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In this paper we introduced the normal mode analysis for two–dimensional problems
of the generalized linear thermo–viscoelasticity with one relaxation time. The exact
expressions for the temperature distribution, the displacement components and the stress
are obtained. The resulting formulation is applied to three different concrete problems.
The first deals with a thick plate subjected to a time–dependent heat source on each face.
The second concerns to the case of a heated punch moving across the surface of a semi–
infinite thermo–viscoelastic half–space subjected to appropriate boundary conditions and
the third problem deals with a plate with thermo–isolated surfaces subjected to a time–
dependent compression. Numerical results are given and illustrated graphically for each
problem. Comparisons are made with the results predicted by the coupled theory.
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1. Introduction

The linear viscoelasticity remains an important area of research. Gross [1], Staver-
man and Schwarz [2], Alfery and Gurnee [3] and Ferry [4] investigated the mechani-
cal model representation of linear viscoelastic behavior results. Solution of boundary
value problems for linear viscoelastic materials including temperature variations in
both quasistatic and dynamic problems made great strides in the last decades, in
the work of Biot [5,6] and Huilgol and Phan–Thien [7]. Bland [8] linked the solu-
tion of linear–viscoelasticity problems to corresponding linear elastic solutions. A
notable works in this field was the work of Gurtin and Sternberg [9], and Ilioushin
[10] offered an approximation method for the linear thermal viscoelastic problems.
One can refer to the book of Ilioushin and Pobedria [11] for a formulation of the
mathematical theory of thermal viscoelasticity and the solutions of some boundary
value problems, as well as, to the work of Pobedria [12] for the coupled problems
in continuum mechanics. Results of important experiments determining the me-
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chanical properties of viscoelastic materials were involved in the book of Koltunov
[13].

The classical uncoupled theory of thermoelasticity predicts two phenomena not
compatible with physical observations. First, the equation of heat conduction of this
theory does not contain any elastic terms contrary to the fact that elastic changes
produce heat effects. Second, the heat equation is of parabolic type predicting
infinite speeds of propagation for heat waves.

Biot [14] formulated the theory of coupled thermoelasticity to eliminate the para-
dox inherent in the classical uncoupled theory that elastic changes have no effect on
the temperature. The heat equations for both theories of the diffusion type predict-
ing infinite speeds of propagation for heat waves contrary to physical obser–vations.
Lord and Shulman [15] introduced the theory of generalized thermo–elasticity with
one relaxation time by postulating a new law of heat conduction to replace the
classical Fourier law. This law contains the heat flux vector as well as its time
derivative. It contains also a new constant that acts as relaxation time. The heat
equation of this theory is of the wave–type, ensuring finite speeds of propagation for
heat and elastic waves. The remaining governing equations for this theory, namely,
the equations of motion and the constitutive relations remain the same as those
for the coupled and the uncoupled theories. Dhaliwal and Sherief [16] extended
this theory to general anisotropic media in the presence of heat sources. Othman
et al. [17] studied the model of two–dimensional generalized thermo-viscoelasticity
with two relaxation times. Othman [18] introduced the equations of generalized
thermo–viscoelasticity based on Lord–Shulman (L–S), Green and Lindsay (G–L)
and Classical dynamical coupled (CD) theories, by using Laplace transforms, a
uniqueness theorem for these equations is proved, also, a reciprocity theorem is
obtained. Othman [19] studied the generalized electromagneto–thermoviscoelastic
in case of two–dimensional thermal shock problem in a finite conducting medium
with one relaxation time. Recently, Othman [20] investigated the effect of rotation
and relaxation time on a thermal shock problem for a half–space in generalized
thermoviscoelasticity.
In the present work we shall formulate the normal mode analysis to two–dimensional
problems of thermo–viscoelasticity with one relaxation time. The resulting formu-
lation is applied to three concrete problems. The exact expressions for temperature
distribution, the displacement components and the stress are obtained for each
problem.

