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The model of the equations of the two–imensional generalized thermo–viscoelasticity
based on Lord–Shulman (L–S), Green and Lindsay (G–L) and Classical dynamical–
coupled (CD) theories are studied. The normal mode analysis is used to obtain the exact
expressions for the temperature distribution, displacement components, and the thermal
stresses. The resulting formulation is applied to two different concrete problems. The
first concerns to the case of a heat punch across the surface of a semi–infinite thermo–
viscoelastic half–space subject to appropriate boundary conditions. The second deals
with a plate with thermo–isolated surfaces subjected to a time–dependent compression.
A comparison is carried out between temperature, displacement and stress as calculated
for each problem from view of the different theories of generalized thermo–viscoelasticity.
Numerical results are given and illustrated graphically. Comparisons are made with the
results predicted by three theories. The analysis presented in this paper is more general
than any previous investigation.
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1. Introduction

Since the work of Maxwell, Boltzmann, Voigt, Kelvin and others, the linear visco–
elasticity remains an important area of research. Gross [1], Staverman and Schwarzl
[2], Alfery and Gurnee [3] and Ferry [4] investigated the mechanical–model represen-
tation of linear viscoelastic behavior results. Solution of boundary value problems
for linear viscoelastic materials including temperature variations in both quasistatic
and dynamic problems made great strides in the last decades, in the work of Biot
[5], [6], Morland and Lee [7], Tanner [8] and Huilgol and Phan–Thien [9]. Bland [10]
linked the solution of linear– viscoelasticity problems to corresponding linear elastic
solutions. A notable works in this field was the work of Gurtin and Sternberg [11],
Sternberg [12] and Ilioushin [13] offered an approximation method for the linear
thermal viscoelastic problems. One can refer to the book of Ilioushin and Pobedria
[14] for a formulation of the mathematical theory of thermal viscoelasticity and
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the solutions of some boundary value problems, as well as, to the work of Pobedria
[15] for the coupled problems in continuum mechanics. Results of important experi-
ments determining the mechanical properties of viscoelastic materials were involved
in the book of Koltunov [16].

The classical uncoupled theory of thermoelasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction of this
theory does not contain any elastic terms contrary to the fact that elastic changes
produce heat effects. Second, the heat equation is of parabolic type predicting
infinite speeds of propagation for heat waves.

Lord and Shulmann [17] introduced the theory of generalized thermoelasticity
with one relaxation time by postulating a new law of heat conduction to replace
the classical Fourier law. This new law contains the heat flux vector as well as
its time derivative. It contains also a new constant that acts as a relaxation time.
The heat equation of this theory is of the wave-type, ensuring finite speeds of
propagation for heat and elastic waves. The remaining governing equations for
this theory, namely, the equations of motions and constitutive relations remain the
same as those for the coupled and the uncoupled theories. Dhaliwal and Sherief [18]
extended this theory to general anisotropic media in the presence of heat sources.
Ezzat et. al [19] surveyed a thermovisco–elasticity problem in two–dimensional by
state space approach with one relaxation time. Othman [20] studied the problem
of two-dimensional generalized electromagneto–thermovisco–elasticity based on the
(L–S) theory for a thermally and electrically conducting half–space solid whose
surface is subjected to a thermal shock.

Müller [21] was first introduced the theory of generalized thermoelasticity with
two relaxation times. A more explicit version was then introduced by Green and
Laws [22], Green and Lindsay [23] and independently by uhubi [24]. In this theory
the temperature rates are considered among the constitutive variables. This theory
also predicts finite speeds of propagation as in the (L–S) theory. It differs from
the latter in that Fourier’s law of heat conduction is not violated if the body under
consideration has a center of symmetry. Ezzat and Othman [25] have studied some
problems in electromagneto–thermoelastic waves with two relaxation times.

