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In this paper, the transient flow of a dusty viscous incompressible electrically conducting
non–Newtonian Casson fluid through a circular pipe is studied taking the Hall effect
into consideration. A constant pressure gradient in the axial direction and an uniform
magnetic field directed perpendicular to the flow direction are applied. The particle–
phase is assumed to behave as a viscous fluid. A numerical solution is obtained for the
governing nonlinear equations using finite differences.
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1. Introduction

The flow of a dusty and electrically conducting fluid through a circular pipe in the
presence of a transverse magnetic field has important applications such as mag-
netohydrodynamic (MHD) generators, pumps, accelerators, and flowmeters. The
performance and efficiency of these devices are influenced by the presence of sus-
pended solid particles in the form of ash or soot as a result of the corrosion and
wear activities and/or the combustion processes in MHD generators and plasma
MHD accelerators. When the particle concentration becomes high, mutual particle
interaction leads to higher particle–phase viscous stresses and can be accounted for
by endowing the particle phase by the so–called particle–phase viscosity. There
have been many articles dealing with theoretical modelling and experimental mea-
surements of the particle–phase viscosity in a dusty fluid (Soo [1], Gidaspow et al.
[2], Grace [3], and Sinclair et al. [4]).

The flow of a conducting fluid in a circular pipe has been investigated by many
authors (Gadiraju et al. [5], Dube et al. [6], Ritter et al. [7], and Chamkha [8]).
Gadiraju et al. [5] investigated steady two–phase vertical flow in a pipe. Dube
et al. [6] and Ritter et al. [7] reported solutions for unsteady dusty-gas flow in a
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circular pipe in the absence of a magnetic field and particle–phase viscous stresses.
Chamkha [8] obtained exact solutions which generalize the results reported in Dube
et al. [6] and Ritter et al. [7] by the inclusion of the magnetic and particle–phase
viscous effects. It should be noted that in the above studies the Hall effect is ignored.

A number of industrially important fluids such as molten plastics, polymers,
pulps and foods exhibit non–Newtonian fluid behavior (Nakayama et al. [10]). Due
to the growing use of these non–Newtonian materials, in various manufacturing and
processing industries, considerable efforts have been directed towards understanding
their flow characteristics. Many of the inelastic non–Newtonian fluids, encountered
in chemical engineering processes, are known to follow the so–called ”power–law
model” in which the shear stress varies according to a power function of the strain
rate (Metzner et al. [11]). It is of interest in this paper to study the influence of the
magnetic field as well as the non–Newtonian fluid characteristics on the dusty fluid
flow properties in situations where the particle–phase is considered dense enough
to include the particulate viscous stresses.

In the present study, the unsteady flow of a dusty non–Newtonian Casson fluid
through a circular pipe is investigated considering the Hall effect. The carrier fluid
is assumed viscous, incompressible and electrically conducting. The particle phase
is assumed to be incompressible pressureless and electrically non–conducting. The
flow in the pipe starts from rest through the application of a constant axial pressure
gradient. The governing nonlinear momentum equations for both the fluid and
particle–phases are solved numerically using the finite difference approximations.
The effect of the Hall current, the non–Newtonian fluid characteristics and the
particle–phase viscosity on the velocity of the fluid and particle–phases are reported.

2. Governing equations

Consider the unsteady, laminar, and axisymmetric horizontal flow of a dusty con-
ducting non–Newtonian Casson fluid through an infinitely long pipe of radius ”d”
driven by a constant pressure gradient. A uniform magnetic field is applied perpen-
dicular to the flow direction. The Hall current is taken into consideration and the
magnetic Reynolds number is assumed to be very small, consequently the induced
magnetic field is neglected (Sutton et al. [12]). We assume that both phases behave
as viscous fluids and that the volume fraction of suspended particles is finite and
constant (Chamkha [8]). Taking into account these and the previously mentioned
assumptions, the governing momentum equations can be written as
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where t is the time, r is the distance in the radial direction, V is the fluid–phase
velocity, Vp is the particle–phase velocity, ρ is the fluid–phase density, ρp is the
particle–phase density, ∂P/∂z is the fluid pressure gradient, φ is the particle–phase
volume fraction, N is a momentum transfer coefficient (the reciprocal of the relax-
ation time, the time needed for the relative velocity between the phases to reduce e−1
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of its original value (Chamkha [8]), σ is the fluid electrical conductivity, m = σβBo

