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Advanced mechanical and structural applications require accurate assessment of the
damage state of materials during the fabrications as well as during the service. Due to
the complex nature of the internal structure of the material, composites including the
layered composite often fail in a variety of modes.

Fabrication of the functionally graded materials (FGM) can be obtained by layered
mixing of two materials of different thermo–mechanical properties with different volume
ratios gradually changed from layer to layer such that first layer has only a few particles
of the other phase and last has maximum volume ratio of this other phase. The material
(FGM) is functionally graded thermal and stress barrier.

Between the ceramic layer and metallic bond layer there exist a functionally graded
layer ”2” that contains volume of the bond (metallic) phase as a function of the distance
y from he bond layer and volume ratio of the ceramics phase also as a function of y
distance from the bond layer.

The failure modes very often are influenced by the local material properties that
may develop in time under heat and pressure, local defect distribution, process induced
residual stress, and other factors.

Fracture problems in the layer can be studied using J integral in finite element
method, because it is not path independent

Consider a laminate composite in plane stress conditions, multi–layered beam bonded
to planes. The fracture mechanics problem will be analysed using the photoelastic visu-
alisation of the fracture events in a model structure

Keywords: Composites, multi–layered beams, fracture mechanic, photoelastic method,
finite element method

1. Introduction

Fabrication of the model of the FGM can be obtained by layered mixing of two
photoelastic materials of different thermo-mechanical properties with different vol-
ume ratios gradually changed from layer to layer such that first layer has only a
few particles of the other phase and last has maximum volume ratio of this other
phase.
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The development of the failure criterion for a particular application is also very
important for the predictions of the crack path and critical loads.

Recently, there has been a successful attempt to formulate problems of multi-
ple cracks without any limitation. This attempt was concluded with the series of
papers summarising the undertaken research for isotropic [2], anisotropy [4] and
non–homogeneous class of problems [5] and [4].

Crack propagation in multi–layered composites of finite thickness is especially
challenging and open field for investigation. Some results have been recently re-
ported in [5]. The numerical calculations were carried out using the finite element
programs ANSYS 9 and 10 [11]. Two different methods were used: solid modeling
and direct generation.

2. Material properties

Material properties exert an influence on the stress distribution and concentration,
damage process and load carrying capacity of elements. In the case of elastic–
plastic materials, a region of plastic strains originates in most heavily loaded cross–
sections. In order to visualise the state of strains and stresses, some tests have been
performed on the samples made of an ”araldite”–type optically active epoxy resin
(Ep–53), modified with softening agents in such a way that an elastic material has
been obtained. Properties of the components of experimental model are given in
Tab. 1.

Table 1 Mechanical properties of the experimental model components

Layer Young’s
Modulus
Ei [MPa]

Poisson’s
ratio
νi [1]

Photoelastic
constants in terms
of stresses
kσ [MPa/fr]

Photoelastic
constants in terms
of strain
fε [-/fr]

1 3450.0 0.35 1.68 6.572 ·10−4

2 1705.0 0.36 1.18 9.412 ·10−4

3 821.0 0.38 0.855 14.31 ·10−4

4 683.0 0.40 0.819 16.79 ·10−4

3. Experimental Results

The stress distribution in was determined using two methods:
Shear Stress Difference Procedure (SDP – evaluation a complete stress

state by means the isochromatics and the angles of the isoclines along the cuts) [3].
Method of the characteristics (the stress distribution were determined using

the isochromatics only and the equations of equilibrium [10].
In a general case [7], the Cartesian components of stress: σx , σy and τxy in the

neighbourhood of the crack tip are:

σx = KI√
2πr

cos Θ
2 (1− sin Θ

2 sin 3Θ
2 ) + σox

σy = KI√
2πr

cos Θ
2 (1 + sin Θ

2 sin 3Θ
2 ) (1)

τxy = 1√
2πr

[KI sin Θ
2 cos Θ

2 cos 3Θ
2 ) + KII cos Θ

2 (1− sin Θ
2 sin 2Θ

2 )]
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From which:

(σ1 − σ2)2 =
1

2πr

[
(KI sinΘ + 2KII cosΘ)2 + (KII sinΘ)2

]

(2)

−2
σox√
2πr

sin
Θ
2

[
KI sinΘ(1 + 2 cos Θ) + KII(1 + 2 cos2 Θ + cos Θ)

]
+ σ2

ox

where KI and KII are the stress–intensity factors, r and θ are coordinates of a
polar coordinate system.