In the present paper, a comparison is carried out between displacement com-
ponents temperature distribution and thermal stresses as calculated from the gen-
eralized thermo–viscoelasticity (L–S) and (G–L) theories for the problem under
consideration. The (CD) theory is recovered as a special case. The results obtained
in this study put in evidence the effects of the thermal relaxation times involved in
the theories.

2. Formulation of the problem

We assume that there are no external forces or heat sources acting on a viscoelastic
solid region. The solid is assumed to obey the equations of generalized thermo–
visco–elasticity with thermal relaxation times, which consists of:

The equation of motion

σij,j = ρ üi (1)
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The generalized heat conduction equation

kT,ii = ρCE(
∂

∂ t
+ τ

∂2

∂ t2
) T + γ To ( u̇i,i + τ δ üi,i) (2)

The constitutive equation (Pobedria [15] and Fung [26])

Sij =

t∫

0

R( t− τ )
∂ eij( x̄, τ )
∂ τ

d τ = R̂ (eij) (3)

with the assumptions

σij(x̄, t) =
∂ σij(x̄, t)
∂ t

= 0

εij(x̄, t) =
∂ εij(x̄, t)
∂ t

= 0 (4)

−∞ < t < 0

where

Sij = σij − σkk

3
δij

eij = εij − e

3
δij

e = εkk

σij = σji

x̄ ≡ (x, y, z)

and R(t) is the relaxation function which can be taken (Koltunov [16] ) in the form:

R(t) = 2 µ [ 1−A

t∫

0

e− β t tα
∗−1 d t ] (5)

where, (0 < α∗ < 1, A > 0, β > 0).
Assuming that the relaxation effects of the volume properties of the material

are ignored, one can write for the generalized theory of thermo–viscoelasticity with
thermal relaxation times

σ = K [ e− 3 αT (T − To + ν Ṫ ) ] (6)

where, σ = σii/3.
Substituting from Eq. (6) into Eq. (3) we obtain

σij = R̂ ( εij − e

3
δij) + K e δij − γ (T − To + ν Ṫ ) δij (7)

From Eqs (1) and (7), it follows that

ρ üi = R̂ (
1
2
∇2ui +

1
6
e, i) + K e, i − γ (T − To + ν Ṫ ), i (8)
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In the above equations a dot denotes differentiation with respect to time, while a
comma denotes material derivatives. The summation notation is used. We shall
consider only the simplest case of the two–dimensional problem. We assume that
all causes producing the wave propagation are independent of the variable z and
that waves are propagated only in the xy–plane. Thus all quantities were appearing
in Eqs (1)–(8) are independent of the z variable. Then the displacement vector has
components ( u (x, y, t), v (x, y, t), 0 ) (plane strain problem).

Moreover, the use of the relaxation times τ , ν and a parameter δ makes the
aforementioned fundamental equations possible for the three different theories:

1. Classical Dynamical Coupled theory (1956): τ = 0, ν = 0 , δ = 0.

2. Lord–Shulman’s theory (1967): ν = 0, τ > 0 , δ = 1.

3. Green–Lindsay’s theory (1972): ν ≥ 0, τ > 0 , δ = 0.

Let us introduce the following non–dimensional variables

x′ = coηox y′ = coηoy

u′ = coηou v′ = coηov

t′ = c2
oηot τ ′ = c2

oηoτ

ν′ = c2
oηoν θ =

γ(T − To)
ρc2

o

R′ =
2

3K
R σ′ij =

σij

K

In terms of these non–dimensional variables, Eqs (2), (7) and (8), taking the fol-
lowing form (dropping the dashes for convenience).

