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In this paper, a two–dimensional problem of thermoviscoelasticity with two relaxation
times when the entire medium rotates with a uniform angular velocity is studied. The
normal mode analysis is used to obtain the exact expressions for the temperature, dis-
placement and thermal stress components. The resulting formulation is applied to the
case of a thick plate subjected to a time–dependent heat source on each face. Numerical
results are given and illustrated graphically. Comparisons are made with the results pre-
dicted by the coupled theory and with the theory of generalized thermoelasticity with
two relaxation times in the absence of rotation and for different values of time.
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1. Introduction

The theory of thermo–elasticity with thermal relaxation times was proposed by Lord
and Shulman [1] and Green and Lindsay [2]. These theories have been developed by
introducing one or two relaxation times in the thermoelastic theory, with an aim to
eliminate the paradox of infinite speed for the propagation of thermal signals. The
Lord and Shulman model itself is based on a modified Fourier’s law, but the Green
and Lindsay model admits second sound even without violating classical Fourier’
law. The two theories are structurally different from one another, and one cannot
be obtained as a particular case of the other. Various problems characterizing these
theories have been investigated, and reveal some interesting phenomena. Brief
reviews of this topic have been reported by Chandrasekharaiah [3], [4]. The theory
of generalized thermoelasticity with two relaxation times was first introduced by
Müller [5]. Green and Laws [6] then introduced a more explicit version. Dhaliwal
and Rokne [7] solved the thermal shock problem.

The theory of thermovisco–elasticity and the solutions of some boundary value
problems of thermovisco–elasticity were solved by Ilioushin and Pobedria [8]. Droz-



106 Othman, M.I.A

dov [9] derived a constitutive model in thermovisco–elasticity which accounts for
changes in elastic moduli and relaxation times. Existence of a solution for a non-
linear system in thermo–viscoelasticity is proved by Blanchard [10]. Results of
important experiments determining the mechanical properties of viscoelastic mate-
rials were involved in Koltunov [11]. Ezzat and Othman [12] have established the
model of two–dimensional equations of generalized magneto–thermoelasticity with
two relaxation times in a medium of perfect conductivity.

Using the Green and Lindsay theory, Agarwal [13] studied thermo–elastic plane
wave propagation in an infinite non–rotating medium. In a paper by Schoenberg and
Censor [14] the propagation of plane harmonic waves in a rotating elastic medium
without a thermal field has been studied. Roy Choudhuri [15] has studied the
propagation of harmonically time–dependent thermo–elastic plane waves of assigned
frequency in finite rotating media. Othman [16] has studied the effect of rotation on
plane waves in generalized thermo–elasticity with two relaxation times. Ezzat et al.
[17] introduced the state space approach to two–dimensional problems of generalized
thermo—viscoelasticity with two relaxation times. Othman et al. [18] applied the
normal mode analysis to a two–dimensional generalized thermo–viscoelastic plane
wave with two relaxation times without rotation. Recently Othman [19] studied the
problem of two–dimensional electro–magneto–thermo–viscoelasticity based on the
Lord–Shulman theory for a thermally and electrically conducting half–space solid
whose surface is subjected to a thermal shock.

In this paper, the normal mode analysis is used to study two–dimensional prob-
lem of thermo–viscoelasticity with two relaxation times under the effect of rotation
in the context of linearized theory of Green and Lindsay. The exact expressions for
temperature, displacement and stress components are obtained.

2. Formulation of the problem

Consider a slowly moving isotropic and homogeneous visco–elastic medium. The
medium is rotating uniformly with an angular velocity Ω = Ωn, where n is a unit
vector representing the direction of the axis of rotation. We shall study only the
simplest case of the two–dimensional problem. We assume that all quantities will
be functions of the time variable t and of the coordinates x and y. Thus the waves
are propagated only in the xy–plane. Thus, the displacement vector will have the
components u = u(x, y, t), v = v(x, y, t) and w = 0.