By inserting the values kσmi = σ1 − σ2 into (2) we obtain the isochromatics
curves in polar coordinates (r, Θ). For each isochromatic loop the position of
maximum angle Θm corresponds to the maximum radius of the rm. This principle
can also be used in the mixed mode analysis [7] by employing information from two
loops in the near field of the crack, if the far field stress component – σox(Θ) = const.
Differentiating Eqn (2) with respect to Θ, setting Θ = Θm and r = rm and using
equation ∂τm/∂Θm = 0 gives:

g(KI ,KII , σox) =
1

2πr

[
K2

I sin 2Θ + 4KIKII cos 2Θ− 3K2
II sin 2Θ

]

−2
σox√
2πrr

sin
Θ
2
{ [KI(cos Θ + 2 cos 2Θ)−KII(2 sin 2Θ + sin Θ)]

+
1
2

cos
Θ
2

[Ki(sinΘ + sin 2Θ) + KII(2 + cos 2Θ + cos Θ)] } (3)

f(KI ,KII , σox) = (σ1 − σ2)
2 − (kσm)2 = 0

g(KI ,KII , σox) =
∂[(σ1 − σ2)2]

∂Θm
= 0

Substituting the radii rm and the angles Θm from these two loops into a pair of
equations of the form given in Eqn (3) gives two independent relations dependent
on the parameters KI , KII and σox. The third equation is obtained by using (2).
The three equations obtained in this way have the form

gi(KI ,KII , σox) = 0
gj(KI ,KII , σox) = 0 (4)
fk(KI ,KII , σox) = 0

In order to determine KI , KII and σox it is sufficient to select two arbitrary points
ri, Θi and apply the Newton–Raphson method to the solution of three simultaneous
non–linear equations (4).

The values KC according to mixed mode of the fracture were obtained from

KC =
√

K2
I + K2

II (5)

Example of the numerical results obtained from (4):
m = 12.5, r1 = 0.6 mm, Θ1 = 1.484, r2 = 10.45 mm, Θ2 = 1.416,
K

(4)
I = 0.14 MPa

√
m, K

(4)
II = 1.05 MPa

√
m, σox = 0.039 MPa,

K
(4)
C = 1.05 MPa

√
m
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Figure 1 a) Four–layer beam with cracks. Photoelastic model under four point bending, the
isochromatic patterns (σ1 − σ2) distribution b) Initial loading (P=20.0 N) c) P=50.0 N - tension
of layers 2, 3 and 4

By inserting the values ri, Θi in three selected arbitrary points into (2) we obtain
three non–linear equations (i = 1, 2, 3)

fi(KI ,KII , σox) = 0 (6)

and apply the Newton–Raphson method to the solution we have KI , KII and
σox. Example of the numerical results (shown in Fig. 3) obtained from (6) for:

m1 = 12.5, r1 = 0.72 mm, Θ1 = 1.484, m2 = 8.0,
r2 = 1.15 mm, Θ2 = 1.37, m3 = 5.5 mm, r3 = 1.85,
Θ3 = 1.315, K

(4)
I = 0.702 MPa

√
m, K

(4)
II = 1.043 MPa

√
m,

σox = 0.152 Mpa, K
(4)
C = 1.257 MPa

√
m
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Figure 2 The isochromatic patterns (σ1 − σ2) distribution according to the propagation of the
crack obtained experimentally

P=540N
-15.41MPa

m=4.55

3.72MPa

5.5 MPa

2.95MPa
m=2.95

5.77MPa

m=4.1

sx

3.98MPa

m=6.25

Mg=27000Nm

m

A

A

m=3.5

-3.54MPa

-5.88 MPa

e=4.5mm

P=540N
-17.64MPa

2.78 MPa

2.57 „

5.51 MPa

2.95 MPa

41.1 MPa

sx

5.45 MPa

Mg=29700Nmm

BS

BS

-3.45MPa

-4.29 MPa

0.5 mm

Figure 3 Distribution of stresses in cros sections A-A and B-B 0.5mm with respect to crack
obtained experimentally

4. The stress analysis from complex potentials

In the present paper the elastic and plastic deformation has been approximately
analysed using the Muskhelishvili’s complex potentials method.