2. Formulation of the problem

We assume that there are no external forces or heat sources acting on a viscoelastic
solid region. The solid is assumed to obey the equations of generalized thermo–
visco–elasticity with one relaxation time, which consists of:
The equation of motion

σij,j = ρ üi (1)

The equation of generalized heat conduction

kT,ii = (
∂

∂ t
+ τ0

∂2

∂ t2
)(ρCET + γ T0 e) (2)
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The constitutive equation (see, e.g. Pobedria [12] and Fung [21])

Sij =

t∫

0

R( t− τ )
∂ eij( x̄, τ )
∂ τ

d τ = R̂ (eij) (3)

with the assumptions

σij(x̄, t) =
∂ σij(x̄, t)
∂ t

= 0 , εij(x̄, t) =
∂ εij(x̄, t)
∂ t

= 0 , −∞ < t < 0 (4)

where,

Sij = σij − σkk

3
δij , eij = εij − e

3
δij , e = εkk , σij = σji , x̄ ≡ (x, y, z)

and R(t) is the relaxation function which can be taken (see e.g. Koltunov [13]) in
the form:

R(t) = 2 µ [ 1−A

t∫

0

e−β t tα
∗−1 d t ] (5)

where, (0 < α∗ < 1, A > 0, β > 0).
Assuming that the relaxation effects of the volume properties of the material

are ignored, one can write for the generalized theory of thermo–viscoelasticity with
one relaxation time

σ = K [ e− 3 αT ( T − T0) ] . (6)

where, σ = σi i/3 .
Substituting from equation (6) into equation (3) we obtain

σij = R̂ ( εij − e

3
δij) + K e δij − γ (T − T0) δij (7)

From equation (1) and (7), it follows that

ρ üi = R̂ (
1
2
∇2ui +

1
6
e, i) + K e, i − γ (T − T0), i (8)

We shall consider only the simplest case of the two–dimensional problem. We as-
sume that all causes producing the wave propagation is independent of the variable
z and that waves are propagated only in the xy–plane. Thus all quantities were
appearing in equations (1)–(8) are independent of the variable z. Then the dis-
placement vector has components (u(x, y, t), v(x, y, t), 0) (plane strain problem).

Let us introduce the following non–dimensional variables

x′ = c0η0x y′ = c0η0y u′ = c0η0u

v′ = c0η0v t′ = c2
0η0t τ ′0 = c2

0η0τ0

θ =
γ (T − T0)

ρ c2
0

R′ = 2
3K R σ′i j =

σij

K
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In terms of these non–dimensional variables, equation (2), (7) and (8), taking the
following form (dropping the dashes for convenience).

∂2u

∂t2
= R̂(ζ) +

∂ e

∂ x
− ∂ θ

∂ x
(9)

∂2v

∂ t2
= R̂(ψ) +

∂ e

∂ y
− ∂ θ

∂ y
(10)

∇2 θ = (
∂

∂ t
+ τ0

∂2

∂ t2
) ( θ + ε1e ) (11)

σxx = R̂ (
∂ u

∂ x
− 1

2
∂ v

∂ y
) + e − θ (12)

σy y = R̂ (
∂ v

∂ y
− 1

2
∂ u

∂ x
) + e − θ (13)

σz z = −1
2
R̂( e) + e − θ (14)

σxy =
3
4
R̂(

∂ u

∂ y
+

∂ v

∂ x
) (15)

where

ζ =
∂2u

∂ x2
+

3
4

∂2u

∂ y2
+

1
4

∂2v

∂ x ∂ y
(16)

ψ =
∂2v

∂ y2
+

3
4

∂2v

∂ x2
+

1
4

∂2u

∂ x ∂ y
(17)

e =
∂ u

∂ x
+

∂ v

∂ y
(18)

3. Normal mode analysis

Equations (9)–(11) are simplified by decomposing the solution in terms of normal
modes so that

[u, v, θ, ζ, ψ, e, εij , σij ](x, y, t)
= [u∗, v∗, θ∗, ζ∗, ψ∗, e∗, εij

∗, σij
∗](y)exp(ωt + iax) (19)