The generalized equation of heat conduction in the context of Green and Lind-
say’s theory in the absence of heat sources is given by

kT ,i i=ρCE(Ṫ + τoT̈ )+γT oė (1)

The constitutive equations are given by Othman et al. [18]

Sij =

t∫

0

R(t− τ)
∂ eij(x, τ)
∂τ

dτ = R̂(eij) (2)
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with the assumptions

σij(x, y, t) =
∂σij(x, y, t)

∂t
= 0

εij(x, y, t) =
∂εij(x, y, t)

∂t
= 0 (3)

−∞ < t < 0

where,

Sij = σij − σkk

3
δij eij = εij − e

3
δij e = εkk σij = σji (4)

and R(t) is the relaxation function given by

R(t) = 2µ[1−A

t∫

0

e−βttα
∗−1dt] R(0) = 2µ (5)

where,
0 < α∗ < 1 A > 0 β > 0

Assuming that the relaxation effects of the volume properties of the material
are ignored, one can write for the generalized theory of thermo–viscoelasticity with
two relaxation times

σ = K[e− 3 αT (T − To + νṪ )] (6)

where,
σ =

σkk

3
Substituting from (6) into (4) we obtain

σij = R̂(εij −
e

3
δij) + Keδij − γ(T − To + νṪ )δij (7)

The equation of motion, in the absence of body forces, is

σij,j = ρ [üi + {Ω ∧ (Ω ∧ u)}i + (2Ω ∧ u̇)i] (8)

Combining Eqs. (7) and (8), we obtain the displacement equation of motion in the
rotating frame of reference

ρ [ü + {Ω ∧ (Ω ∧ u)}+ (2Ω ∧ u̇)] =

R̂(
1
2
∇2ui +

1
6
e,i) + Ke,i − γ(T − To + νṪ ),iδij (9)

The governing equation can be put into a more convenient form by using the fol-
lowing non–dimensional variables

x′ = coηox y′ = coηoy u′ = coηou v′ = coηov t′ = c2
oηot

ν′= c2
oηoν τ ′o= c2

oηoτo θ =
γ(T − To)

ρc2
o

σ′ij =
σij

K
R̂′ =

2 R̂

3K
(10)
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where
c2
o =

K

ρ
ηo =

ρCE

k
i = 1, 2

In terms of these non–dimensional variables, Eqs (9), (1) and (7) taking the
following form (dropping the dashed for convenience).

∂2u

∂t2
− Ω2u− 2Ω

∂v

∂t
=

R̂

(
∂2u

∂x2
+

3
4

∂2u

∂y2
+

1
4

∂2v

∂x ∂ y

)
+

∂e

∂x
−

(
1 + ν

∂

∂ t

)
∂θ

∂x
(11)

∂2v

∂t2
− Ω2v + 2Ω

∂u

∂t
=

R̂

(
∂2v

∂y2
+

3
4

∂2v

∂x2
+

1
4

∂2u

∂x ∂y

)
+

∂ e

∂y
−

(
1 + ν

∂

∂t

)
∂θ

∂y
(12)

∇2θ =
(

∂

∂t
+ τo

∂2

∂t2

)
θ + ε1

∂e

∂t
(13)

σxx = R̂

(
∂u

∂x
− 1

2
∂v

∂y
) + e− (1 + ν

∂

∂t

)
θ (14)

σy y = R̂

(
∂v

∂y
− 1

2
∂u

∂x

)
+ e−

(
1 + ν

∂

∂t

)
θ (15)

σxy =
3
4
R̂

(
∂u

∂y
+

∂v

∂x

)
(16)

σz z = −1
2
R̂(e) + e−

(
1 + ν

∂

∂t

)
θ (17)

Differentiating Eq. (11) with respect to x and Eq. (12) with respect to y, then
adding, we arrive at

[
(1 + R̂)∇2 − ∂2

∂t2
+ Ω2

]
e = (1 + ν

∂

∂t
)∇2θ + 2Ω

∂ζ

∂t
(18)

Differentiating Eq. (11) with respect to y and Eq. (12) with respect to x, then
subtracting, we arrive at

(
3
4
R̂∇2 − ∂2

∂t2
+ Ω2

)
ζ = −2Ω

∂e

∂t
(19)

where

e =
∂u

∂x
+

∂v

∂y
ζ =

∂u

∂y
− ∂v

∂x
∇2 =

∂2

∂x2
+

∂2

∂y2

is the Laplace’s operator in a two–dimensional space.

3. Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form

[u,v, e, ζ, θ,σi j ](x, y, t) =
[u∗(y), v∗(y), e∗(y), ζ

∗(y), θ
∗(y), σ∗i j(y)]exp(ω t + iax) (20)
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where ω is the (complex) time constant, i is an imaginary unit and a is the wave
number in the x–direction and u∗(y), v∗(y), e

∗(y), ζ
∗(y), θ

∗(y) and σ∗i j(y) are the
amplitude of the functions.

R̂(f(x, y, t)) =

t∫

0

R(t− τ)
∂f(x, y, t)
∂τ

dτ = ωR̄(ω )f∗(y) exp(ωt + i ax) (21)

for any function f(x, y, t) of class C(1), which satisfies the conditions:

f(x, y, t) =
∂f(x, y, t)

∂t
= 0 (−∞ < t < 0) (22)

where,

R̄(ω) =

∞∫

0

e− ω tR(t)dt (23)

Using Eqs. (20) we can obtain the following equations from Eqs (18), (19) and (13)
Respectively

[
D2 − a2 − α(ω2 + Ω2)

]
e∗(y) = α(1 + νω)(D2 − a2)θ∗(y) + 2Ωωαζ∗(y) (24)

[D2 − a2 − αo(ω2 − Ω2)]ζ∗(y) = −2αoωΩe∗(y) (25)[
D2 − a2 − ω(1 + τoω)

]
θ∗(y) = εoωe∗(y) (26)

where
D =

∂

∂y
α =

1
1 + ωR̄

αo =
4

3ωR̄
(27)

Eliminating θ∗(y) and ζ∗(y) between Eqs (24)–(26) we get the following sixth–order
partial differential equation satisfied by e∗(y)

(D6 − a1D
4+a2D

2 − a3)e∗(y) = 0 (28)

where

a1= 3a2 + b1 (29)
a2=3a4+2b1a

2 + b2 (30)
a3=a6 + b1a

4+b2a
2 + b3 (31)

b1 = ω2 + ω3(α + αo) + αε1ω1 (32)
b2 = ω2ω3(α + αo) + ααo(ω2

3 + ε1ω1ω3 + 4Ω2ω2) (33)
b3 = ααoω2(ω2

3 + 4Ω2ω2) (34)
ω1 = ω(1 + νω), ω2 = ω(1 + τoω), ω3 = ω2 − Ω2 (35)

In a similar manner we arrive at

(D6 − a1D
4+a2D

2 − a3)ζ∗(y) = 0 (36)

(D6 − a1D
4+a2D

2 − a3)θ∗(y) = 0 (37)
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Eq. (28) can be factorized as

(D2 − k2
1)(D

2 − k2
2)(D

2 − k2
3)e

∗(y) = 0 (38)

Where, k2
j (j= 1, 2, 3) are the roots of the following characteristic equation

k6 − a1k
4+a2k

2 − a3= 0 (39)

The solution of Eq. (38) has the form

e∗(y) =
3∑

j=1

e∗j (y) (40)

Where e∗j (y) is the solution of the following equation

(D2 − k2
j )e∗j (y) = 0, j = 1, 2, 3 (41)

The solution of Eq. (41) which is bounded as y →∞, is given by

e∗j (y) = Mj(a, ω)e− kjy (42)

Substituting from Eq. (42) into Eq. (40), e∗(x) has the form

e∗(y) =
3∑

j=1

Mj(a, ω)e− kj y (43)

In a similar manner, we get

θ∗(y) =
3∑

j=1

M ′
j(a, ω)e− kj y (44)

ζ∗(y) =
3∑

j=1

M ′′
j(a, ω)e− kj y (45)

where Mj(a, ω), M ′
j(a, ω) and M ′′

j(a, ω) are some parameters depending on a
and ω.