is the Hall parameter, β is the Hall factor (Sutton et al. [12]), Bo is the magnetic
induction, µp is the particle–phase viscosity which is assumed constant, and µ is
the apparent viscosity of the fluid which is given by,

µ =

(
Kc +

√
τo∣∣∂V
∂r

∣∣

)2

where Kc is the coefficient of viscosity of a Casson fluid, τo is the yield stress, and
|∂V/∂r| is the magnitude of the velocity gradient which is always positive regardless
of the sign of ∂V/∂r. In this work, ρ, ρp, µp, φ, and Bo are all constant. It should
be pointed out that the particle–phase pressure is assumed negligible and that the
particles are being dragged along with the fluid–phase.

The initial and boundary conditions of the problem are given as

V (r, 0) = 0, Vp(r, 0) = 0, (3)
∂V (0, t)

∂r
= 0,

∂Vp(0, t)
∂r

= 0, V (d, t) = 0, Vp(d, t) = 0 (4)

where d is the pipe radius.
Eqs (1)–(4) constitute a nonlinear initial–value problem which can be made

dimensionless by introducing the following dimensionless variables and parameters
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α = Nd2ρ/Kc is the inverse Stoke’s number
β = µp/Kc is the viscosity ratio
τD = τo/God is the Casson number (dimensionless yield stress)

Ha = Bod
√

σ/Kc is the Hartmann number (Sutton et al. [12])

By introducing the above dimensionless variables and parameters as well as the
expression of the fluid viscosity defined above, Eqs (1)–(4) can be written as (the
bars are dropped),
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V (r, 0) = 0 Vp(r, 0) = 0, (7)
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The volumetric flow rates and skin–friction coefficients for both the fluid and
particle phases are defined, respectively, as (Chamkha [8])
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3. Results and Discussion

Eqs (5) and (6) represent a coupled system of nonlinear partial differential equations
which are solved numerically under the initial and boundary conditions (7) and (8),
using the finite difference approximations. A linearization technique is first applied
to replace the nonlinear terms at a linear stage, with the corrections incorporated in
subsequent iterative steps until convergence is reached. Then the Crank–Nicolson
implicit method (Mitchell et al. [13] and Evans et al. [14]) is used at two successive
time levels. An iterative scheme is used to solve the linearized system of difference
equations. The solution at a certain time step is chosen as an initial guess for
next time step and the iterations are continued till convergence, within a prescribed
accuracy. Finally, the resulting block tridiagonal system is solved using the gener-
alized Thomas algorithm (Mitchell et al. [13] and Evans et al. [14]). Computations
have been made for α = 1 and k = 10. Grid–independence studies show that the
computational domain 0 < t < ∞ and 0 < r < 1 can be divided into intervals with
step sizes ∆t = 0.0001 and ∆r = 0.005 for time and space respectively. It should
be mentioned that the results obtained herein reduce to those reported by Dube
et al. [6] and Chamkha [8] for the cases of non–magnetic, inviscid particle–phase
(β=0), and Newtonian fluid. These comparisons lend confidence in the accuracy
and correctness of the solutions.
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Figure 1 Time development of the profile of V for various values of τD (m = 0, Ha = 0.5, β = 0.5)
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Figure 2 Time development of the profile of V for various values of τD (m = 1, Ha = 0.5, β = 0.5)
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Figure 3 Time development of the profile of Vp for various values of τD (m = 0, Ha = 0.5, β = 0.5)
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Figure 4 Time development of the profile of Vp for various values of τD (m = 1, Ha = 0.5, β = 0.5)
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Figs 1–4 present the time evolution of the profiles of the velocity of the fluid V and
dust particles Vp, respectively for various values of the Bingham number τD and
the Hall parameter m and for Ha=0.5 and β=0.5. Both V and Vp increase with
time and V reaches the steady–state faster than Vp for all values of τD. It is clear
from the figures that increasing τD increases both V and Vp while its effect on their
steady–state times can be neglected. It is indicated in the figures that increasing
m increases V and, in turn, Vp due to the decrease in the effective conductivity
(σ/(1+m2)) which reduces the damping magnetic force on V . It is shown that the
influence of the Hall parameter m on V is more apparent for higher values of τD.

