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The instability analysis of a compressible fluid layer acted by capillary, pressure gradient,
external gravity and electromagnetic forces has been developed on the basis of the linear
perturbation technique.

A general eigenvalue relation is derived and discussed analytically and numerically
for all values of amplitude disturbances. This model has many applications in Astronomy
as the interface of an expanding supernova remnant and in Geology during the geological
drillings in the crust of the earth.
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1. Introduction

The stability of superposed fluids in the absence of magnetic field was studied by
Rayleigh–Taylor and Kelvin–Helmholtz [1]. The field of Magnetohydrodynamics
(MHD) was initiated by Alfven [2]. The set of equations which describe MHD are a
combination of the Navier–Stokes equations of fluid dynamics and Maxwell’s equa-
tions of electromagnetism. However the investigation of Hydrodynamics stability
analysis of the interface of two contacted fluids has been started little bit earlier
than the comprehensive work [3]. Here the study of the stability analysis of su-
perposed fluids concerns allowance for surface tension at interfaces between fluids
and the effect of a horizontal magnetic field transverse to the direct of gravity g on
the character of the equilibrium of a compressible inviscid fluid of zero resistivity.
The purpose of this study is elaborating the dynamical oscillations and instability
of a compressible magnetic fluid layer subject io the external gravity, capillary and
pressure gradient forces. A general dispersion relation is derived which is valid for
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all values of amplitude disturbances. From the derived dispersion relation we can
determine the stable and unstable regions.

Several limiting cases in the literature could be recoverd from the present results
upon assuming appropriate simplifications. Upon applicable suitable boundary con-
ditions, a general dispersion relation is derived and discussed.

2. Formulation of the problem

We study the stability of fluid layer subject to the external gravity. Consider an
initially flat layer of inviscid compressible fluid that occupies the half–space z < 0,
initial flat interface at z = 0 and the upper half–space z > 0 is a vacuum as
illustrated in Fig. 1. The analysis will investigate the stability of the equilibrium
in response to the pressure gradient, gravity, capillary and magnetic forces.

Figure 1 Sketch of a gravitating compressible fluid layer under the effect of the capillary pressure
and a horizontal magnetic field

3. Basic Equations

The fundamental equations for such a study are the combination of the ordinary
fluid dynamics, Maxwell electromagnetic equations and those of the perfect gas.
Under the present circumstances these equations are as follows

Equation of motion

∂u
∂t

+ (u · ∇)u− µ

ρ
(H · ∇)H = −∇Π, Π =

P

ρ
+ µ

(H ·H)
2ρ

+ gz (1)
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Continuity equation of a compressible fluid

∂ρ

∂t
+∇ · ρu = 0 (2)

Equation of gas state
P = Kργ (3)

Equation of conservation of energy

ρcv(
∂

∂t
+ u · ∇)T + P∇ · u = 0 (4)

Equation of curvature pressure due to capillary force

Pc = S(∇ ·N) (5)

N =
∇F

|∇F | , F = z − z0(x, y) (6)

Equation of conservation of flux

∇ ·H = 0 (7)

The case when the electrical conductivity of the medium may be considered as
infinite is of particular interest. The resistivity is then zero and the equation for H
becomes [1]

∂H
∂t

= curl(u×H) (8)

It’s assumed that in the vacuum region , there’s no current flow:

∇ ·Hv = 0 (9)

∇×Hv = 0 (10)

Here ρ, u and P are the fluid mass density, velocity vector and kinetic pressure,
g is the gravity acceleration, S the surface tension coefficient, N the unit outward
normal vector to the fluid surface, F = z − z0(x, y) is the equation of the fluid
boundary surface and z0 is the elevation of the deflected interface H = (H0, 0, 0)
is the magnetic field intensity and µ is the magnetic field permeability. The forces
acting on the model are the forces due to gradient pressure, capillary, gravity and
the electromagnetic force (Lorentz force) µ(∇×H)×H.

From Eq. (5) and (6), the curvature pressure due to capillary force is

Pc = −S(
∂2z0

∂x2
+

∂2z0

∂y2
) (11)

From the continuity of the normal component of the total stress tensor across the
interface at z = 0, the unperturbed kinetic pressure of the fluid in the equilibrium
state

P0 = K2Sz0 − 1
2
µH2

0 (12)

which is a simple linear combination of the pressure due to capillary force at z = 0
and the electromagnetic force in the fluid.
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4. Perturbation Analysis

From small departures from the equilibrium state, the different variable quantities
could be expressed as its unperturbed part plus a fluctuation part [4].

