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In the present problem we study the deformation of a rotating generalized thermoelastic
medium with hydrostatic initial stress subjected to three different type of sources. The
components of displacement, force stress and temperature distribution are obtained in
Laplace and Fourier domain by applying integral transforms. The general solution ob-
tained is applied to a specific problem of a half–space subjected to concentrated force,
distributed force and a moving source. These components are then obtained in the phys-
ical domain by applying a numerical inversion method. Some particular cases are also
discussed in context of the problem. The results are also presented graphically to show
the effect of rotation and hydrostatic initial stress.
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1. Introduction

Generalized thermoelasticity theories have been developed with the objective of
removing the paradox of infinite speed of heat propagation inherent in the conven-
tional coupled dynamical theory of thermoelasticity in which the parabolic type
heat conduction equation is based on Fourier’s law of heat conduction. This newly
emerged theory which admits finite speed of heat propagation is now referred to
as the hyperbolic thermoelasticity theory, Chandrasekharaiah [6], since the heat
equation for rigid conductor is hyperbolic–type differential equation.

There are two important generalized theories of thermoelasticity. The first is
due to Lord, Shulman [16]. The second generalization to the coupled theory of
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thermoelasticity what is known as the theory of thermoelasticity with two relax-
ation times or the theory of temperature–rate–dependent thermoelasticity. Muller
[18], in a review of the thermodynamics of thermoelastic solid, proposed an entropy
production inequality, with the help of which he consider restrictions on a class of
constitutive equations. A generalization of this inequality was proposed by Green
and Laws [14]. Green and Lindsay(G–L) obtained another version of the consti-
tutive equations [15]. These equations were also obtained independently and more
explicitly by Suhubi [35]. This theory contains two constants that act as relaxation
times and modify all the equations of the coupled theory, not only the heat equa-
tions. The classical Fourier law violated if the medium under consideration has a
centre of symmetry.

Barber and Martin–Moran [2] discussed Green’s functions for transient ther-
moelastic contact problems for the half–plane. Barber [3] studied thermoelastic
displacements and stresses due to a heat source moving over the surface of a half
plane. Sherief [34] obtained components of stress and temperature distributions
in a thermoelastic medium due to a continuous source. Dhaliwal et al. [13] in-
vestigated thermoelastic interactions caused by a continuous line heat source in a
homogeneous isotropic unbounded solid. Chandrasekharaiah and Srinath [5] studied
thermoelastic interactions due to a continuous point heat source in a homogeneous
and isotropic unbounded body. Sharma et al. [26] investigated the disturbance due
to a time–harmonic normal point load in a homogeneous isotropic thermoelastic
half–space. Sharma and Chauhan [28] discussed mechanical and thermal sources in
a generalised thermoelastic half–space. Sharma, Sharma and Gupta [27], investi-
gated the steady–state response of an applied load moving with constant speed for
infinite long time over the top surface of a homogeneous thermoelastic layer lying
over an infinite half–space. Recently Deswal and Choudhary [11] studied a two–
dimensional problem due to moving load in generalized thermoelastic solid with
diffusion.

The development of initial stresses in the medium is due to many reasons, for
example resulting from difference of temperature, process of quenching, shot pin-
ning and cold working, slow process of creep, differential external forces, gravity
variations etc. The Earth is assumed to be under high initial stresses. It is there-
fore of much interest to study the influence of these stresses on the propagation of
stress waves. Biot [4] showed the acoustic propagation under initial stresses which
is fundamentally different from that under stress free state. He has obtained the
velocities of longitudinal and transverse waves along the co–ordinate axis only.

The wave propagation in solids under initial stresses has been studied by many
authors for various models. The study of reflection and refraction phenomena of
plane waves in unbounded medium under initial stresses is due to Chattopadhyay et.
al. [8], Sidhu and Singh [23] and Dey et. al. [12]. Montanaro [17] investigated the
isotropic linear thermoelasticity with hydrostatic initial stress. Singh et. al. [24],
Singh [25] and Othman and Song [19] studied the reflection of thermoelastic waves
from free surface under hydrostatic initial stress in context of different theories of
generalized thermoelasticity.

Some researchers in past have investigated different problem of rotating media.
Chand et. al. [7] presented an investigation on the distribution of deformation,
stresses and magnetic field in a uniformly rotating homogeneous isotropic, ther-
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mally and electrically conducting elastic half space. Many authors (Schoenberg and
Censor [22], Clarke and Burdness [9], Destrade [10] studied the effect of rotation on
elastic waves. Roychoudhuri and Mukhopadhyay [21] studied the effect of rotation
and relaxation times on plane waves in generalized thermo–visco–elasticity. Ting
[36] investigated the interfacial waves in a rotating anisotropic elastic half space.
Sharma and his co–workers [29–32] discussed effect of rotation on different type of
waves propagating in a thermoelastic medium. Othman and Song [20] presented the
effect of rotation in magneto thermoelastic medium. Recently Ailawalia and Narah
[1] discussed the effect of rotation due to moving load at the interface of elastic half
space and generalized thermoelastic half space.