Substituting from Eqs. (43)–(45) into Eqs. (25) and (26) we get the following
relations

M ′
j(a, ω) =

ε1ω

[k2
j − a2 − ω2]

Mj , j = 1, 2, 3. (46)

M ′′
j(a, ω) =

−2Ωαoω

[k2
j − a2 − αoω3]

Mj , j = 1, 2, 3. (47)

Substituting from Eqs. (46) and (47) into Eqs. (44) and (45) respectively, we obtain

θ∗(y) =
3∑

j=1

ε1ω

[k2
j − a2 − ω2]

Mje
−kj y (48)
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ζ∗(y) =
3∑

j=1

−2Ωαoω

[k2
j − a2 − αoω3]

Mje
−kj y (49)

since
e∗ = iau∗ + Dv∗ (50)

ζ∗ = Du∗ − iav∗ (51)

In order to obtain the displacement components, from Eqs. (43), (45), (48) and
(49) we can obtain

u∗(y) = Ceay +
3∑

j =1

1
(k2

j − a2)

[
2Ωαoωkj

(k2
j − a2 − αoω3)

+ ia

]
Mje

−kjy (52)

v∗(y) = −iCeay −
3∑

j =1

1
(k2

j − a2)

[
kj − 2iaΩαoω

(k2
j − a2 − αoω3)

]
Mje

−kjy (53)

where C = 0 to make Eqs. (52) and (53) are bounded as y →∞.
In terms of Eq. (20), substituting from Eqs. (43), (48), (49), (52) and (53) into

Eqs. (14)–(17), respectively, we obtain the stress components in the form

σ∗xx(y) =
3∑

j=1

{αj 3 + iβj1}Mje
−kjy (54)

σ∗yy(y) =
3∑

j =1

{α j1 − iβj1}Mje
−kjy (55)

σ∗xy(y) = −3ωR̄

2

3∑

j =1

{αj2 + iβj2}Mje
− kjy (56)

σ∗zz(y) =
3∑

j =1

βj 3Mje
−kjy (57)

αj3 = 1− ε1ω1

(k2
j − a2 − ω2)

− (k2
j + 2a2)ωR̄

2(k2
j − a2)

, j = 1, 2, 3 (58)

αj 1 = 1− ε1ω1

(k2
j − a2 − ω2)

+
(2k2

j + a2)ωR̄

2(k2
j − a2)

, j = 1, 2, 3 (59)

αj2 =
Ωαoω(k2

j + a2)

(k2
j − a2)(k2

j − a2 − αoω3)
, j = 1, 2, 3 (60)

βj1 =
3aΩαokjω

2R̄

(k2
j − a2)(k2

j − a2 − αoω3)
, j = 1, 2, 3 (61)

βj2 =
akj

(k2
j − a2)

, j = 1, 2, 3 (62)

β j3 = (1− ωR̄

2
)− ε1ω1

[k2
j − a2 − ω2]

, j = 1, 2, 3 (63)
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The normal mode analysis is, in fact, to look for the solution in Fourier transformed
domain. This assumes that all the field quantities are sufficiently smooth on the
real line provided that the normal mode analysis of these functions exists.

In order to determine the parameters Mj(a, ω), j = 1, 2, 3 we need to consider
the following case:

A plate subjected to time–dependent heat sources on both sides Othman et al.
[18].

We shall consider a homogeneous isotropic thermo–viscoelastic infinite conduc-
tive thick flat plate of a finite thickness 2L occupying the region G∗ given by:

G∗ = {(x, y, z) x, y, z ∈ R, − L ≤ y ≤ L}
with the middle surface of the plate coinciding with the plane y = 0.

The boundary conditions of the problem are taken as:

• The normal and tangential stress components are zero on both surfaces of the
plate,

thus
σyy(x, y, t) = 0 on y = ±L (64)

σxy(x, y, t) = 0 on y = ±L (65)

• The thermal boundary condition

qn + hoθ = r(x, t) on y = ±L (66)

where qn denotes the normal component of the heat flux vector ho is the Biot’s
number and r (x, t) represents the intensity of the applied heat sources.