σxx + σyy = 4Re [ψ′ (z)]
σyy − σxx + 2iτxy = 2 [z̄ψ′′ (z) + χ′′ (z)]
2G (u + iυ) = κψ (z)− zψ̄′ (z̄)− χ̄′ (z̄)
2G (u′ + iυ′) = κψ′ (z)− zψ̄′ (z̄)− zψ”(z)− χ̄” (z̄)
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where κ = 3− 4ν for plain strain and κ = 3−ν
1+ν plain stress

σxx + σyy = 4Re [ψ′ (z)]
σyy − σxx = Re2 [z̄ψ′′ (z) + χ′′ (z)]
τxy = Im [z̄ψ′′ (z) + χ′′ (z)]

The elastostatic stress field is required to satisfy the well–known equilibrium equa-
tions [1] using two analytic functions ψ(z) and χ(z)

σxx = Re [2ψ′ (z)− z̄ψ′′ (z)− χ′′ (z)]
σyy = Re [2ψ′ (z) + z̄ψ′′ (z) + χ′′ (z)]
τxy = Im [z̄ψ′′ (z) + χ′′ (z)] (7)
2G (u + iυ) = κψ (z)− zψ̄′ (z)− χ̄′ (z)
χ′′(z) = −zψ′′ (z)

Using two analytic functions ψ(z) and χ(z)

ψ′ (z) = ψ′1 (z) + ψ′2 (z) χ′′(z) = z [ψ′′1 (z)− ψ′′2 (z)]

The complex stress potentials are assumed as follows

2ψj(z) =
N∑

n=1

[
Cn

∫
z(2−n)

√
z − a

z + a
dz

]

2ψ′(j) (z) =
N∑

n=1

√
z − a

z + a
Cj

nz(2−n)

2ψ2(z) =
N∑

n=1

[
Dn

∫
z(3−n)dz√

z2 − a2

]
(8)

2ψ′2(z) =
N∑

n=1

[
Dnz(3−n)

√
z2 − a2

]

The stress σx , σy and τxy characterizes by

σx = Re [2ψ′ − 2xψ′′1 ]− yIm2ψ′′2
σy = Re [2ψ′ + 2xψ′′1 ] + yIm2ψ′′2
τxy = xIm2ψ′′1 − yRe2ψ′′2

The stress–intensity factors are related by:

KI = lim
x→a

σy (x, 0)
√

2π (x− a)

KII = lim
x→a

τxy (x, 0)
√

2π (x− a)

GC = 2
a∫
0

p (x)uy (x, 0) dx

KI = lim
x→a

σy (x, 0)
√

2π (x− a)

KII = lim
x→a

τxy (x, 0)
√

2π (x− a)

GC = 2
a∫
0

p (x)uy (x, 0) dx

(9)
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Figure 4 The boundary conditions for 3 layer beam and isochromatic patterns (σ1 − σ2) distri-
bution corresponding to vertical crack

By inserting the (8) into (9) we obtain

K
(j)
I = lim

x→a

{
Re

[
2ψ′(j) (z)

]
+ x2ψ′′(j) (z)

} √
2π (x− a)

K
(j)
II = lim

x→a

{
xIm

[
2ψ”(j) (z)

]}√
2π (x− a)

and

σj
x =

N∑
n=1

{
Re

[
(C

j

n + iC
j

n)f1(z) + (D
j

n + iD
j

n)f2(z)
]}

−
N∑

n=1

{
yIm

[
(D

j

n + iD
j

n)f3(z)
]}

σj
y =

N∑
n=1

{
Re

[
(C

j

n + iC
j

n)f4(z) + (D
j

n + iD
j

n)f2(z)
]}

(10)

+
N∑

n=1

{
yIm

[
(D

j

n + iD
j

n)f3(z)
]}

τ j
xy =

N∑
n=1

{
xIm

[
(C

j

n + iC
j

n)f5(z)
]}

−
N∑

n=1

{
yRe

[
(D

j

n + iD
j

n)f3(z)
]}

For y = 0 in this case, the Cartesian components of stress: σx, σy and τxy are given
as:
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σj
x =

