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We present an elementary approach for the optimization problem relevant to the elliptic
coplanar Hohmann type transfer arising from first principles. We assign the minimized
increments sum of velocities at peri–apse and apo–apse by the application of the ordinary
calculus optimum condition then resolving a simple second degree algebraic equation in
the variable x which is the ratio of the velocities after and before the initial impulse. It is
demonstrated that the classical elliptic Hohmann type transfer is the most economic one
by this elementary representation. Moreover it is a generalized of the classical Hohmann
type circular case transfer.
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1. Background

Orbit transfer is a major subject with regard to placing a spacecraft in an orbit
around the Earth. The velocity increments are directly proportional to motor sys-
tem thrusts of the rocket space vehicle. Consequently it is proportional to propellant
fuel consumption. It is most convenient to regard the transfer problem as a problem
of change of energy [1]. We utilize well known geometric properties of conic sections
and ordinary calculus. The main two types of orbit transfer are the Hohmann and
the Bi–Elliptic. For each type we confront the coplanar and the non coplanar cases.
The criterion for optimality is the minimization of the characteristic velocity for
the maneuver [2], [3]. The literature dealing with the optimal transfer is and so
on extensive, we may recall the works by Prussing [3], Palmore [4], Edelbaum [5],
Barrar [6], Marec [7], Lawden [8], Hiller [9]. It is established that the minimum
total velocity increment solutions for specified trajectory end point conditions, are
attainable directly by methods of the differential calculus.
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Figure 1

2. Method and Results

2.1. Consideration of one single parameter x

Herein we adopt only the first configuration for a two impulse Hohmann elliptic
transfer of a space vehicle (Fig. 1). We consider the following relationships:

I1 = ∆v1 = vA2 − vA1 = xvA1 − vA1 = (x− 1) vA1 (1)

I2 = ∆v2 = vB2 − vB1 (2)

vA2 =

√
µ (1 + eT )
aT (1− eT )

vA1 =

√
µ (1 + e1)
a1 (1− e1)

(3)

vB2 =

√
µ (1− e2)
a2 (1 + e2)

vB1 =

√
µ (1− eT )
aT (1 + eT )

where
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x =
vA2

vA1
=

velocity after peri− apse initial impulse

velocity before peri− apse initial impulse
; x > 1

x =

√√√√
µ(1+eT )

aT (1−eT )

µ(1+e1)
a1(1−e1)

(4)

From the geometry of Fig. 1, we have

aT (1 + eT ) = a2 (1 + e2) (5)
aT (1− eT ) = a1 (1− e1) (6)

From Eqs (5), (6), we get

1− eT

1 + eT
=

a1 (1− e1)
a2 (1 + e2)

(7)

whence, from Eqs (2), (7)

∆v2 =

√
µ (1− e2)
a2 (1 + e2)

−
√

µa1 (1− e1)
aT a2 (1 + e2)

(8)

From Eqs (4), (7), we acquire

x =
√

1 + eT

1 + e1
> 1 (9)

eT = x2 (1 + e1)− 1 (10)

From Eqs (5), (6), we find

aT =
a1 (1− e1)

1− eT
=

a2 (1 + e2)
1 + eT

Whence

aT =
a1 (1− e1)

2− x2(1 + e1)
=

a2 (1 + e2)
x2(1 + e1)

(11)

We can easily derive

vB1 =

√
µ {2− x2 (1 + e1)}

a2 (1 + e2)

Therefore

∆v1 =

√
µ (1 + e1)
a1 (1− e1)

(x− 1)

(12)

∆v2 =

√
µ (1− e2)
a2 (1 + e2)

−
√

µ {2− x2 (1 + e1)}
a2 (1 + e2)
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For the optimum condition:

d

dx
(∆vT ) =

d

dx
(∆v1) +

d

dx
(∆v2) = 0 (13)

Let

b1 = a1 (1− e1)

b2 = a1 (1 + e1)
(14)

b3 = a2 (1− e2)

b4 = a2 (1 + e2)

Whence by differentiation w.r.t. the variable x

d

dx
(∆v1) =

√
µ (1 + e1)

b1
= vA1 (15)

d

dx
(∆v2) =

√
µ

b4

x (1 + e1)√
2− x2 (1 + e1)

