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In this part II, we extend our analysis to include all of the four feasible configurations.
We have four generalized bi–elliptic configurations for the transfer problem, for a central
gravitational field. We apply three impulses as usual for the bi–elliptic case, at the points
A, C, B. x, z are our independent variables and are equal to the ratio between values of
the velocities after and before the application of the impulses at points of pericenter and
apocenter. Similarly y is defined as the corresponding parameter for the point C. We
utilize the optimum condition of ordinary infinitesimal calculus for algebraic functions
to evaluate the minimum values of x, z, y. In this part II we expand the domain of
application of the numerical results.
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1. Introduction

Most generally, the change of kinematic conditions represented by ti, ri, vi →
tf , rf , vf is the definition of a ”transfer”, where t is the physical time, r the radius,
and v the velocity. Deterministic aspects of optimization of rendez–vous orbital
transfer is an essential application. Among all three impulse transfers, applying the
gradient method, the simple bi–elliptic transfer is the most economic or equivalently
the optimal transfer. If 11.94 < R < 15.58 and midcourse impulse location ri (ri

> r2) is sufficiently large, then the bi–elliptic transfer is more economic than the
Hohmann transfer [1]. L. Ting demonstrated that for optimality the terminal and
transfer trajectories should be coplanar [2]. Billik and Roth discussed, in quite a
general manner, the two dimensional simple bi–elliptic transfer, with or without
parking in one of the two transfer ellipses. They concluded that the bi–elliptic



94 Kamel, OM and Soliman A

transfer is and alternative of the Hohmann transfer where rf/ri ≈ 1 [3]. Moreover,
four or more impulse transfers are never optimal. The bi–elliptic and the three
impulse transfers connect pericenters. The intermediate impulse is always at the
outer limit of the annulus [4].

2. Methods and results

In a previous research paper [5], we wrote down the calculations for the first config-
uration Fig. 1. Herein, we cite the computations for the second, third and fourth
configurations.

Figure 1

2.1. Calculations for the second configuration

For Fig. 2, we have

vA =

√
µ (1 + e1)
a1 (1− e1)

xvA =

√
µ (1 + eT )
aT (1− eT )

vC =

√
µ (1− eT )
aT (1 + eT )

yvC =

√
µ (1 + eT ′)

aT ′ (1− eT ′)
(1)

vB =

√
µ (1− eT ′)

aT ′ (1 + eT ′)
zvB =

√
µ (1− e2)
a2 (1 + e2)
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Figure 2

Accordingly

x =
xvA

vA
=

√
1 + eT

1 + e1

y =
yvC

vC
=

√
1 + eT ′

1− eT
(2)

z =
zvB

vB
=

√
1− e2

1− eT ′

Where

a1 (1− e1) = aT (1− eT ) (3)
aT (1 + eT ) = aT ‘ (1− eT ‘) (4)
aT ‘ (1 + eT ‘) = a2 (1 + e2) (5)

and

b1 = a1 (1− e1) b2 = a1 (1 + e1) (6)
b3 = a2 (1− e2) b4 = a2 (1 + e2)

whence

1− eT = 2− x2 (1 + e1) 1 + eT = x2 (1 + e1) (7)

1− eT ′ =
1− e2

z2
1 + eT ′ = 2− 1− e2

z2

and

y =
√

2z2 − 1 + e2

z
√

2− x2 (1 + e1)
(8)

By differentiation of Eq. (8) w.r.t. x, we get

∂y

∂x
=

x (1 + e1)
√

2z2 − (1− e2)

z {2− x2 (1 + e1)}3/2
(9)
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And differentiating Eq. (8) w.r.t. z, then

∂y

∂z
=

1− e2

z2
√
{2− x2 (1 + e1)} {2z2 − (1− e2)}

(10)

∆vT = ∆vA + ∆vC + ∆vB (11)
∆vT = vA (x− 1) + vC (y − 1) + vB (z − 1) (12)

We may write also,
For optimum condition

∂∆vT

∂x
= 0;

∂∆vT

∂y
= 0;

∂∆vT

∂z
= 0 (13)