N∑
n=1

{
Re

[
(C

j

n + iC
j

n)f1(z)
]}

σj
y =

N∑
n=1

{
Re

[
(C

j

n + iC
j

n)f4(z)
]}

(11)

τ j
xy =

N∑
n=1

{
xIm

[
(C

j

n + iC
j

n)f5(z)
]}

f1(z) =
1

zn−1

(
1
z

√
z − a

z + a
− x

az − (n− 2)(z2 − a2)
(z + a)

√
z2 − a2

)

f2(z) =
z3−n

√
z2 − a2

f3(z) = z2−n (3− n)(z2 − a2) + z2

(z2 − a2)3/2

f4(z) =
1

zn−1

(
1
z

√
z − a

z + a
+ x

az − (n− 2)(z2 − a2)
(z + a)

√
z2 − a2

)

f5(z) =
1

zn−1

az(n− 2)(z2 − a2)
(z + a)

√
z2 − a2

Ci
n = ReCi

n + iImCi
n

Di
n = ReDi

n + iImDi
n

Ci
n = ReCi

n

Ci
n = ImCi

n

(12)

The boundary conditions can by expressed as

σ(∞)
y − σ(∞)

x + 2iτ (∞)
xy = (z − z) 2ψ” (z) + 2A

σg = −M

I
(x− s) = σ∞y σ∞x = 0 (13)

εj
y = εj+1

y εj
y = ∂υj

∂y εj
x = εj+1

x

u′ =
∂u

∂x
uj = uj+1 υj = υj+1
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Figure 5 Distribution of stresses in cross sections A-A and B-B 0.5mm with respect to crack
obtained experimentally and used in the analysis of the complex potentials

H∫

0

σj
ydx

=
N∑

n=1



Re

H∫

0

[
Cj

n

zn−1

(
1
z

√
z − a

z + a
+ x

az − (n− 2)(z2 − a2)
(z + a)

√
z2 − a2

)]
dx



 = 0

H∫

0

bσj
yxdx + M (14)

=
N∑

n=1





H∫

0

bRe
[

Cj
n

zn−1

(
1
z

√
z − a

z + a
+ x

az − (n− 2)(z2 − a2)
(z + a)

√
z2 − a2

)]
dx



 + M = 0

σj
y =

N∑
n=1

{
Re

[
Cj

n

zn−1

(
1
z

√
z − a

z + a
+ x

az − (n− 2)(z2 − a2)
(z + a)

√
z2 − a2

)]}

σg = −M

I
(x− s) = σ∞y

For each isochromatic loop σ1 − σ2 = kσm

σyy − σxx = kσmt cos 2α (15)



14 Jaroniek, M

in other hand σ1 + σ2 = σxx + σyy and

σxx + σyy =
N∑

n=1

2Re
[
Cnz(2−n)

√
z − a

z + a
+

Dnz(3−n)

√
z2 − a2

]
(16)

This principle can be used in the analysis of the stresses, by inserting the values
mi, αi in selected arbitrary points P (ri, Θi) we obtain equations

N∑
n=1

{
Re

[
(Cn + iCn)[f4(z)− f1(z)]

]
+ 2yIm

[
(Dn + iDn)f3(z)

]}
= kσmi cos 2αi

from which:

K
(j)
II = lim

x→a

N∑
n=1

{
xIm

[
Cj

nf4(z)
] √

2π(x− a)
}

(17)

K
(j)
II = lim

x→a

N∑
n=1

{
xIm

[
Cj

nf5(z)
] √

2π(x− a)
}

τ2
m = Re [z̄ψ′′ (z) + χ′′ (z)]2 + Im [z̄ψ′′ (z) + χ′′ (z)]2 (18)

τ2
m =

(
N∑

n=1

{xRe [Cnf5(z)] + yIm [Dnf3(z)]}
)2

+

(
N∑

n=1

{xIm [Cnf5(z)]− yRe [Dnf3(z)]}
)2

For each isochromatic loop

εyy − εxx =
1

2G′

N∑
n=1

{
Re

[
(Cn + iCn)[f4(z)− f1(z)]

]
+ 2yIm

[
(Dn + iDn)f3(z)