∂2u

∂t2
= R̂(φ) +

∂e

∂x
− (

∂θ

∂x
+ ν

∂2θ

∂x∂t
) (9)

∂2v

∂t2
= R̂(ψ) +

∂e

∂y
− (

∂θ

∂y
+ ν

∂2θ

∂y∂t
) (10)

∇2θ = (
∂

∂t
+ τ

∂2

∂t2
)θ + εδo(

∂e

∂t
+ τδ

∂2e

∂t2
) (11)

σxx = R̂(
∂u

∂x
− 1

2
∂v

∂y
) + e− (θ + ν

∂θ

∂t
) (12)

σyy = R̂(
∂v

∂y
− 1

2
∂u

∂x
) + e− (θ + ν

∂θ

∂t
) (13)

σz z = −1
2
R̂(e) + e− (θ + ν

∂θ

∂t
) (14)

σxy =
3
4
R̂(

∂u

∂y
+

∂v

∂x
) (15)
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where

φ =
∂2u

∂x2
+

3
4

∂2u

∂y2
+

1
4

∂2v

∂x∂y
(16)

ψ =
∂2v

∂y2
+

3
4

∂2v

∂x2
+

1
4

∂2u

∂x∂y
(17)

e =
∂u

∂x
+

∂v

∂y
(18)

3. Normal mode analysis

Equations (9)–(18) are simplified by decomposing the solution in terms of modes
so that

[u, v, θ, φ, ψ, e, σi j ] (x, y, t) =[u∗, v∗, θ∗, φ∗, ψ∗, e∗, σ∗i j ](y) exp (ω t + iax) (19)

It can be proved that:

R̂(f(x, y, t)) =

t∫

0

R(t− τ)
∂f(x, y, t)

∂τ
dτ = ωR̄(ω)f∗(y) exp(ωt + iax) (20)

for any function f(x, y, t) of class C(1), which satisfies the conditions:

f(x, y, t) =
∂f(x, y, t)

∂t
= 0, (−∞ < t < 0) (21)

where,

R̄(ω) =

∞∫

0

e−ωtR(t)dt (22)

and ω is the (complex) time constant and a is the wave number in the x–direction.
This makes it possible to get from Eqs (9) and (10)

(D2 − a2)Φ∗(y) + ωR̄(D2 − a2)e∗(y) = ω2e∗(y) (23)

where
Φ∗ = e∗ − (1 + νω)θ∗ (24)

Equation (11) simplifies to

Φ∗(y) =
1

ε1ω(1 + τδω)
[
D2 − a2 − ω1 − ε1ωω2(1 + τδω)

]
θ∗(y) (25)

where, D = d
dy .

Eliminating Φ∗(y) between Eq. (23) and (25), and using (24) we get:

(D4 − a1D
2+a2)θ∗(y) = 0 (26)

where,

a1 = ω1 + 2a2+αω2 + αε1ωω2(1 + τδω) (27)
a2 = (a2+αω2)(a2+ω1) + αωε1ω2a

2(1 + τδω) (28)



30 Othman, MIA

Eq. (26) can be factorized as

(D2 − k2
1)(D

2 − k2
2)θ

∗(y) = 0 (29)

where,
k2
1,2= (a2 + ω3)± ω4 (30)

ω1 = ω(1 + τω)
ω2 = (1 + νω)

ω3 =
1
2
[ω1 + α ω2 + α ε1ω ω2(1 + τ δ ω )] (31)

ω4 =
√

a2
1 − 4 a2

α =
1

ωR̄ + 1

The solution of Eq. (29) is taken as:

θ∗(y) = A1cosh(k1y) + A2cosh(k2y) + A3sinh(k1y) + A4sinh(k2y) (32)

where A1, A2, A3 and A4 are some parameters depending on a and ω.
Substituting Eq. (32) into Eq. (25), we obtain:

Φ∗(y) =
[
k2
1 − a2 − ω1 − ε1ωω2(1 + τδω)

ε1ω(1 + τδω)

]
[A1cosh(k1y) + A3sinh(k1y)]

+
[
k2
2 − a2 − ω1 − ε1ωω2(1 + τδω)

ε1ω(1 + τδω)

]
[A2cosh(k2y) + A4sinh(k2y)] (33)

Substituting from Eqs (32) and (33) into Eq. (24) one obtain

e∗(y) =
(

k2
1 − a2 − ω1

ε1ω(1 + τδω)

)
[A1cosh(k1y) + A3sinh(k1y)]