Consequently

∂∆vT

∂x
= vA +

∂vC

∂x
(y − 1) + vC

∂y

∂x
= 0 (14)

vC =
2− x2 (1 + e1)

x

√
µ

b1 (1 + e1)
(15)

But
∂vC

∂x
= −2 + x2 (1 + e1)

x2

√
µ

b1 (1 + e1)
(16)

whence Eq. (14) can be written as :

√
µ (1 + e1)

b1
−

{
2 + x2 (1 + e1)

}

x2

√
µ

b1 (1 + e1)

{
1
z

√
2z2 − 1 + e2

2− x2 (1 + e1)
− 1

}

+
1
z

√
µ

b1 (1 + e1)

{
2− x2 (1 + e1)

}

x

x (1 + e1)
√

2z2 − 1 + e2

{2− x2 (1 + e1)}3/2
= 0 (17)

Let
c = 1 + e1 c1 = e2 − 1

After some algebraic reductions and rearrangements

z2
{
3x2c− x6c3

}− c1 = 0 (18)

We may write
∂∆vT

∂z
= vC

∂y

∂z
+ (z − 1)

∂vB

∂z
+ vB = 0 (19)

where

∂vB

∂z
= − 1

z2

√
µ (1− e2)

b4
(20)

vB =

√
µ 1−e2

z2

b4
=

√
µ (1− e2)

b4z2
(21)
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From Eqs (10), (19) and after some reductions

z2 =
−2c1b4 + x2cc1 (b4 − b1)

2x2b1c
(22)

Let
−2c1b4 = c2; cc1 (b4 − b1) = c3; 2b1c = c4 (23)

i.e.

z2 =
c2 + x2c3

x2c4
(24)

From the above equations and after some rearrangements and reductions, we get a
sixth order algebraic equation, written as follows

x6 + c6x
4 + c7x

2 + c8 = 0 (25)

Where
c5 = 3c2c− c1c4; c6 =

c2

c3
; c7 =

−3
c2

; c8 =
c5

−c3c3
(26)

Figure 3

2.2. Calculations for the third configuration

For Fig. 3, we have

vA =

√
µ (1− e1)
a1 (1 + e1)

xvA =

√
µ (1− eT )
aT (1 + eT )

vC =

√
µ (1 + eT )
aT (1− eT )

yvC =

√
µ (1 + eT ′)

aT ′ (1− eT ′)
(27)

vB =

√
µ (1− eT ′)

aT ′ (1 + eT ′)
zvB =

√
µ (1− e2)
a2 (1 + e2)
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Accordingly

x =
xvA

vA
=

√
1− eT

1− e1

y =
yvC

vC
=

√
1 + eT ′

1 + eT
(28)

z =
zvB

vB
=

√
1− e2

1− eT ′

Where

a1 (1 + e1) = aT (1 + eT ) (29)
aT (1− eT ) = aT ‘ (1− eT ‘) (30)
aT ‘ (1 + eT ‘) = a2 (1 + e2) (31)

whence

1 + eT = 2− x2 (1− e1) 1− eT = x2 (1− e1) (32)

1− eT ′ =
1− e2

z2
1 + eT ′ = 2− 1− e2

z2

and

y =
√

2z2 − 1 + e2

z
√

2− x2 (1− e1)
(33)

Let
c = 1− e1 c1 = e2 − 1

By differentiation of Eq. (33) w.r.t. x, we get

∂y

∂x
=

xc
√

2z2 + c1

z {2− x2c}3/2
(34)

And differentiating Eq. (33) w.r.t. z, then

∂y

∂z
=

−c1

z2
√
{2− x2c} {2z2 + c1}

(35)

We may write also,

∆vT = ∆vA + ∆vC + ∆vB (36)
∆vT = vA (x− 1) + vC (y − 1) + vB (z − 1) (37)

For optimum condition

∂∆vT

∂x
= 0

∂∆vT

∂y
= 0

∂∆vT

∂z
= 0 (38)
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Consequently

∂∆vT

∂x
= vA +

∂vC

∂x
(y − 1) + vC

∂y

∂x
= 0 (39)

vC =
2− x2c

x

√
µ

b2c
(40)