(16)

√
µ (1 + e1)

b1
+

√
µ

b4

x (1 + e1)√
2− x2 (1 + e1)

= 0 (17)

After some reductions and rearrangements, we get

(x)Min = ±
√

2b4

(b1 + b4) (1 + e1)
(18)

Or in explicit form

(x)Min =

√
2a2 (1 + e2)

(1 + e1) {a1 (1− e1) + a2 (1 + e2)} = constant (19)

By substitution in Eqs (10), (11) for the value of (x)Min. Eq. (19), we get the
unique values for (aT , eT )Min., namely

(aT )Min =
1
2

[a1 (1− e1) + a2 (1 + e2)] (20)

(eT )Min =
−a1 (1− e1) + a2 (1 + e2)
a1 (1− e1) + a2 (1 + e2)

(21)

Which shows that the generalized Hohmann transfer is itself a minimum transfer
system.
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Now we evaluate the minimum characteristic velocity (∆vT = ∆v1 + ∆v2)Min,
we have

(∆vT )Min =

√
µ (1 + e1)

b1
((x)Min − 1) +

√
µ (1− e2)

b4

(22)

−
√

µ

b4
{2− (x2)Min (1 + e1)}

By substitution for x = (x)Min, we find that

(∆vT )Min =

√
2µb4

b1 (b1 + b4)
−

√
2µb1

b4 (b1 + b4)
+

√
µ (1− e2)

b4
−

√
µ (1 + e1)

b1

in terms of the b’s, or explicitly in terms of the elements a, e

(∆vT )Min =

√
2µa2 (1 + e2)

a1 (1− e1) {a1 (1− e1) + a2 (1 + e2)}

−
√

µ (1 + e1)
a1 (1− e1)

+

√
µ (1− e2)
a2 (1 + e2)

(23)

−
√

2µa1 (1− e1)
a2 (1 + e2) {a1 (1− e1) + a2 (1 + e2)}

For the classical circular Hohmann transfer e1 = 0 and e2 = 0, whence we acquire
the quite symmetric formula

(∆vT )Min =
√

µ

a1

{√
2a2

a1 + a2
− 1

}
+

√
µ

a2

{
1−

√
2a1

a1 + a2

}
(24)

2.2. Consideration of two parameters x,y

Let
y =

vB2

vB1
=

velocity after impulse at point B

velocity before impulse at point B

whence

y =
√

1− e2

1− eT

∆vT = ∆v1 + ∆v2 =

{√
µ (1 + eT )
aT (1− eT )

−
√

µ (1 + e1)
a1 (1− e1)

}

(25)

+

{√
µ (1− e2)
a2 (1 + e2)

−
√

µ (1− eT )
aT (1 + eT )

}
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i.e.

∆vT =
√

µ

[√
1 + eT −

√
1 + e1√

a1 (1− e1)
+
√

1− e2 −
√

1− eT√
a2 (1 + e2)

]

We may write

∆vT =

√
µ (1 + e1)
a1 (1− e1)

(x− 1) +

√
µ (1− e2)
a2 (1 + e2)

(
1− 1

y

)
= f (x, y) (26)

From rules of partial differentiation of two variables

∂

∂x
f (x, y) =

∂f

∂x
+

∂f

∂y

∂y

∂x
(27)

For optimum condition

∂∆vT

∂x
=

√
µ (1 + e1)
a1 (1− e1)

+

√
µ (1− e2)
a2 (1 + e2)

1
y2

∂y

∂x
= 0 (28)

where
y2 =

1− e2

2− x2 (1 + e1)
But

1
y2

∂y

∂x
=

x (1 + e1)√
(1− e2) {2− x2 (1 + e1)}

After some rearrangements and reductions, we get
(
x2

)
Min

=
2a2 (1 + e2)

(1 + e1) {a1 (1− e1) + a2 (1 + e2)} = constant (29)

Which is the same as Eq. (19).
Also, we may write

∂

∂y
f (x, y) =

∂f

∂y
+

∂f

∂x

∂x

∂y
(30)

By analogy we find

(
y2

)
Min

=
(1− e2)

2
+

a2

(
1− e2

2

)