+
(

k2
2 − a2 − ω1

ε1ω(1 + τδω)

)
[A2cosh(k2y) + A4sinh(k2y)] (34)

Introducing the function

Ω =
∂v

∂x
− ∂u

∂y
(35)

we obtain from Eqs (9) and (10) after some manipulations:

(D2 − a2 − αoω
2)Ω∗ = 0 (36)

then,
Ω∗(y) = B1sinh(my) + B2cosh(my) (37)

where B1 and B2 are some parameters depending on a and ω,

m2 = a2 + αoω
2, αo =

4
3ωR̄

(38)
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Since,
Ω∗ = iav∗ −Du∗, e∗ = i au∗ + D v∗ (39)

From Eqs (34), (37) and (39), we obtain:

u∗(y) =
ia

ωε1(1 + τδω)

{(
k2
1 − a2 − ω1

(k2
1 − a2)

)
[A1cosh(k1y) + A3sinh(k1y)]

+

(
k2
2 − a2 − ω1

(k2
2 − a2)

)
[A2cosh(k2y) + A4sinh(k2y)]

}
(40)

− m

αoω2
[B1cosh(my) + B2sinh(my)]

and

v∗(y) =
1

ωε1(1 + τδω)

{
k1(k2

1 − a2 − ω1)
(k2

1 − a2)
[A1sinh(k1y) + A3cosh(k1y)]

+
k2(k2

2 − a2 − ω1)
(k2

2 − a2)
[A2sinh(k2y) + A4 cosh(k2y)]

}
(41)

+
ia

αoω2
[B1 sinh(my) + B2cosh(my)]

Eqs (12)–(15) have the following form in the normal mode:

σ∗xx = ωR̄(iau∗ − 1
2
Dv∗) + e∗ − ω2θ

∗ (42)

σ∗yy = ωR̄(Dv∗ − 1
2
iau∗) + e∗ − ω2θ

∗ (43)

σ∗xy =
3
4
ωR̄(Du∗ + iav∗) (44)

σ∗zz = (1− 1
2
ωR̄)e∗ − ω2θ

∗ (45)

Substituting from Eqs (32), (34), (40) and (41) into Eqs (42)–(45) we get

σ∗xx(y) =
1

ααoωε1(1 + τδω)
{C1[A1cosh(k1y) + A3sinh(k1y)]

(46)

+C2 [A2cosh(k2y) + A4sinh(k2y)]} − 2iam

α2
oω

2
[B1cosh(my) + B2sinh(my)]

σ∗yy(y) =
1

ααoωε1(1 + τδω)
{C3 [A1cosh(k1y) + A3sinh(k1y)]

(47)

+C4 [A2cosh(k2y)+A4sinh(k2y)]} − 2iam

α2
oω

2
[B1cosh(my) + B2sinh(my)]
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σ∗zz(y) =
1

ααoω2(1 + τδω)
{C5[A1cosh(k1y) + A3sinh(k1y)]

(48)
+C6 [A2cosh(k2y)+A4sinh(k2y)]}

σ∗xy(y) =
2ia

αoωε1(1 + τδω)
{C7 [A1sinh(k1y) + A3cosh(k1y)]

(49)

+C8 [A2sinh(k2y)+A4cosh(k2y)]} − (m2 + a2)
α2

oω
2

[B1sinh(my) + B2cosh(my)]

C1 =
(k2

1 − a2 − ω1)
(k2

1 − a2)

[
αo(k

2
1 − a2)− 2αk2

1

]
− ααoω2ωε1(1 + τδω) (50)

C2 =
(k2

2 − a2 − ω1)
(k2

2 − a2)

[
αo(k

2
2 − a2)− 2αk2

2

]
− ααoω2ωε1(1 + τδω) (51)

C3 =
(k2

1 − a2 − ω1)
(k2

1 − a2)

[
αo(k

2
1 − a2) + 2αa2

]
− ααoω2ωε1(1 + τδω) (52)