But
∂vC

∂x
= −2 + x2c

x2

√
µ

b2c
(41)

whence Eq. (39) can be written as :
√

µc

b2
−

{
2 + x2c

}

x2

√
µ

b2c

{
1
z

√
2z2 + c1

2− x2c
− 1

}

+
1
z

√
µ

b2c

{
2− x2c

}

x

xc
√

2z2 + c1

{2− x2c}3/2
= 0 (42)

After some algebraic reductions and rearrangements

z2
{
3x2c− x6c3

}− c1 = 0 (43)

We may write

∂∆vT

∂z
= vC

∂y

∂z
+ (z − 1)

∂vB

∂z
+ vB = 0 (44)

vB =

√
µ 1−e2

z2

b4
=

1
z

√−µc1

b4
(45)

where
∂vB

∂z
= − 1

z2

√−µc1

b4
(46)

From Eqs (35), (44) and after some reductions

z2 =
2c1b4 + x2cc1 (b2 − b4)

−2x2b2c
(47)

Let

−c1 (b2 − b4)
2b2

= c2 − c1b4

b2c
= c3 (48)

i.e.
z2 = c2 +

c3

x2
(49)

From the above equations and after some rearrangements and reductions, we get a
sixth order algebraic equation, written as follows

x6 + c4x
4 + c5x

2 + c6 = 0 (50)

Where
c4 =

c3

c2
c5 =

−3
c2

c6 =
−3c3

c2c2
+

c1

c2c3
(51)
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Figure 4

2.3. Calculations for the fourth configuration

For Fig. 4., we have

vA =

√
µ (1− e1)
a1 (1 + e1)

xvA =

√
µ (1 + eT )
aT (1− eT )

vC =

√
µ (1− eT )
aT (1 + eT )

yvC =

√
µ (1− eT ′)

aT ′ (1 + eT ′)
(52)

vB =

√
µ (1 + eT ′)

aT ′ (1− eT ′)
zvB =

√
µ (1 + e2)
a2 (1− e2)

Accordingly

x =
xvA

vA
=

√
1 + eT

1− e1

y =
√

1− eT ′

1− eT
(53)

z =
√

1 + e2

1 + eT ‘

Where

a1 (1 + e1) = aT (1− eT ) (54)
aT (1 + eT ) = aT ‘ (1 + eT ‘) (55)
aT ‘ (1− eT ‘) = a2 (1− e2) (56)

whence

1 + eT = x2 (1− e1) 1− eT = 2− x2 (1− e1) (57)

1 + eT ′ =
1 + e2

z2
1− eT ′ = 2− 1 + e2

z2
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and

y =
√

2z2 − 1− e2

z
√

2− x2 (1− e1)
(58)

Let
c = 1− e1 c1 = −(e2 + 1)

By differentiation of Eq. (58) w.r.t. x,we get

∂y

∂x
=

xc
√

2z2 + c1

z {2− x2c}3/2
(59)

And differentiating Eq. (58) w.r.t. z, then

∂y

∂z
=

−c1

z2
√
{2− x2c} {2z2 + c1}

(60)

We may write also,

∆vT = ∆vA + ∆vC + ∆vB (61)
∆vT = vA (x− 1) + vC (y − 1) + vB (z − 1) (62)

For optimum condition

∂∆vT

∂x
= 0

∂∆vT

∂y
= 0

∂∆vT

∂z
= 0 (63)

∂∆vT

∂x
= vA +

∂vC

∂x
(y − 1) + vC

∂y

∂x
= 0 (64)

Consequently

vC =
2− x2c

x

√
µ

b2c
(65)

But
∂vC

∂x
= −2 + x2c

x2

√
µ

b2c
(66)

whence Eq. (64) can be written as :

√
µc

b2
−

{
2 + x2c

}

x2

√
µ

b2c

{
1
z

√
2z2 + c1

2− x2c
− 1

}

+
1
z

√
µ

b2c

{
2− x2c

}

x

xc
√

2z2 + c1

{2− x2c}3/2
= 0 (67)

