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We have four feasible simple Bi–elliptic configurations for the transfer problem, for a
central gravitational field. We restrict our selves to the first one in this part. We apply
three impulses at the points A, C, B. x, z are our independent variables and are equal to
the ratio between values of the velocities after and before the application of the impulses
at points A, B respectively. Similarly y is defined as the corresponding parameter for the
point C. We utilize the optimum condition of ordinary calculus for algebraic functions,
to evaluate minimum values of x, z, y. We adopt the Earth – Mars bi–elliptic coplanar
transfer system as an example, for the first configuration, to evaluate the numerical
minimum values of x, z, y. In part II, we shall consider the other three configurations
and expand to domain of application of the numerical results.
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1. Introduction

Most generally, the change of kinematic conditions represented by ti, ri, vi →
tf , rf , vf is the definition of a ”transfer”, where t the physical time r the radius, and
v the velocity. Deterministic aspects of optimization of rendezvous orbital transfer
is an essential application. Among all three impulse transfers, applying the gradi-
ent method, the simple bi–elliptic transfer is the most economic or equivalently the
optimal transfer.

If 11.94 < R < 15.58 and midcourse impulse location ri ( ri > r2 ) is sufficiently
large, then the bi–elliptic transfer is more economic than the Hohmann transfer(1).
L. Ting demonstrated that for optimality the terminal and transfer trajectories
should be coplanar(2). Billik and Roth discussed, in quite a general manner,
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Figure 1

the two dimensional simple bi–elliptic transfer, with or without parking in one of the
two transfer ellipses. They concluded that the bi–elliptic transfer is and alternative
of the Hohmann transfer where rf/ri ≈ 1(3).

2. Methods and Results

From Fig. 1, we have
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Then

1 + eT = x2 (1 + e1)
1− eT = 2− x2 (1 + e1)

1 + eT ′ =
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z2
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z2

Therefore
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Differentiating Eq. (1) partially w.r.t. x
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And differentiating Eq. (1) partially w.r.t. z
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But we have
∆vT = ∆vA + ∆vC + ∆vB

∆vT = vA (x− 1) + vC (y − 1) + vB (z − 1)

Whence, by optimum condition
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whence Eq. (5) can be written as :

√
1 + e1 − 1√

1 + e1




{
2 + x2 (1 + e1)

} {√
2z2 − (1 + e2)− z

√
2− x2 (1 + e1)

}

zx2
√

2− x2 (1 + e1)




+
1√

1 + e1

[
(1 + e1)

√
2z2 − (1 + e2)

z
√

2− x2 (1 + e1)

]
= 0



76 Kamel, OM, Soliman, AS

i.e.
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Let
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We may write
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From Eqs. (3), (8), we may write
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After little reductions, we have
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From Eqs. (7), (10), we get
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Let
c2

c3
= c5

3
−c2

= c6
c1c4 + 3cc2

−c3c3
= c7

Then, we have an equation of degree six in x on the form

x6 + c5x
4 + c6x

2 + c7 = 0 (11)

For Earth – Mars generalized bi–elliptic system, we have(5)

a1 = aE = 1.00000011
a2 = aM = 1.52366231
e1 = eE = 0.01671022
e2 = eM = 0.09341233

By solving this last equation numerically, we get

c5 = −6.8261
c6 = −2.9023
c7 = 24.5119
x1,2 = ±1.40255
x3,4 = ±2.59127
x5,6 = −3.00698× 10−17 ± 1.36225I

i.e. the consistent values are

x = 1.4026

z =
1
x

√
c2 + x2c3

c
4

= 0.7394

y =
1
z

√
2z2 − c1

2− x2c
= 1.1853

3. Concluding Remarks:

It is possible to reduce the impulsive optimal transfer problem to a parametric
optimization one with constraints. A numerical solution, or even analytical one in
some simple cases could be acquired. In addition we may have the semi–analytical
resolution as shown in this article (4). For the first configuration we assigned the
values of (x, z, y)Min for the generalized Earth – Mars bi–elliptic transfer. Our
procedure is elementary and straightforward, using only the properties of the elliptic
conic section, and the minimum – partial ordinary calculus – conditions. Our choice
of the independent parameters x, z proved simplicity and efficiency of this analysis
when compared with other approaches. The parameter x is determined from a
numerical solution of a sixth degree polynomial. The numerical results may be
repeatedly acquired for subsystems with exterior member as one of the outer planets
Jupiter, Saturn, Uranus and Neptune, or even more the inner planets Venus and
Mercury.
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