It can be proved that:

R̂(f(x, y, t)) =

t∫

0

R(t− τ)
∂f(x, y, t)

∂τ
dτ = ωR̄(ω)f∗(y)exp(ωt + iax) (20)

for any function f(x, y, t) of class C(1), which satisfies the conditions:

f(x, y, t) =
∂f(x, y, t)

∂t
= 0, (−∞ < t < 0) (21)

the function f(x, y, t)must belong to the original domain of the Laplace transform,
i.e. the function must be additionally be assumed to be bounded growth with
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respect to the time variable, where,

R̄ (ω) =

∞∫

0

e− ω t R(t) d t (22)

and ω is the (complex) time constant and a is the wave number in the x–direction.
Differentiating partially each of equation (9) with respect to x and equation (10)

with respect to y and adding them, this makes it possible to get

θ∗(y) =
1

α ω2

[
D2 − a2 − α ω2

]
Φ∗(y) (23)

where
Φ∗ =

1
α

e∗ − θ∗ (24)

α =
1

ω R̄ + 1
(25)

Equation (11) together with equation (24) simplifies to
[
D2 − a2 − (1 + α ε1)ω1

]
θ∗(y) = ε1α ω1Φ∗(y) (26)

where D = d/dy.
Eliminating θ∗(y) between equations (23) and (26), we get:

(D4 − a1D
2+a2)Φ∗(y) = 0 (27)

where

a1 = 2a2 + αω2 + (1 + α ε1)ω1 (28)
a2 = (a2 + α ω2 )( a2+ω1) + α ε1ω1a

2 (29)

Equation (27) can be factorized as

(D2 − k2
1 )(D2 − k2

2 )Φ∗(y) = 0 (30)

where
k2
1,2= (a2 + ω2)± ω3 (31)

ω1 = ω(1 + τ0ω), ω2 =
1
2
[α ω2 + (1 + α ε1)ω1], ω3 =

√
ω2

2 − α ω2ω1 (32)

The solution of equation (30) is taken as:

Φ∗(y) = A1cosh(k1y) + A2cosh(k2y) + A3sinh(k1y) + A4sinh(k2y) (33)

where A1,A2,A3 and A4 are some parameters depending on a and ω.
Substituting equation (33) into the equation (23), we obtain:

θ∗(y) = [
k2
1 − a2 − α ω2

α ω2
][A1cosh(k1y) + A3sinh(k1y)]

(34)

+[
k2
2 − a2 − α ω2

α ω2
][A2cosh(k2y) + A4sinh(k2y)]
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Substituting from equation (33) and equation (34) into equation (24) one obtain

e∗(y) = (
k2
1 − a2

ω2
)[A1cosh(k1y) + A3sinh(k1y)]

(35)

+(
k2
2 − a2

ω2
)[A2cosh(k2y) + A4sinh(k2y)]

Introducing the function

Ω =
∂ v

∂ x
− ∂ u

∂ y
(36)

we obtain from equations (9) and (10) after some manipulations:

(D2 − a2 − α0 ω2)Ω∗ = 0 (37)

then,
Ω∗(y) = B1 sinh(my) + B2 cosh(my) (38)

where,

m2 = a2 + α0 ω2, α0 =
4 ω

3 R̄
(39)

Since, equations (18) and (36), in the normal mode form is

Ω∗ = i a v∗ −D u∗, e∗ = i au∗ + D v∗ (40)

From equation (35), (38) and (40), we obtain:

u∗(y) =
ia

ω2
[A1cosh(k1y) + A3sinh(k1y) + A2cosh(k2y) + A4sinh(k2y)]

− m

α0ω2
[B1cosh(my) + B2sinh(my)] (41)

v∗(y) =
k1

ω2
[A1sinh(k1y) + A3cosh(k1y)] +

k2

ω2
[A2sinh(k2y) + A4cosh(k2y)]