C4 =
(k2

2 − a2 − ω1)
(k2

2 − a2)

[
αo(k

2
2 − a2) + 2αa2

]
− ααoω2ωε1(1 + τδω) (53)

C5 = (αo − 2α)(k2
1 − a2 − ω1)− ααoω2ωε1(1 + τδω) (54)

C6 = (αo − 2α)(k2
2 − a2 − ω1)− ααoω2ωε1(1 + τδω) (55)

C7 = k1
(k2

1 − a2 − ω1)
(k2

1 − a2)
(56)

C8 = k2
(k2

2 − a2 − ω1)
(k2

2 − a2)
(57)

The normal mode analysis is, in fact, to look for the solution in Fourier transformed
domain. Assuming that all the relations (temperature ... etc.) are sufficiently
smooth on the real line such that the normal mode analysis of these functions exist.

4. Application

Problem I: A time–dependent heat punch across the surface of semi–infinite
thermo–viscoelastic half–space (Ezzat and Othman [25]).

We shall consider a homogeneous isotropic thermo–viscoelastic solid occupying
the region G = { (x, y, z)| x, z ∈ R, y ≤ 0}.

In the physical problem, we shall suppress the positive exponential, which are
unbounded at infinitely. Thus we should replace each sinh(kiy) by [ 12exp(kiy)],
cosh(kiy) by [ 12exp(kiy)], where i = 1, 2, sinh(my) by [ 12exp(my)] and cosh(my) by
[ 12exp(my)].
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Then, Eqs (32), (33), (40), (41) and (46)–(49) can be written as:

θ∗(y) = A∗1exp(k1y) + A∗2exp(k2y) (58)

Φ∗(y) =
1

ε1ω( 1 + τδω)
[α1A

∗
1exp(k1y) + α2A

∗
2exp(k2y)] (59)

where,

α1 = k2
1 − a2 − ω1 − ε1ωω2(1 + τδω) (60)

α2 = k2
2 − a2 − ω1 − ε1ωω2(1 + τδω) (61)

u∗(y) =
ia

ωε1(1 + τδω)

{
(k2

1 − a2 − ω1)
(k2

1 − a2)
A∗1exp(k1y)

(62)

+
(k2

2 − a2 − ω1)
( k2

2 − a2)
A∗2exp(k2y)

}
− m

αoω2
B∗

1exp(−my)

v∗(y) =
−1

ωε1(1 + τδω)

{
k1(k2

1 − a2 − ω1)
( k2

1 − a2)
A∗1exp(k1y)

(63)

+
k2(k2

2 − a2 − ω1)
(k2

2 − a2)
A∗2exp(k2y)

}
− ia

αoω2
B∗

1exp(my)

σ∗xx(y) =
1

ααoωε1( 1 + τδω)
[C1A

∗
1exp(k1y) + C2A

∗
2exp(k2y)]

(64)

−2iam

α2
oω

2
B∗

1exp(my)

σ∗yy(y) =
1

ααoωε1(1 + τδω)
[C3A

∗
1exp(k1y) + C4A

∗
2exp(k2y)]

(65)

−2iam

α2
oω

2
B∗

1exp(my)

σ∗zz(y) =
1

ααoω2
[C5A

∗
1exp(k1y) + C6A

∗
2exp(k2y)] (66)

σ∗xy(y) =
−2ia

αoωε1(1 + τδω)
[C7A

∗
1exp(k1y) + C8A

∗
2exp(k2y)]

(67)

+
(m2 + a2)

α2
oω

2
B∗

1exp(my)

where C1 – C8 are given by Eqs (50)–(57).
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The boundary conditions on the surface y = 0 are taken to be:

θ (x, 0, t) = n(x, t) (68)

σxy(x, 0, t) = 0 (69)

σyy(x, 0, t) = P (x, t) (70)

where n and p are given function of x and t, by using the normal mode analysis we
get

θ∗(a, 0, ω) = n∗ (71)

σ∗yy(a, 0, ω) = P ∗ (72)