In the present investigation we have obtained the expressions for displacement,
force stress and temperature distribution in a rotating generalized thermoelastic
medium with hydrostatic initial stress by applying Laplace and Fourier transforms
subjected to different sources. Such types of problems in the rotating medium are
very important in many dynamical systems. Some particular cases are also derived
from the present investigation.

2. Formulation of the problem

We consider a homogeneous generalized thermoelastic half–space with hydrostatic
initial stress rotating uniformly with angular velocity ~Ω = Ωn̂, where n̂ is a unit
vector representing the direction of the axis of rotation. All quantities considered
are functions of the time variable t and of the coordinates x and y. The displacement
equation of motion in the rotating frame has two additional terms (Schoenberg and
Censor, [22]): centripetal acceleration, ~Ω×

(
~Ω× ~u) due to time varying motion only

and 2~Ω × ~u where ~u = (u 1 , u2, 0) the dynamic displacement vector and angular
velocity is ~Ω = (0 ,Ω, 0). These terms do not appear in non–rotating media.

We consider a mechanical normal source acting at the plane surface of general-
ized thermoelastic half space with hydrostatic initial stress. A rectangular coordi-
nate system (x , y, z) having origin on the surface y = 0 and axis pointing vertically
into the medium is considered.

3. Basic equations and their solutions

For a two dimensional problem (xy−plane) all quantities depends only on space
coordinates x, y and time t. The field equations and constitutive relations in gen-
eralized linear thermoelasticity with rotation and without body forces and heat
sources are given by Lord and Shulman [16], Green and Lindsay [15] and Monta-
naro [17] as,
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Introducing dimensionless variables defined by,

x′i =
ω∗

c0
xi u′i = ρc0ω∗

υT0
ui t′ = ω∗t

τ ′0 = ω∗τ0 ϑ′0 = ω∗ϑ0 T ′ =
T
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(6)

t′ij =
tij
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Ω′ = Ω
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p
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where
ω∗ = ρCEc2

0/K∗, ρc2
0 = λ + 2µ

in equations (1)–(3), we obtain the equations of motion in dimensionless form.
We define displacement potentials φ and ψ which are related to displacement

components u1 and u2 as,

u1 =
∂φ

∂x
− ∂ψ

∂y
, u2 =

∂φ

∂y
+

∂ψ

∂x
, (7)

in the resulting dimensionless equations, and then applying the Laplace and Fourier
transform defined by,

f̄ (x, y, p) =

∞∫

0

f (x, y, t)e−stdt (8)

f̃ (ξ , y, p) =

∞∫

−∞
f̄ (x, y, p) eiξxdx, (9)
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we get, (after neglecting the primes),
[
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Eliminating φ̃ and ψ̃, from equations (10)–(12) we obtain,
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where
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The solutions of equation (13) satisfying the radiation conditions that φ̃, ψ̃, T̃ → 0
as y →∞ are,

φ̃ = D1e
−φ1y + D2e

−φ2y + D3e
−φ3y (15)

ψ̃ = a∗1D1e
−φ1y + a∗2D2e
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−φ3y (16)

T̃ = b∗1D1e
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−φ3y (17)

where φ2
i are the roots of equation (13) and a∗i , b∗i are coupling constants defined

by ,
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i = 1, 2, 3
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4. Boundary conditions

The boundary conditions at the plane surface y = 0 subjected to an arbitrary
normal source F (x, t) are,

t22 = F (x, t) t21 = 0 T = 0 (20)

Using equations (4)–(7) in the boundary conditions (20), we obtain the boundary
conditions in the dimensionless form. On suppressing the primes and applying the
Laplace and Fourier transform defined by (8) and (9) on the dimensionless boundary
conditions and using (15)–(17), in the resulting transformed boundary conditions,
we get the transformed expressions for displacement, force stress , and temperature
distribution in a rotating generalized thermoelastic medium with hydrostatic initial
stress as,

ũ1 =

(
3∑

m=1
bm∆me−φmy

)