+
ia

α0 ω2
[B1sinh(my) + B2cosh(my)] (42)

where, B1 and B2 are some parameters depending on a and ω.
Equation (12)–(15), in the normal mode form is

σ∗xx = ωR̄(iau∗ − 1
2
Dv∗) + e∗ − θ∗ (43)

σ∗yy = ωR̄(Dv∗ − 1
2
iau∗) + e∗ − θ∗ (44)

σ∗zz = (1− 1
2
ωR̄)e∗ − θ∗ (45)

σ∗xy =
3
4
ωR̄(Du∗ + iav∗) (46)
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Substituting from equation (34), (35), (41) and (42) into equation (43)–(46) we get

σ∗xx(y) =
β1

α ω2
[A1cosh(k1y) + A3sinh(k1y)] +

β2

α ω2
[A2cosh(k2y)

(47)

+A4sinh(k2y)]− 2iam

α2
0ω

2
[B1cosh(my) + B2sinh(my)]

σ∗yy(y) = −3a2(α− 1)
2α ω2

[A1cosh(k1y) + A3sinh(k1y) + A2cosh(k2y)

(48)

+A4sinh(k2y)] +
2iam

α2
0ω

2
[B1cosh(my) + B2sinh(my)]

σ∗zz(y) =
b1

α ω2
[A1cosh(k1y) + A3sinh(k1y)]

(49)

+
b2

α ω2
[A2cosh(k2y) + A4sinh(k2y)]

σ∗xy(y) =
2ia

α0
{k1[A1sinh(k1y) + A3cosh(k1y)]

+k2[A2sinh(k2y) + A4cosh(k2y)]} (50)

−(m2 + a2)[B1sinh(my) + B2cosh(my)]

where,

β1 = (α− 1)(a2 +
3
2
k2
1) + α ω2 (51)

β2 = (α− 1)(a2 +
3
2
k2
2) + α ω2 (52)

b1 =
3
2
(α− 1)(k2

1 − a2) + α ω2 (53)

b2 =
3
2
(α− 1)(k2

2 − a2) + α ω2 (54)

The normal mode analysis is, in fact, to look for the solution in Fourier transformed
domain. Assuming that all the relations (temperature, etc. ) are sufficiently smooth
on the real line such that the normal mode analysis of these functions exist.

4. Applications:

Problem I: A plate subjected to time–dependent heat sources on both sides [22].
We shall consider a homogeneous isotropic thermo–viscoelastic infinite thick flat

plate of a finite thickness L occupying the region G given by

G =
{

(x, y, z) x, y, z ∈ R, − L

2
≤ y ≤ L

2

}
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with the middle surface of the plate coinciding with the plane y = 0.
The boundary conditions of the problem are taken as:

• The normal and tangential stress components are zero on both surfaces of the
plate; thus,

σxy = 0 on y = ±L

2
(55)

σyy = 0 on y = ±L

2
(56)

• The thermal boundary condition

qn + h0θ = r(x, y, t) on y = ±L

2
(57)

where qn denotes the normal component of the heat flux vector, ho is Biot’s
number and r(x, y, t ) represents the intensity of the applied heat sources.

Due to symmetry with respect to y–axis we can put A3 = A4 = 0 and B2 = 0 in
equation (33)–(50).

Equations (50), (48) together with equation (55), (56) give:

2ia

α0
[A1k1sinh(

k1L

2
) + A2k2sinh(

k2L

2
)]− (m2 + a2)B1sinh(

mL

2
) = 0 (58)

3aα2
0(α− 1)[A1cosh(

k1L

2
) + A2cosh(

k2L

2
)]− 4mαB1cosh(

mL

2
) = 0 (59)

We now make use of the generalized Fourier’s law of heat conduction in the non–
dimensional form, (see e.g. Lord and Shulman [15]) namely,

qn + τ0
∂qn

∂t
= − ∂θ

∂n
(60)

by using the normal mode we get

q∗n = − 1
1 + τ0ω

∂θ∗

∂n
(61)

