Method (FDM)

Solution of equilibrium equations (4), (5), (6) was performed using finite difference
scheme [4], [10], [11] that was adopted to solve this problem. Replacing derivatives
with corresponding difference quotients is connected with division of plates area on
nodes that create grids. Exemplary grids are shown in Fig. 3.

In order to choose adequate grid type, it is necessary to satisfy the requirements
as follows:

• increase of distance between nodes should improve coincidence of FDM,
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• FDM should secure coincidence of implicit solution method,

• FDM should satisfy boundary conditions.

After the discretization, the system of algebraic equations is obtained in case
of static phenomenon, but in case of dynamic phenomenon system of differential-
ifference equations is obtained.

Figure 3 Types of grids performed by replacing derivatives with corresponding difference quotients

4. Analytical–numerical method of dynamic buckling problem solution

The system of differential–difference equations was solved using explicit Runge–
Kutta method (fourth order method) [4] of derivative equations integration. Thanks
to it, stability of solution could be achieved.

Results of calculations with FDM and finite elements method (FEM) [1] were
compared and described.

In many works dealing with analytical methods, expansion of displacement field
is often used (Koiter [6], Sridharan and Benito [12], Budiansky [3], KoÃlakowski
[8]). In order to solve the equilibrium equations, a solution is predicted, i.e. buck-
ling modes are approximated by trigonometric series. In the analytical–numerical
method, the solution is obtained by solving derivative equations system, so the re-
sults of computations are obtained directly without prediction process. However,
FDM requires long time of computations.

5. Results of computations

The analysis of the structures with open and close cross–sections was carried out
on the basis of material data from Tab. 1–3 below, taking into account Tsai–Wu
criterion [9] for quasi–orthotropic material:

F1σxk + F2σyk + F6τxyk + F11σ
2
xk + F22σ

2
yk + +F66τ

2
xyk + F12σxkσyk = 1 (12)

where:
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1

Xr
− 1

Xc
F2 =

1
Yr
− 1

Yc
F6 = 0F11 =

1
XrXc

F12 = −1
2

√
F11F22F66 =

1
S2
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Xr,c – tension (compression) strength in x direction
Yr,c – tension (compression) strength in y direction
S – shear strength.
The criterion determines the load-carrying capacity.
All the structures included initial imperfections of displacement ‘w’ amplitude

equal to 0,01 plate thickness. As the most dangerous case of loading, the shape
of pulse was assumed to be rectangular. Pulse duration corresponded to period of
natural vibrations for buckling mode obtained for critical value of static load.

5.1. Geometric and material data

General dimensions and properties of analysed composite beam-columns are shown
in Table 1 and material data in Tabs 2, 3 and 4. Layout of orthotropic plate layers
was assumed according to [0/90/90/0]T configuration.

Table 1 General dimensions (see Fig. 1)

Type of
cross-section

a
[mm]

b
[mm]

b1

[mm]
b2

[mm]
b3

[mm]
h
[mm]

φ
[deg]

T0

[s]
Nx0

[N/m]
squared 500 100 - - - 1 90 0,0047 6253
trapezoidal 500 - 100 100 200 1 60 0,011 2309
C1 500 - 100 40 - 1 90 0,0028 9514
C2 500 - 100 100 - 1 90 0,0048 6253
Z1 500 - 40 100 40 1 90 0,0029 9513
Z2 500 - 100 100 100 1 90 0,0048 6250
where:
Nxcr – critical load of static loss of stability obtained from FDM,
T0 – period of natural vibrations obtained from FDM

Table 2 Material data [5]; type of material: Kevlar – data corresponds to single layer

Material type density
[kg/m3]

Ex

[MPa]
Ey

[MPa]
Gxy

[MPa]
νxy hi

[mm]
quasi-
orthotropic

1280 76000 5500 2100 0,34 0,25

isotropic 7800 200000 200000 77000 0,3 -
where: i – number of layers.

Table 3 Strength material data [5] (from tension, compression and shear tests)

Xr

[MPa]
Xc

[MPa]
Yr

[MPa]
Yc

[MPa]
S
[MPa]

1400 235 12 53 34

Results of calculations are shown in Tab. 4 .
A detailed analysis for single layer has shown that load amplitude limit is equal

to 182,5 [kN/m] and corresponding the maximum stress value (in external layers of
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Table 4 Load–carrying capacity Nx0lim

Nx0lim

[kN/m]
σxlim

[MPa]
σylim

[MPa]
182,5 -339,9 -7,2

single plate) is equal to nearly 340 [MPa] (it is grater than Xc). It follows that, if
load amplitude is greater than load limit, the external layers are destroyed.