Table 1 The steady state values of Q, Qp, C, Cp for various values of m and τD

τD=0 m = 0 m = 1 m = 2
Q 0.1763 0.1779 0.1789
Qp 0.0425 0.0429 0.0432
C 0.2817 0.2833 0.2843
Cp 0.2106 0.2125 0.2136
τD=0.025 m = 0 m = 1 m = 2
Q 0.1669 0.1684 0.1693
Qp 0.0403 0.0406 0.0408
C 0.2671 0.2686 0.2695
Cp 0.1995 0.2012 0.2022
τD=0.05 m = 0 m = 1 m = 2
Q 0.1576 0.1589 0.1597
Qp 0.0379 0.0383 0.0385
C 0.2523 0.2537 0.2546
Cp 0.1883 0.1899 0.1908

Table 1 presents the steady state values of the fluid–phase volumetric flow rate
Q, the particle–phase volumetric flow rate Qp, the fluid–phase skin friction coef-
ficient C, and the particle–phase skin friction coefficient Cp for various values of
the parameters τD and m and for Ha=0.5 and β=0.5. It is clear that increasing
the parameter m increases Q, Qp, C, and Cp for all values of τD. It is also shown
that increasing τD increases Q, Qp, C, and Cp for all values of m. Table 2 presents
the steady state values of the fluid–phase volumetric flow rate Q, the particle–phase
volumetric flow rate Qp, the fluid–phase skin friction coefficient C, and the particle–
phase skin friction coefficient Cp for various values of the parameters m and β and
for Ha=0.5 and τD=0. It is clear that, increasing m increases Q, Qp, C, and Cp

for all values of β and its effect becomes more pronounced for smaller values of β.
Increasing the parameter β decreases the quantities Q, Qp, and C, but increases Cp

for all values of m.

4. Conclusion

The transient MHD flow of a particulate suspension in an electrically conducting
non–Newtonian Casson fluid in a circular pipe is studied considering the Hall effect.
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Table 2 The steady state values of Q, Qp, C, Cp for various values of m and β

β = 0 m = 0 m = 1 m = 2
Q 0.2653 0.2686 0.2706
Qp 0.1975 0.1997 0.2009
C 0.3759 0.3791 0.3811
Cp 0 0 0
β = 0.5 m = 0 m = 1 m = 2
Q 0.1763 0.1779 0.1789
Qp 0.0425 0.0429 0.0432
C 0.2817 0.2833 0.2843
Cp 0.2106 0.2125 0.2136
β = 1 m = 0 m = 1 m = 2
Q 0.1640 0.1654 0.1662
Qp 0.0226 0.0228 0.0229
C 0.2702 0.2716 0.2724
Cp 0.2231 0.2249 0.2260

The governing nonlinear partial differential equations are solved numerically using
finite differences. The effect of the magnetic field parameter Ha, the Hall parameter,
the non–Newtonian fluid characteristics (Bingham number τD), and the particle–
phase viscosity β on the transient behavior of the velocity, volumetric flow rates,
and skin friction coefficients of both fluid and particle–phases is studied. It is shown
that increasing the magnetic field decreases the fluid and particle velocities, while
increasing the Hall parameter increases both velocities. It is found that increasing
the parameter m increases Q, Qp, C, and Cp for all values of τD. The effect of the
Hall parameter on the quantities Q, Qp, C, and Cp becomes more pronounced for
smaller values of β.
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