Using equation (57) and (61) we arrive at

ω1r
∗ = ω1h0θ

∗(y)− ωDθ∗(y) on y = ±L

2
(62)

Using equation (34) and (62) one obtains

A1α1

[
ω1h0cosh(k1L

2
)− ωk1 sinh (k1L

2
)
]

(63)

+A2α2

[
ω1h0cosh(k2L

2
)− ωk2sinh(k2L

2
)
]

= α ω2ω1r
∗

where,
α1 = k2

1 − a2 − α ω2, α2 = k2
2 − a2 − α ω2 (64)
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Equation (58), (59) and (63) can be solved for the four unknowns A1, A2 and B1

A1 =
α ω1a11r

∗

∆
(65)

A2 = −α ω1a12r
∗

∆
(66)

B1 =
6iaα α2

0(α− 1)r∗

∆
[a21b11 + a22b12] (67)

where,

a11 = b11cosh(
k2L

2
) + k2b12 sinh(

k2L

2
) (68)

a12 = b11cosh(
k1L

2
) + k1b12 sinh(

k1L

2
) (69)

a21 = α1

[
ω1h0cosh(

k1L

2
)− ω k1 sinh(

k1L

2
)
]

(70)

a22 = α2

[
ω1h0cosh(

k2L

2
)− ω k2 sinh(

k2L

2
)
]

(71)

b11 = 3 α∗0(α− 1 )( m2 + a2) sinh(
mL

2
) (72)

b12 = 8 α m cosh (
mL

2
) (73)

b21 = a21cosh(
k2L

2
)− a22 cosh(

k1L

2
) (74)

b22 = a21k2 sinh(
k2L

2
)− a22 k1 sinh(

k1L

2
) (75)

∆ = b11 b21 + b12 b22 ∆ 6= 0 (76)

Problem II: A time–dependent heat punch across the surface of semi–infinite
thermo–viscoelastic half–space [23].

We will consider a homogeneous isotropic thermo–viscoelastic solid occupying
the region G = {(x, y, z) x, y, z ∈ R, y ≤ 0}. In the physical problem, we shall
suppress the positive exponential, which are unbounded at infinitely. Thus we
should replace each sinh(ky) by [ 12 exp(ky)] and each cosh(ky) by [ 12exp(ky)].

Then, equation (33), (34), (41), (42) and (47)-(50) can be written as:

Φ∗(y) = A∗1exp(k1y) + A∗2exp(k2y) (77)

θ∗(y) =
1

α ω2
[α1A

∗
1exp(k1y) + α2A

∗
2exp(k2y)] (78)

where, α1 and α2 are given by equation (64)

u∗(y) =
ia

α ω2
[A∗1exp(k1y) + A∗2exp(k2y)]− m

α0ω2
B∗

1exp(my) (79)

v∗(y) =
1
ω2

[k1A
∗
1exp(k1y) + k2A

∗
2exp(k2y)] +

i a

α0 ω2
B∗

1exp(my) (80)

σ∗xx(y) =
1

α ω2
[β1A

∗
1exp(k1y) + β2A

∗
2exp(k2y)]− 2iam

α2
0ω

2
B∗

1exp(my) (81)
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where, β1 and β2 are given by equations (51)and (52)

σ∗yy(y) = −3a2(α− 1)
2α ω2

[A∗1exp(k1y) + A∗2exp(k2y)]

(82)

+
2iam

α2
0 ω2

B∗
1exp(my)

σ∗xy(y) =
2 i a

α0
[k1A

∗
1exp(k1y) + k2A

∗
2exp(k2y)]

(83)
−(m2 + a2)B∗

1exp(my)

σ∗zz(y) =
1

α ω2
[b1A

∗
1exp(k1y) + b2A

∗
2exp(k2y)] (84)

where, b1 and b2 are given by equations (53) and (54)
The boundary conditions on the surface y = 0 are taken to be:

θ(x, 0, t) = n(x, 0, t) (85)
σxy(x, 0, t) = 0 (86)
σyy(x, 0, t) = p(x, 0, t) (87)

where, n and p are given function of x and t.
Equation (78), (83) and (82) together with equations (85), (86) and (87) in the

normal mode form give:

α1A
∗
1 + α2A

∗
2 = α ω2n∗ (88)

2 i a [ k1A
∗
1 + k2A

∗
2 ]− α0ω

2 (m2 + a2 )B∗
1 = 0 (89)

3 aα2
0 (α − 1) [A∗1 + A∗2 ]− 4 i m α B∗

1 = −2 α α2
0 ω2p∗ (90)

A∗1 = −α ω2( γ1α2p
∗ + γ2n

∗ )
a ∆∗ (91)

A∗2 =
α ω2( γ1α1p

∗ + γ3n
∗ )

a ∆∗ (92)

B∗
1 =

2 i α α0

∆∗ [ γ4p
∗ − γ5n

∗ ] (93)

where,

γ1 = 2 α3
0 ω2(m2 + a2) (94)

γ2 = a [ 8 mα k2 + 3α3
0ω

2(α− 1)(m2 + a2)] (95)

γ3 = a [ 8 mα k1 + 3α3
0ω

2(α− 1)(m2 + a2)] (96)
γ4 = 2 α0 ω2(α1k2 − α2k1) (97)
γ5 = 3 aα0 ω2(α− 1 ) (k1 − k2) (98)

∆∗ = 8mα(α1k2 − α2k1) + 3α3
0ω

2(α− 1)(m2 + a2)(α1 + α2)] (99)
∆∗ 6= 0
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Problem III: A plate with thermo–isolated surfaces y = ±L
2 , subjected to time

dependent compression [17].
We shall consider the plate in problem I but with the boundary conditions:

∂ θ

∂ y
= 0, on y = ±L

2
(100)

σxy = 0, on y = ±L

2
(101)

σyy = −P0(x, y, t), on y = ±L

2
(102)

where P0(x, y, t),is a given function.
Equation (34) together with equation (100) gives:

2∑

j=1

αjMj = 0 (103)

where, αj , j = 1, 2 are given by equations (64).

Mj = Āj kj sinh(
kjL

2
), j = 1, 2 (104)

where, Āj are parameters depending on a and ω.
Equation (50) and (48) together with equation (101), (102) gives:

2 i aα0(M1 + M2)− ( m2 + a2 ) B̄1 sinh(
mL

2
) = 0 (105)

3a2α2
0(α− 1)( L1M1 + L2M2 )− 4 i a α m B̄1cosh(

mL

2
) = 2 α α2

0ω
2 P ∗0 (106)

where, Āj , j = 1, 2 are parameters depending on a and ω and

Lj =
1

kj tanh(kjL
2 )

, j = 1, 2, (107)

Equation (103), (105) and (106) can be solved for the three unknowns Mj and B̄1

M1 =
−2α α3

0 α2 ω4(m2 + a2) P ∗0 sinh(mL
2 )

[N1 ( α1L2 − α2L1) + N2(α1 − α2) ]
(108)

M2 =
2α α3

0 α1 ω4(m2 + a2)P ∗0 sinh(mL
2 )

[N1 ( α1L2 − α2L1) + N2(α1 − α2) ]
(109)

B̄1 =
4 i a α α2

0 ω2(α1 − α2) P ∗0
[ N1 (α1L2 − α2L1) + N2(α1 − α2) ]

(110)

Using equation (104) one obtains

Ā1 =
−2α α3

0 α2 ω4(m2 + a2)P ∗0 sinh(mL
2 )

k1sinh(k1 L
2 )[ N1 (α1L2 − α2L1) + N2( α1 − α2) ]

(111)
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Ā2 =
2α α3

0 α1 ω4(m2 + a2)P ∗0 sinh(mL
2 )

k2sinh(k2 L
2 )[ N1 (α1L2 − α2L1) + N2( α1 − α2) ]