]}

in other hand εyy − εxx = fε(m)m cos 2α and

(1 + νj)
Ej

N∑
n=1

{
Re

[
(C

j

n + iC
j

n)[f4(z)− f1(z)]
]

+ 2yIm
[
(D

j

n + iD
j

n)f3(z)
]}

= fεm(xt) cos 2α

KI = lim
x→a

N∑
n=1

{
Re

[
Cn

zn−1

(
1
z

√
z − a

z + a
+ x

az − (n− 2)(z2 − a2)
(z + a)

√
z2 − a2

)

+
Dnz3−n

√
z2 − a2

] √
2π(x− a)

}
(19)

KII = lim
x→a

N∑
n=1

{
xIm

[
Cn

zn−1

az(n− 2)(z2 − a2)
(z + a)

√
z2 − a2

] √
2π(x− a)

}
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Figure 6 The isochromatic patterns (σ1 − σ2) distribution according to the propagation of the
crack obtained experimentally and used in the analysis of the complex potentials

Where

zl

√
z − a

z + a
= rl

(
r1

r2

)1/2 [
cos

(
Θ1 + Θ2

2
+ Θl

)
+ i sin

(
Θ1 + Θ2

2
+ Θl

)]

zl

√
z2 − a2

=
rl

(r1r2)1/2

[
cos

(
Θl − Θ1 + Θ2

2

)
+ i sin

(
Θl − Θ1 + Θ2

2

)]

Photoelastic measurements make possible deformations and stresses study in whole
structure of elastomer. On basis of photoelastic measurements, we define directly
difference of strains:

σ1 − σ2 = kδm

ε1 − ε2 =
1 + ν

E
(σ1 − σ2) =

1 + ν

E
kδm (20)
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where:
fσ =

1 + ν

E
kδ

fε =
1 + ν

E
kσ

model constants corresponding to difference of stresses and main deformations.
As well as it is known lines for which differences between stresses and main

strains have constant value and one color are called isochromatics. Next, basing
on isochromatics measurements stresses distribution has been defined. Applying
stress–strain relation, in elastic body deviator strain components are proportional
to deviator stress component, as written:

σ1 − σsr

ε1 − εsr
=

σ2 − σsr

ε2 − εsr
(21)

Photoelastic measurements results one can apply also for strain and stress analyse
concerning elasto–plastic materials. In elasto–plastic body, proportion of deviator
strain components and deviator stress components is described by relation:

σ1 − σsr

ε1 − εsr
=

σ2 − σsr

ε2 − εsr
= 2G′ (22)

where

G′ =
τ0

γ0

(
τ

γ0

)N−1

Es

1 + νs
=

2σo

εp
o
εp−1

3− (1− 2νo)
(

ε
εo

)p−1

σ1 − σ2 =
2σo

εp
o
εp−1

3− (1− 2νo)
(

ε
εo

)p−1 (ε1 − ε2)

σ1 − σ2

ε1 − ε2
=

2σo

εp
o
εp−1

3− (1− 2νo)
(

ε
εo

)p−1

For simply tensile test, when σ1 = σ, σ2= σ3= 0, parameters ε1 = εint , ε2 and
ε3 one can determine on the basis of shape change low ε2 = ε3 = − 1

2 (εint − 3εsr),

where σint = σ = AεP and εint =
(

1
Aσint

)1/p or σsr = σ/3.
Main strains difference amount:

ε1 − ε2 = 3
2εint − 3εsr (23)

ε1 − ε2 =
3
2
α0εpl

(
J

α0σplεplIn

) n
1+n

r−
n

n+1 σ̃n−1
int

[
(σ̃rr − σ̃θθ)

2 − (2τ̃rθ)
2
]1/2

(24)

Where σ̃2
int = σ̃2

rr + σ̃2
θθ − σ̃rrσ̃θθ + 3σ̃2

rθ

σ1 − σ2 = σpl

(
J

α0σplεplIn

) 1
1+n

r−
1

n+1

[
(σ̃rr − σ̃θθ)

2 − (2τ̃rθ)
2
]1/2

(25)
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On basis of photoelastic measurements, we define directly difference of strains:

σ1 − σ2 = kδm

ε1 − ε2 =
1 + ν

E
(σ1 − σ2) =

1 + ν

E
kδm

By inserting the values ε1 − ε2 into (24) we obtain the isochromatics curves in
polar coordinates (r, Θ).

rε (Θ) =
(

3
2

α0εpl

fεm

)n+1
n

(
J

α0σplεplIn

)
σ̃

n2−1
n

int

[
(σ̃rr − σ̃θθ)

2 − (2τ̃rθ)
2
]n+1

2n

(26)

In elasto–plastic body, proportion of deviator strain components and deviator stress
components is described by:

σ1 − σ2

ε1 − ε2
=

σpl
3
2αεpl

(
J

α0σplεplIn

) 1−n
1+n

r−
1−n
n+1 σ̃1−n

int (27)

5. Numerical determination of stress distribution

The distribution of stresses and displacements has been calculated using the finite
element method (FEM) [11, 16]. Finite element calculations were performed in
order to verify the experimentally observed the isochromatic distribution observe
during cracks propagation. The geometry and materials of models were chosen
to correspond to the actual specimens used in the experiments. The numerical
calculations were carried out using the finite element program ANSYS 9 and by
applying the substructure technique. A finite element mesh of the model (used for
numerical simulation) are presented in Fig.7 and the stresses σx are shown in Fig. 9.
For comparison the numerical (from FEM) and experimental isochromatic fringes
(σ1 − σ2), distribution was shown in in Figs 8 and 10.

Table 2 Experimental and numerical results. Critical values K
(1)
IC according to the propagation

of the crack and K
(2)
IC

Crack
length.
a [mm]

Critical
force
Pcr

[N]

Experimental res.
[MPa

√
m]

Numerical
res.
[MPa

√
m]

K(4)
I K(4)

II K(4)
C σox

[MPa]
G(4)

C

[MN/m]
K(4)

C n

MPa
√

m
6.0 265.0 1.177 0.8793 1.419 2.58 3.08 1.45
9.0 205.0 0.702 1.043 1.257 0.152 2.39 1.28
9.8 185.0 0.14 1.05 1.05 0.039 1.97 1.16

Comparison between numerical and experimental results is presented in Figs. 8
and 10. The agreement between the finite element method predicted isochromatics–
fringe patterns distribution and those determined photoelasticaly was found to be
within 5 ÷8 percent.
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h4
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2

3

4

y1

y3

y2

y5y4

a

Figure 7 A finite element mesh of the model (for numerical simulation)

Figure 8 Numerical determination of stress distribution (Ansys 5.6). Distribution of the stresses
σx (cracks length a=6.0 mm )
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sy

y

x sc= –18.58B

B

smax = 52.56

1 – Layer

2 – Layer

3 – Layer

4 – Layer

Crack

Figure 9 Numerical determination of stress distribution (Ansys 9). Distribution of the normal
stress σx and equivalent stress σint along the crack

Figure 10 Experimental determination of stress distribution (The stress intensity). Distribution
of the absolute values of σ1 − σ2 (cracks length a=6.0 mm )
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6. Conclusions

Fabrication of the model of the FGM can be obtained similarly as the function-
ally graded materials by layered mixing of two photoelastic materials of different
thermo–mechanical properties with different volume ratios gradually changed from
layer to layer such that first layer has only a few particles of the other phase and
last has maximum volume ratio of this other phase. Photoelasticity was shown to
be promising in stress analysis of beams with various numbers and orientation of
cracks.

In the present paper the elastic deformation has been approximately analysed
using the Muskhelishvili’s complex potentials method in the analysis of the stresses.
Using two analytic functions in the analysis of the stresses we obtain equations for
isochromatic loop.

The specimen can be build as layered beam, for example,
glass layer at the bottom then particles of the same glass in the epoxy in several

layers of various volume ratio of the glass in epoxy and pure epoxy at the top.
The beam can be loaded in bending to generate cracks while will propagate

through the FGM layer.
It is possible to fabricate a model using various photoelastic materials to model

multi layered structure.
Finite element calculations (FEM) were performed in order to verify the ex-

perimentally observed branching phenomenon and the isochromatic distribution
observed during cracks propagation. The agreement between the finite element
method predicted isochromatics–fringe patterns distribution and those determined
photoelasticaly was found to be within 3÷5 percent.
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