Q(x, y, z, t) = Q0(z) + εQ1(x, y, z) (13)

where 0 indicates the steady state value and 1 the perturbation. Q(x, y, z, t) stands
for each of u, Π, P , ρ, Pc, T , N and ε is the amplitude of the perturbation at any
instant of time. The time–space dependence is given by

Q1(x, y, z, t) = Q̂1(z)eσt−i(kxx+kyy) (14)

where Q̂1(z) is an amplitude function dependent on z, σ is the growth rate and
k2 = k2

x+k2
y is the square of the longitudinal wave number. Based on the expensions

(13) and (14), the relevant perturbation equations are given by:

σu1 − (µlρ0)(H0 · ∇)H1 = −∇Π1 (15)

where

Π1 =
P1

ρ0
+ gz0 +

µ

ρ0
(H0 ·H1) (16)

P1 = a2ρ1, a =

√
γP0

ρ0
(17)

ρ0a
2(∇ · u1) = −σP1 (18)

where a is the sound speed in the gas defined by a = (γP0/ρ0)
1
2 and γ = cp

cv
is the

ratio of specific heats of the fluid.

σH1 = curl(u1 ×H0) (19)

For the vacuum region we have

∇ ·HV
1 = 0 (20)

∇×HV
1 = 0 (21)

By the aid of the expansion (14), Eqs (15) and (18) are combined to give the
magnetic field intensity and the velocity vector in the form

H1 =
−ikxH0u1

σ
+

H0P1ex

ρ0a2
(22)

u1 =
( −σ

σ2 + Ω2
A

)[
∇Π1 +

(
iΩ2

AP1

ρ0kxa2

)
ex

]
(23)

where ex is a unit vector in the x direction and ΩA is the Alfven wave frequency
defined in terms of H0 as:

ΩA = kxH0(µ/ρ0)
1
2 (24)
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Combining the x–components of the vector quantities given by Eqs (22) and (23)and
utilizing equation (16), we get

H1x =
k2

xH0Π1

σ2 + Ω2
A

− Ω2
AP1H0

ρ0a2(σ2 + Ω2
A)

+
H0P1

ρ0a2
(25)

Using Eqs (15) and (16) we get

u1x =
ikx

σ

(
P1

ρ0
+ gz0

)
(26)

Using Eqs (25) and (26) in (16) we get

Π1 =
P1

ρ0
χ +

(
σ2 + Ω2

A

σ2

)
gz0 (27)

with

χ = 1 +
µH2

0

ρ0σ2a2
(σ2 + k2

xa2) (28)

Using Eqs (18) and (23) we get

∇2Π1 =
P1

ρ0

σ2

a2
(29)

Using Eq. (27) in (29)and by the aid of the Eq. (14) we get

d2Π̂1

dz2
−

(
k2 +

σ2

a2χ

)
Π̂1 +

(
σ2 + Ω2

A

a2χ

)
gẑ0 = 0 (30)

Upon applying appropriate boundary condition on the interface [5], applying the
continuity of the normal velocity and using the linearized form of z–component of
velocity that u1z = ∂z0

∂t where z0(x, y, t) is the interface when the surface position
changes with time, so we can deduce that

ẑ0 = − 1
σ2 + Ω2

A

dΠ̂1

dz
(31)

Using Eq. (31) in Eq. (30) we get the second order differential equation as

d2Π̂1

dz2
− C

dΠ̂1

dz
− EΠ̂1 = 0 (32)

where

C =
g

a2χ
(33)

E = k2 +
σ2

a2χ
(34)

Under certain circumstances, the solution of the Eq. (32) is

Π̂1 =
2(σ2 + Ω2

A)
C +

√
C2 + 4E

ẑ0e
1
2 (C+

√
C2+4E)z (35)
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and consequently
Π1 = Π̂1(z)eσt−i(kxx+kyy) (36)

According to Eqs (11), (13) and (14), the perturbed curvature pressure due to
capillary force is given by

P1c = k2Sẑ0e
σt−i(kxx+kyy) (37)

5. Dispersion Relation

To obtain the required eigen value relation we have to apply some dynamic condi-
tion which states that the normal component of the total stress tensor due to the
kinetic, magnetic pressures and the curvature pressure due to capillary force must
be continuous across the deformed interface and taking into account that the upper
region is a vacuum.