6. Comparsion of results

The beam–columns with open and closed cross–section and made of different types
of material were investigated. The analysis was based on determining critical dy-
namic load amplitude Nx 0 dyn from the curves of dynamic load factor (DLF =
Nx 0 dyn/Nx 0) versus maximal plate deflection wmax using Budiansky–Hutchinson
criterion of stability adopted to the dynamic buckling of plate structures. It means
the structure will loose the dynamic stability if the critical value of coefficient DLF
is reached. Pulse duration T0 = 2π/ω1 (ω1 [rad/s] – frequency of natural vibra-
tions) was assumed to be equal to period of natural vibrations for buckling mode
corresponding to static critical load.

a) b)

Figure 4 a) – DLF factor vs. wmax/h for square section, b) – DLF factor vs. wmax/h for
trapezoidal section

On the curves, the dynamic instability area has been marked with rectangles.
In Figs 4-6 the curves for isotropic material were shown and in Figs 7-10 – for
quasi–orthotropic material.

For beam–column with square section, the critical value of DLF factor obtained
with the FEM and FDM is similar and equals 1.6 for isotropic material (Fig. 4a)
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and 1.72 for quasi–orthotropic material (Fig. 7a). The stability loss appears in all
plates at the same moment. Critical DLF factor for trapezoidal section for isotropic
material equals 1.5 (Fig. 4b) and for other material – 1.75 (Fig. 7b).

a) b)

Figure 5 a) – DLF factor vs. wmax/h for C1 section, b) – DLF factor vs. wmax/h for C2 section

a) b)

Figure 6 a) – DLF factor vs. wmax/h for Z1 section, b) – DLF factor vs. wmax/h for Z2 section

It can be noticed that values of DLF obtained for squared and trapezoidal cross–
sections depending on material type are similar, but in case of trapezoidal section,
the widest plate initiates the stability loss. In case of quasi–orthotropic beam–
column with open C1 cross–section, dynamic buckling appears when critical DLF =
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1.4 (FDM result) or DLF = 1.55 (FEM result) for plate 2 (Fig. 8) and for C2 section
critical DLF = 1.7 (Fig. 9a). For isotropic material (C1 section) critical value of
DLF = 1.55 (FDM result) or DLF = 1.85 (FEM result) (Fig. 5a) and for C2

section – 1.8 (FDM result) or 1.53 (FEM result) (Fig. 5b).
a) b)

Figure 7 a) – DLF factor vs. wmax/h for square section , b) – DLF factor vs. wmax/h for
trapezoidal section

Figure 8 DLF factor vs. wmax/h for C1 section - the influence of pulse duration on the critical
DLF value; T0 = 0, 0028 s (see Tab. 1)

For quasi–orthotropic beam–column with open Z1 cross–section critical DLF value
equals 1.65 for plate 2 and for Z2 section critical DLF = 1.75. For isotropic material
(Z1 section) critical value of DLF = 1.3 (FDM result) or DLF = 1.6 (FEM result)
and for Z2 section – 1.7 (FDM result) or 1.55 (FEM result) for plate 2 and 1.53
(FDM result) or 1.4 (FEM result) for plates 1 and 3.



264 Jankowski, J

a) b)

Figure 9 a) – DLF factor vs. wmax/h for C2 section , b) – DLF factor vs. wmax/h for Z1

section

Figure 10 DLF factor vs. wmax/h for Z1 section

Detailed analysis has shown that results obtained with both methods can differ
significantly, especially for beam–columns with open cross–sections. The reason is
greater degrees of freedom number that was assumed in numerical FEM models.
Thanks to it, these models could take into consideration change of buckling modes.

7. Conclusions

On the basis of the results, the following conclusions have been drawn:

• Method of solution, for assumed level of difficulty of used theory, gives gen-
erally good agreement between results of FEM for static as well as dynamic
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loading amplitude. The best agreement was obtained for beam–column with
square cross–section.

• Threshold of amplitude loading depends on type of structure, material and
nature of loading (static, dynamic).

• Phenomenon of dynamic buckling appears, when the duration of pulse loading
is comparable to the period of natural vibrations (number of wavelength m>1)
corresponding to the buckling mode for the lowest critical force.

• Interaction and change of buckling mode does not appear in structure with
square cross–section but with open cross–section, for assumed level assump-
tions and simplifications used theory. As it was shown, the beam-column with
trapezoidal cross–section can underwent less significant global flexural mode
of buckling.

• The local buckling usually appears in the short–length beam–columns with
open cross–section. We should not consider the global mode of buckling as
Euler buckling, because the boundary conditions limit this kind of buckling.
In aspect of dynamic buckling, less significant mode of torsion buckling appear
in analyzed structures.
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