∆
(21)
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5. Particular cases

1. Neglecting angular velocity (i.e. ~Ω = 0), we obtain transformed components
of displacement, stress forces and temperature distribution in a non–rotating
generalized thermoelastic medium with hydrostatic initial stress as,
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2. Neglecting both angular velocity and hydrostatic initial stress (i.e. ~Ω = p =
0), we get the expressions for displacement, force stresses and temperature
distribution in non–rotating thermoelastic medium as,
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b′′∗1,2 =
φ′′21,2 − e′2
1 + ϑ0s

r′′1,2 = φ′′21,2 −
λξ2

ρc2
0

− (1 + ϑ0p) b′′∗1,2

r′′3 = −2iξφ′′3

(
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3. Neglecting hydrostatic initial stress (i.e. p = 0), we obtain transformed com-
ponents of displacement, stress forces and temperature distribution in a ro-
tating generalized thermoelastic medium.

6. Types of sources

6.1. Concentrated source

For a concentrated source we take

F (x, t) = δ (x) δ (t)

such that
F̃ (ξ, s) = 1 (38)

6.2. Distributed sources

6.2.1. Uniformly distributed source

The solution due to a uniformly distributed source in normal direction is obtained
by setting

F (x, t) = φ (x) δ (t)

and
F̃ (ξ, s) = φ̃ (ξ)

where

φ (x) =
{

1 if |x| ≤ a
0 if |x| > a

(39)

in equation (20) The Fourier transform with respect to the pair (x, ξ) for the
case of a uniform strip load of unit amplitude and width 2a applied at the origin of
the coordinate system (x = y = 0) becomes

φ̃ (ξ) =
[
2 sin (ξ)

ξ

]
, ξ 6= 0 (40)
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6.2.2. Linearly distributed source

The solution due to a linearly distributed source in normal direction is obtained by
substituting

φ (x) =
{

1− |x|
a if |x| ≤ a

0 if |x| > a
(41)

in equation (20). The Fourier transform of φ (x) is

φ̃ (ξ) =
2 [1− cos (ξ)]

ξ2
(42)

The expressions for the components of displacement, force stress and temperature
distribution are obtained as in equations (21)-(25), (27)–(31) and (33)–(37), by
replacing φ̃ (ξ) as [2 sin (ξ)/ξ] and 2[1− cos (ξ)]/ξ2,in the case of a uniformly dis-
tributed force and linearly distributed force in equations (26), (32) and (38) for load
in normal direction.

6.3. Moving source

In case of a source moving along the x−axis with uniform velocity U at the plane
surface y = 0, we have

F (x, t) = H (t) δ (x− Ut) ,

where

F̃ (ξ, s) =
1

s− iξU
. (43)

7. Numerical results

With a view to illustrating the analytical procedure presented earlier, we now con-
sider a numerical example for which computational results are given. The results
depict the variations of temperature, displacement and stress fields in the context
of G–L theory. For this purpose we take the following values of physical constants
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as

E = 6.9× 1011 [dyne/cm2]
σ = 0.33
ρ = 2.7 [gm/cm3]

CE = 0.236 [cal/gms0C]

K∗ = 0.492 [cal/cm s0C]

ν =
α

ρKT

α = 0.01
KT = 0.5
T0 = 20 [0C]

µ =
E

2η (1 + σ)

λ =
Eσ

η (1 + σ) (1− 2σ)
η = 1

corresponds to isotropic elastic medium.
The computations are carried out on the surface y = 1.0 at t = 1.0. The graph-

ical results for normal displacementu2, normal force stress t22 and temperature
distribution Tare shown in Figs 1–12. with Ω = 0.5 and p = 2.0 for a

• Generalized thermoelastic medium with hydrostatic initial stress and rotation
(GTESHR) by solid line (——).

• Generalized thermoelastic medium with hydrostatic initial stress and without
rotation (GTESHWR) by dashed line ( ) .

• Generalized thermoelastic medium with rotation and without hydrostatic ini-
tial stress (GTESR) by solid line with centered symbol (∗—∗—∗).

• Generalized thermoelastic solid without rotation and without hydrostatic ini-
tial stress (GTESWR) by dashed line with centered symbol (∗−−−∗−−−∗).
These graphical results represent the solutions obtained by using generalized
theory with two relaxation times (GL–theory by taking τ0 = 0.03, ϑ0 = 0.05.)