After some algebraic reductions and rearrangements

z2
{
3x2c− x6c3

}− c1 = 0 (68)

We may write
∂∆vT

∂z
= vC

∂y

∂z
+ (z − 1)

∂vB

∂z
+ vB = 0 (69)
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where

vB =
1
z

√−µc1

b3
(70)

∂vB

∂z
= − 1

z2

√−µc1

b3
(71)

From Eqs. (60), (69) and after some reductions

z2 =
2c1b3 + x2cc1 (b2 − b3)

−2x2b2c
(72)

Let

−c1 (b2 − b3)
2b2

= c2 − c1b3

b2c
= c3 (73)

i.e.

z2 = c2 +
c3

x2
(74)

From the above equations and after some rearrangements and reductions, we get a
sixth order algebraic equation, written as follows

x6 + c4x
4 + c5x

2 + c6 = 0 (75)

Where

c4 =
c3

c2
c5 =

−3
c2

c6 =
−3c3

c2c2
+

c1

c2c3
(76)

3. Numerical results

For Fig. (2), we consider two cases

• Case 1: Earth – Mars:

For Earth – Mars , we have(6)

a1 = aE = 1 a2 = aM = 1.5237
e1 = eE = 0.0167 e2 = eM = 0.0934

• Case 2: Earth – Uranus

For Earth – Uranus , we have(6)

a1 = aE = 1 a2 = aU = 19.1913
e1 = eE = 0.0167 e2 = eU = 0.0472

By solving Eq. (25) for the above two cases numerically (we put µ =1), we get
(x)Min , then from Eq.(24), we get (z)Min and from Eq.(8), we get (y)Min, finally
from Eq.(12), we get (∆vT )Min, as:
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Case (x)Min (z)Min (y)Min (∆vT )Min

1 1.4026 0.6732 1.3017 0.0513
2 1.3463 1.1433 2.8437 0.5947

4. Appendix: Angular momentum concept

For Fig.(2), let h2 be the angular momentum w.r.t. orbit O2, the first transfer orbit.
Let

rA = a1 (1− e1) rC = aT (1 + eT ) rB = aT ′ (1 + eT ′)

whence

h2 =
√

2µ

√
rArC

rA + rC

xvA =
h2

rA
=

√
2µ

√
rArC

rA + rC

1
rA

x =
xvA

vA
=

√
1 + eT

1 + e1
(77)

1 + eT = x2 (1 + e1) 1− eT = 2− x2 (1 + e1) (78)

Let h3 be the angular momentum w.r.t. orbit O3, the second transfer orbit.

h3 =
√

2µ

√
rCrB

rC + rB

vB =
h3

rB
=

√
2µ

√
rCrB

rC + rB

1
rB

z =
zvB

vB
=

√
1− e2

1− eT ‘
(79)

1− eT ‘ =
1− e2

z2
; 1 + eT ‘ = 2− 1− e2

z2
(80)

yvC =
h3

rC
=

√
2µ

√
rC .rB

rC + rB

1
rC

(81)

y =
yvC

vC
=

√
1 + eT ‘

1− eT

y =
1
z

√
2z2 − 1 + e2

2− x2 (1 + e1)
(82)

Eqs (77–78), are the same as in the case of change of energy concept.

5. Concluding remarks

It is possible to reduce the impulsive optimal transfer problem to a parametric
optimization one with constraints. A numerical solution, or even analytical one in
some simple cases could be acquired. In addition we may have the semi–analytical
resolution as shown in this article [7]. For the second configuration we assigned the
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values of (x, z, y, ∆vT )Min for the generalized Earth – Mars and Earth – Uranus bi
– elliptic transfer. Our procedure is elementary and straightforward, using only the
properties of the elliptic conic section, and the minimum – partial ordinary calculus
– conditions. Our choice of the independent parameters x, z proved simplicity and
efficiency of this analysis when compared with other sophisticated approaches. The
parameter xis determined from a numerical solution of a sixth degree polynomial
equation. The numerical results may be repeatedly acquired for subsystems with
exterior member as one of the outer planets Jupiter, Saturn, and Neptune, or even
more the inner planets Venus and Mercury.
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