This condition gives the required dispersion relation as

2σ2

C +
√

C2 + 4E
= g − k2S

ρ0
− 2Ω2

A

C +
√

C2 + 4E
(38)

6. Discussions and Limiting cases

Eq. (38) is the required hydromagnetic stability criterion for a compressible semi-
infinite fluid layer which is ambient with a vacuum medium from above and is acted
by elctromagnetic and pressure gradient (due to the surface tension) forces.

We can deduce from Eq. (38) that the compressibility has a stabilizing influence
for all wavelengths [5]. As a → ∞ and consequently C = 0, E = k and the eigen
value relation (38) reduces to

σ2 = gk

(
1− k2S

ρ0g
− µk2

xH2
0

ρ0gk

)
(39)

which is similar to the dispersion relation of incompressible fluid layer, that derived
in [6]. Define the Alven velocity as

VA =

√
µH2

0

ρ0
(40)

Rewrite Eq. (39) using the relation (40), we get

σ2 = gk

(
1− k2S

ρ0g
− V 2

Ak2
x

gk

)
(41)

In the absence of the horizontal magnetic field, the relation (39) becomes

σ2 = gk

(
1− k2S

ρ0g

)
(42)

In this case the system is unstable for all wave numbers in the range 0 < k < kc,
where

kc =
(ρ0g

S

) 1
2

(43)



Magnetohydrodynamics Stability of a Compressible ... 273

and it’s stable for all disturbances with k ≥ kc, where the equalities correspond to
the marginal stability.

Also in the absence of the surface tension the relation (39) becomes

σ2 = gk(1− µk2
xH2

0

ρ0gk
) (44)

which indicates that the term contains k2
x has an effect which is the same as a surface

tension in Eq. (42). In the absence of both surface tension and the magnetic field,
Eq. (39) reduces to the well–known relation

σ2 = gk (45)

which the amplitude of the disturbance grows most rapidly and it’s known by
Rayleigh–Taylor instability [1].

The (k, σ) – relationships derived in the manner we have described are illustrated
in Figs 2–3, which are drawn using MATLAB program. According to Eq. (42) and
by measuring σ and k in the units

√
gk sec−1,

√
ρ0g/S cm−1, it will be observed in

Fig. 2 by measuring that the system under the effect of gravity and surface tension
is unstable in the domain 0 < k < 1 and stable in the domain 1 ≤ k < ∞

Figure 2 The growth rate σ versus the wave number k

According to Eq. (41) and by measuring σ, k and VA in the units
√

gk sec−1,√
ρ0g/S cm−1 and

√
gk/kx cm sec−1 respectively, we can study the stability of

the system under the effect of gravity, surface tension and the magnetic field as
shown in Fig. 3, in which the curves labelled 1, 2, 3, 4, 5 and 6 are for values of
VA = 0.1, 0.3, 0.5, 0.7, 1.0 and 1.2, respectively. When VA = 0.1, 0.3, 0.5, 0.7 the
unstable domains are 0 < k < 0.995, 0 < k < 0.954, 0 < k < 0.866, 0 < k < 0.714
and the stable domains are 0.995 ≤ k < ∞, 0.954 ≤ k < ∞, 0.866 ≤ k < ∞,
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0.714 ≤ k < ∞, where the equalities correspond to the marginal stability, but when
VA = 1.0 and VA = 1.2 the system is stable for all wavelengths.

Figure 3 The growth rate σ versus the wave number k for different values of VA

7. Conclusion

For a compressible fluid layer below a vacuum acted by capillary, pressure gradient,
external gravity and electromagnetic forces. The compressibility has a stabilizing
influence for all wavelengths and surface tension has strong stabilizing effect for all
sufficiently short wavelengths but the system remains unstable for all sufficiently
long wave lengths. The capillary instability of the compressible fluid may be com-
pletely suppressed above a certain value of the basic magnetic field.
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