8. Inversion of the transform

The transformed displacements, microrotation and stresses are functions of y, the
parameters of Laplace and Fourier transforms s and ξ respectively and hence are of
the form f̃ (ξ, y, s). To get the function in the physical domain, first we first invert
the Fourier transform and then Laplace transform by using the method applied by
Sharma and Kumar [33].
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9. Special cases of thermoelastic theory

1. The equations of the coupled thermoelasticity (C–T theory) for a rotating
media are obtained when

n∗ = n1 = 1, t1 = τ0 = ϑ0 = 0 (44)

2. For Lord–Shulman (L–S theory)

n∗ = n1 = n0 = 1, t1 = ϑ0 = 0 τ0 > 0 (45)

3. For Green–Lindsay (G–L theory),

n∗ = n1 = 1 n∗ = 0 t1 = 0 ϑ0 ≥ τ0 > 0 (46)

where ϑ0, τ0 are the two relaxation times .

4. The equations of the generalized thermoelasticity for a rotating media, with-
out energy dissipation (the linearlized GN theory of type II) are obtained
when

n∗ > 0 n1 = 0 n0 = 1 t1 = ϑ0 = 0 τ0 = 1 (47)
Equations (1) and (2) is the same and equation (3) takes the form

K∗∇2T = ρCE
∂2T

∂t2
+ υT0

∂2e

∂t2
(48)

where n∗ is constant which has the dimension of
[
1
s

]
and

n∗k∗ = K′ = CE (λ + 2 µ) /4

is a characteristic constant of this theory.

10. Discussions

10.1. Concentrated force

The variations of normal displacement for a generalized thermoelastic medium in the
absence of hydrostatic initial stress and rotation are highly oscillatory in nature. As
a result of which, the values of normal displacement for the thermoelastic medium
(with hydrostatic initial stress and/or rotation) lie in the range −0.2 ≤ u2 ≤ 0.2.
Also the magnitude of oscillations decrease with increase in horizontal distance.
These variations of normal displacement are shown in Fig. 1.

When the medium is not rotating, the values of normal force stress lie in a short
range but when the thermoelastic medium is rotating with some angular velocity,
the values of normal force stress decrease sharply initially and then oscillates with
horizontal distance. The magnitude of sharpness in the initial range is more for a
thermoelastic medium without hydrostatic initial stress. These variations of normal
force stress are shown in Fig. 2. It is observed form Fig. 3 that the variations of
temperature distribution are more oscillatory in nature for a non–rotating (with or
without hydrostatic initial stress) medium. The values of temperature distribution
are very large for a thermoelastic medium without rotation and without hydrostatic
initial stress. These values have been demagnified by a certain quantity to show the
comparison with other mediums.
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Figure 1 Variation of Normal displacement u2with horizontal distance x due to concentrated
force

Figure 2 Variation of Normal force stress t22with horizontal distance x due to concentrated force
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Figure 3 Variation of Temperature distribution T with horizontal distance x due to concentrated
force

Figure 4 Variation of Normal displacement u2 with horizontal distance x due to uniformly dis-
tributed force
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Figure 5 Variation of Normal force stress t22 with horizontal distance x due to uniformly dis-
tributed force

Figure 6 Variation of Temperature distribution T with horizontal distance x due to uniformly
distributed force
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Figure 7 Variation of Normal displacement u2 with horizontal distance x due to a moving force

Figure 8 Variation of Normal force stress t22 with horizontal distance x due to a moving force
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Figure 9 Variation of Temperature distribution T with horizontal distance x due to a moving
force

10.2. Uniformly distributed force

The variations of all the quantities are similar in nature to the variations obtained in
case of concentrated force with difference in magnitude. The variations of normal
displacement, normal force stress and temperature distribution on application of
uniformly force are shown in Figs 4–6. respectively.

10.3. Moving force

It is interesting to see that the variations of all the quantities are more uniform
in nature when a force of constant magnitude is moving along the surface of solid.
In this case also, the values of temperature distribution have been demagnified for
a thermoelastic medium without angular velocity and without hydrostatic initial
stress. The values of normal displacement and normal force stress are close to zero
for a generalized thermoelastic medium without rotation and with hydrostatic initial
stress. The variations of normal displacement, normal force stress and temperature
distribution in case of moving force may be observed in Figs 7–9. respectively.

11. Conclusion

The variations of all the quantities are similar in nature when a concentrated force
or uniformly distributed force is applied on the surface of solid. However, these
variations are more uniform in nature when a force is moving along the surface of
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solid. The effect of rotation and hydrostatic initial stress are also observed on all
the quantities.
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Nomenclature

λ, µ Lame’s constants
ρ Density
~u Displacement vector
tij Stress tensor
τ0, ϑ0 Thermal relaxation times
υ = (3λ + 2µ)αt Linear thermal expansion
e = div~u Dilatation
K∗ Coefficient of thermal conductivity
CE Specific heat
p Initial pressure
η Initial stress parameter
E Young’s modulus
σ poisson ratio