σ∗xy(a, 0, ω) = 0 (73)

Eqs (58), (65) and (67) together with Eqs (71), (72) and (73) respectively give:

A∗1 + A∗2 = n∗ (74)

αoω[C3A
∗
1 + C4A

∗
2]− 2iamε1αB∗

1(1 + τδω) = αα2
oω

2ε1(1 + τδω)P ∗ (75)

2iaαoω [C7A
∗
1 + C8A

∗
2]− (m2 + a2)ε1(1 + τδω)B∗

1 = 0 (76)

Solving Eqs (74)–(76) for the unknowns A∗1, A∗2 and B∗
1 one obtains:

A∗1 = −E1

E3
(77)

A∗2 = n∗ +
E1

E3
(78)

B∗
1 =

2iaE2αoω

ε1(m2 + a2)(1 + τδω)
(79)

where,

E1 = a2 [n∗(C4 + 4αmC8)− αε1αoωP ∗(1 + τδω)]
+m2 [n∗C4 − αε1αoωP ∗(1 + τδω)] (80)

E2 = C8n
∗ − (C7 − C8)

E1

E3
(81)

E3 = a2 [4mα(C7 − C8) + C3 − C4] + m2(C3 − C4) (82)

Problem II: A plate with thermo–isolated surfaces y = ±L, subjected to time
dependent compression (Ezzat et al. [19]).

We shall consider a homogeneous isotropic thermo-viscoelastic infinite thick flate
plate of a finite thickness 2L occupying the region G∗ given by

G∗ = { (x, y, z) | x, z ∈ R, −L ≤ y ≤ L }
with the middle surface of the plate coinciding with the plate y = 0.

The boundary conditions of the problem are taken as:

∂θ

∂y
= 0, on y = ±L (83)
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σyy = −Po(x, y, t), on y = ±L (84)

σxy = 0, on y = ±L (85)

by using the normal mode we obtain

∂θ∗

∂y
= 0, on y = ±L (86)

σ∗yy = −P ∗o , on y = ±L (87)

σ∗xy = 0, on y = ±L (88)

Eqs (32), (47) and (49 ) together with Eqs (86), (87) and (88) respectively give:

k1Ā1sinh(k1L) + k2Ā2sinh(k2L) = 0 (89)

αoω
{
C3Ā1 cosh(k1L) + C4Ā2 cosh(k2L)

}− 2iamαε1B̄1cosh(mL)
(90)

= −αε1α
2
oω

2P ∗o (1 + τδω)

2iaαoω
{
C7Ā1sinh(k1L) + C8Ā2sinh(k2L)

}

(91)
−ε1(m2 + a2)(1 + τδω)B̄1sinh(mL) = 0

where, Ā1 Ā2 are parameters depending on a and ω.
Equations (89), (90) and (91) can be solved for the three unknowns Ā1, Ā2 and

B̄1

Ā1 =
ααo ε1ω(m2 + a2)k2P

∗
o (1 + τδω)2sinh(mL)sinh(k2L)

∆̄
(92)

Ā2 = −ααoε1ω(m2 + a2)k1P
∗
o (1 + τδω)2sinh(mL)sinh(k1L)

∆̄
(93)

B̄1 =
2iaαα2

oω
2(C7k2 − C8k1)P

∗
o(1 + τδω)sinh(k1L)sinh(k2L)
∆̄

(94)

where,

∆̄ = k1C11sinh(k1L)− k2C12sinh(k2L) (95)

C11 = 4a2mαC8sinh(k2L)cosh(mL)
(96)

+(m2 + a2)C4(1 + τδω)cosh(k2L)sinh(mL)

C12 = 4a2mαC7sinh(k1L)cosh(mL)
(97)

+(m2 + a2)C3(1 + τδω)cosh(k1L)sinh(mL)
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5. Numerical results