2a1 (1− e1)
=

(1− e2)
2

{
1 +

a1 (1 + e2)
a1 (1− e1)

}
(31)

Moreover, from definitions of x, y and from geometric properties of (Fig. 1), we
may write

x2 =
1 + eT

1 + e1

y2 =
1− e2

1− eT

a1 (1− e1) = aT (1− eT )
aT (1 + eT ) = a2 (1 + e2)

1 + eT =
a2 (1 + e2)

aT
, 1− eT =

a1 (1− e1)
aT

aT =
a1 (1− e1) + a2 (1 + e2)

2
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whence

x2 =
2a2 (1 + e2)

(1 + e1) {a1 (1− e1) + a2 (1 + e2)}

y2 =
1− e2

2
+

a2

(
1− e2

2

)

2a1 (1− e1)

2.3. Numerical check

Now we consider the Earth – Mars Hohmann elliptic transfer to perform a check
for the validity of the above calculations.

We evaluate

a2 =
aT (1 + eT ) + a2 (1− e2)

2
a1 = 1A.U.
e1 = 0.0167
a2 = 1.5237A.U.
e2 = 0.0934

Where subscript 1 refers to the Earth and subscript 2 refers to planet Mars.(10)

We find that
x = 1.1122
eT = 0.2578
aT = 1.3248A.U.
a2 = 1.5239A.U.

The above calculations could be repeated easily for the coplanar pairs Earth –
Jupiter ; Earth – Saturn ; Earth – Neptune or Earth – Venus ; Earth – Mercury.
We may easily draw graphs revealing the variation manner between the parameter
x and the characteristic velocity (∆vT ). Also other variations may be plotted (9).

This will be executed in part II.

3. Concluding remarks

The choice of x as our variable leads to the most simple and exact formulae of the
problem. After the resolution of the second degree equation in x arising from the
optimum condition, we can determine the unique values (eT )Min, (aT )Min from
equations (10) and (11), knowing the given values of a1, e1 , a2 , e2 of the initial
and final orbit. The minimum characteristic velocity ( ∆vT )Min expressed by Eq.
(23) is obviously expressed in terms of the initial and final orbital elements (the
major axes and the eccentricities a1, a2, e1, e2).

The optimization procedure is based on formulas stemming from first principles
considerations. It is not a special case arising from the general problem, when we
assume non coplanar trajectories. We verified the correctness of the approach by
the assignment of the approximative value of a2 (the semi major axis of the final
orbit), for the Earth – Mars system.

The simple numerical calculations yields a consistent real value of a2. There are
four feasible configurations for this transfer problem. The first one is represented
in Art. 2, the other three will be dealt with in Part II. Two of the four configu-
rations are relevant to the peri – apse perpendicular initial impulse, the other two
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are relevant to initial perpendicular apo – apse impulse. It is obvious that this
treatment shows that the elliptic Hohmann type transfer is the most economic in
the expenditure of fuel, for the particular Earth – Mars transfer, because when we
substitute (x)Min of Eq. (19), which is a constant in Eqs (10)–(11) we get the
unique values of (aT )Min, (eT )Min for this Earth – Mars elliptic Hohmann type of
orbit transfer. (∆vT )Min given by Eq. (23) is a measure of the extremum constant
of the characteristic velocity. The above configuration (Fig. 1) corresponding to
minimum fuel consumption (∆v1 + ∆v2)Min.

This approach is new, elementary, and straightforward. It avoids many com-
plexities that appear in other works, thus it is advantageous for this particular
transfer problem, and it is a proof that the generalized Hohmann transfer is itself
a minimum orbit transfer system.
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Nomenclature:

x ratio of velocities after and before initial impulse
a1 semi–major axis of initial orbit
a2 semi–major axis of final orbit
e1 eccentricity of initial orbit
e2 eccentricity of final orbit
aT semi–major axis of transfer orbit
eT eccentricity of transfer orbit
vA1 peri–apse velocity in initial orbit at point A
vA2 peri–apse velocity of transfer orbit at point A
vB1 apo–apse velocity of transfer orbit at point B
vB2 apo–apse velocity in final orbit at point B
∆v1 increment of velocity at A
∆v2 increment of velocity at B
∆vT characteristic velocity
µ constant of gravitation