(112)

N1 = 3a2α3
0 ω2(α− 1) (m2 + a2) sinh(

m L

2
) (113)

N2 = 8a2α m cosh(
mL

2
) (114)

5. Numerical Results

As a numerical example we have considered polymethyl methacrylate that has a
wide applications in industry and medicine. Since we have ω = ω0 + i ζ , where i
is imaginary unit, eω t = eω 0t(cos ζ t + i sin ζ t) and for small values of time, we can
take ω = ω0 (real). Taking α∗ = 0.5 in equation (4) and using equation (22) we
get:

R̄(ω ) =
4 µ

3 K

[
1
ω0

− A
√

π

ω0

√
ω0 + β

]
(115)

The numerical constants are taken as:
4 µ

3 K
= 0.8 A = 0.106, ε1 = 0.045, β = 0.005, T0 = 773K, τ0 = 0.02,

L = 10, ω0 = 2, h0 = 0.5, r∗ = 1, n∗ = 5, P ∗ = 50, P ∗0 = 100.

Figure 1 Temperature distribution θ for the problem I
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Figure 2 Horizontal displacement distribution u for the problem I

Figure 3 Temperature distribution θ for the problem I
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Figure 4 Horizontal displacement distribution u for the problem I

Figure 5 Temperature distribution θ for the problem I



The Thermal Relaxation Effect... 59

Figure 6 Horizontal displacement distribution u for the problem I

The real part of the function θ (x, y, t) and stress component σxx(x, y, t), on
the plane (y = 5) for problems I and III while for problem II on (y = −3), are
evaluated for the two different values of time namely t = 0.05 and t = 0.001.

These results are shown in Figs 1–6. The graph shows the four curves predicted
by the different theories of thermoelasticity. In these figures the solid lines represent
the solution for Lord–Shulman theory and the dotted lines represent the solution
corresponding to using the coupled equation of heat conduction (τ0 = 0).

It was found that near the surface of the solid where the boundary conditions
dominate the coupled and the generalized theories give very close results. We notice
also, that results for the temperature and stress distributions when the relaxation
time is appeared in the heat equation are distinctly different from those when the
relaxation time is not mentioned in the heat equation. This is due to the fact that
thermal wave in the Fourier theory of heat equation travel with an infinite speed of
propagation as opposed to finite speed in the non–Fourier case. It is clear that for
small values of time the solution is localized in a finite region. This region grows
with increasing time and its edge is the location of the wave front. This region is
determined only by the values of time t and the relaxation time τ0.
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6. Concluding Remarks

Owing to the complicated nature of the governing equations for the generalized
thermo–viscoelasticity, few attempts have been made to solve problems in this field,
theses attempts utilize approximate methods valid for only a specific range of some
parameters.

In this work, the method of normal mode analysis is introduced in the field of
thermo–viscoelasticity and applied to three specific problems in which the displace-
ment, temperature and stress are coupled. This method gives exact expressions
without any assumed restrictions on either the temperature or displacement.

The normal mode analysis is applied to a wide range of problems in different
branches [17, 19, 20, 24]. It can be applied to boundary layer problems, which are
described by the linearized Navier-Stokes equations in hydrodynamics [25–27].
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Nomenclature

λ, µ Lamé’s constants
K = λ + 2

3µ
ρ density
CE specific heat at constant strain
t time
T absolute temperature
To reference temperature chosen so that

∣∣∣ T−To

To

∣∣∣ <<1
ui components of displacement vector
εij components of strain tensor
e, εkk the dilatation
σij components of stress deviator
eij components of strain deviator
k thermal conductivity
τo one relaxation time
αt coefficient of linear thermal expansion
γ = 3 K αt

ε = γ
ρ CE

ηo = ρ CE

k

c2
o = K

ρ

ε1 = δoε

To = δo ρ c2
o

γ = δo

3αT

δo non–dimensional number
α∗, β, A are empirical constants