As a numerical example, we have considered polymethyl methacrylate, which has
wide applications in industry and medicine. Since we have ω = ωo + iζ where i
imaginary unit, eωt = eωot(cosζt+ isinζt) and for small values of time, we can take
ω = ωo (real). Taking α∗ = 0.5 in Eq. (5) and using Eq. (22) we get:

R̄(ω) =
4µ

3K

[
1
ωo

− A
√

π

ωo

√
ωo + β

]
(98)

The numerical constants are taken as:
4µ/3K = 0.8, A = 0.106, ε1 = 0.045, β = 0.005, To = 773 K, τ = 0.02, ν = 0.05,
ωo = 2, α = 0.59037.
The real part of the function θ, the displacement components u and stress compo-
nent σxx, were evaluated for problem (I) on the plane L = −4, and for problem
(II) on the plane (y = 1) where L = 2 and on the middle plane (y = 0) for the
two different values of time namely t = 0.001 and t = 0.2. These results are shown
in Figs 1–9. The graph shows the sixth curves predicted by the different theories
of thermo–viscoelasticity. In these figures the solid lines represent the solution cor-
responding to using the (CD) theory of heat conduction (τ = ν = 0 and δ = 0),
the dashed lines represent the solution for the (G-L) theory (τ = 0.02, ν = 0.05
and δ = 0) and the dotted dashed lines represent the solution for the (L–S) theory
(τ = 0.02, ν = 0 and δ = 1). The phenomenon of finite speeds of propagation is
manifested in all these figures.

Figure 1 Temperature distribution θ for the problem I
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Figure 2 Horizontal displacement distribution u for the problem I

Figure 3 Stress distribution σxx for the problem I
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Figure 4 Temperature distribution on the surface plane for the problem II

Figure 5 Horizontal displacement distribution u on the surface plane for the problem II
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Figure 6 Stress distribution σxx on the surface plane for the problem I

Figure 7 Temperature distribution on the middle plane for the problem II
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Figure 8 Horizontal displacement distribution on the middle plane for the problem II

Figure 9 Stress distribution σxx on the middle plane for the problem I
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It was found that near the surface of the solid where the boundary conditions
dominate the coupled and the generalized theories give very close results. We notice
also, that results for the temperature, displacement and stress distributions when
the relaxation time is appeared in the heat equation are distinctly different from
those when the relaxation time is not mentioned in the heat equation. This is due
to the fact that thermal wave in the Fourier theory of heat equation travel with an
infinite speed of propagation as opposed to finite speed in the non–Fourier case. It
is clear that for small values of time the solution is localized in a finite region. This
region grows with increasing time and its edge is the location of the wave front.
This region is determined only by the values of time t and the relaxation times τ
and ν.

6. Concluding remarks

Owing to the complicated nature of the equations for the generalized thermo–
viscoelasticity, few attempts have been made to solve problems in this field, theses
attempts utilize approximate methods valid for only a specific range of some pa-
rameter [15].

In this work, the method of normal mode analysis is introduced for the solution of
two–dimensional problems in generalized thermo–viscoelasticity and applied to two
specific problems in which the temperature, displacement and stress are coupled.
This method gives exact expressions without any assumed restrictions on either the
temperature or displacement. This paper is considering the first study of the two–
dimensional generalized thermo–viscoelasticity based on the Classical dynamical–
coupled theorem, Green–Lindsay and Lord–Shulman theories simultaneously.
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Nomenclature

ρ density
CE specific heat at constant strain
t time
T absolute temperature
To reference temperature chosen so that |T − To| << 1
ui components of displacement vector
εij components of strain tensor
e = εkk the dilatation
σij components of stress deviator
eij components of strain deviator
k thermal conductivity
τ, ν two relaxation times
λ, µ Lamé’s constants
K = λ + 2

3µ
αt coefficient of linear thermal expansion
γ = Kαt

ε = γ
ρCE

ηo = ρCE

k

c2
o = K

ρ

ε1 = δoε

To = δo ρ c2
o

γ = δo

3αT

δo non–dimensional number
α∗, β, A are empirical constants