Now we make use of the generalized Fourier’ law of heat conduction in the non–
dimensional form, namely,

qn + τo
∂qn

∂t
= −∂θ

∂y
(67)

by using the normal mode we get

q∗n = − 1
(1 + τoω)

∂θ∗

∂y
(68)

Using Eqs. (66) and (68) we arrive at

ω2hoθ
∗(y)− ωDθ∗(y) = ω2r

∗(a, ω) (69)

Substituting from Eq. (48) into Eq. (69), one obtains

g1[ω2hocosh(k1L)− ωk1sinh(k1L)]M1 + g2[ω2hocosh(k2L)− ωk2sinh(k2L)]M2

+g3[ω2hocosh(k3L)− ωk3sinh(k3L)]M3 = ω2r
∗(a, ω) (70)

Due to symmetry with respect to y–axis, Eqs. (55) and (56) together with Eqs.
(64) and (65) respectively, we get

L1M1cosh(k1L) + L2M2cosh(k2L) + L3M3cosh(k3L) = 0 (71)
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S1M1sinh(k1L) + S2M2sinh(k2L) + S3M3sinh(k3L) = 0 (72)

where
gj =

ε1ω

[k2
j − a2 − ω2]

, j = 1, 2, 3 (73)

Lj = αj1 − iβj1, j = 1, 2, 3 (74)

Sj = αj 2 + iβj 2, j = 1, 2, 3 (75)

Eqs (70)–(72) can be solved for the three unknowns M1, M2 and M3 one obtains

M1 =
ω2r

∗(a, ω)[(λ1∆1 + λ2∆2) + i( λ2∆1 − λ1∆2)]
(∆2

1 + ∆2
2)cosh (k1L)

(76)

M2 =
ω2r

∗(a, ω)[(λ3∆1 + λ4∆2) + i(λ4∆1 − λ3∆2)]
(∆2

1 + ∆2
2)cosh (k2L)

(77)

M3 =
ω2r

∗(a, ω)[(λ5∆1 + λ6∆2) + i(λ6∆1 − λ5∆2)]
(∆2

1 + ∆2
2)cosh (k3L)

(78)

where

λ1 = (α21α32 + β21β32)tanh(k3L)− (α31α22 + β31β22)tanh(k2L) (79)

λ2 = (α21β32 − α32β21)tanh(k3L)− (α31β22 − α22β31)tanh(k2L) (80)

λ3 = (α31α12 + β31β12)tanh(k1L)− (α11α32 + β11β32)tanh(k3L) (81)

λ4 = (α31β12 − α12β31)tanh(k1L)− (α11β32 − α32β11)tanh(k3L) (82)

λ5 = (α11α22 + β11β22)tanh(k2L)− (α21α12 + β21β12)tanh(k1L) (83)

λ6 = (α11β22 − α22β11)tanh(k2L)− (α21β12 − α12β21)tanh(k1L) (84)

∆1 = g1λ1[ω2ho − ωk1tanh(k1L)] + g2λ3[ω2ho − ωk2tanh(k2L)]

+g3λ5[ω2ho − ωk3tanh(k3L)] (85)

∆2 = g1λ2[ω2ho − ωk1tanh(k1L)] + g2λ4[ω2ho − ωk2tanh(k2L)]

+g3λ6[ω2ho − ωk3tanh(k3L)]. (86)

4. Numerical results

As a numerical example we have considered acrylic plastic material which has a
wide application in industry and medicine. Taking α∗ = 0.5 in Eq. (5) and using
Eq. (23), we get

R̄(ω) =
4µ

3K

[
1
ωo

− A
√

π

ωo

√
ωo + β

]
(87)

For this plastic the Poisson’s ratio can be taken equal to 0.25 which leads to
4µ
3K = 0.8. The numerical constants of the problem were taken as a = 1.2, β = 0.005,

A = 0.106, ε1 = 0.0145, τo = 0.01, ν = 0.03, ho = 1000 and r∗ = 1000
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Figure 1 Temperature distribution θ on the surface at t = 0.1.
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Figure 2 Temperature distribution θ on the surface at t = 1.
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Figure 3 Horizontal displacement distribution u on the surface at t = 0.1.
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Figure 4 Horizontal displacement distribution u on the surface at t = 1.
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Figure 5 The distribution of stress component σxx on the surface at t = 0.1.
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Figure 6 The distribution of stress component σxx on the surface at t = 1.
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Figure 7 Temperature distribution θ on the middle plane at Ω = 0and0.5.



Effect of Rotation in Case of 2–D... 121

-0,024

-0,020

-0,016

-0,012

-0,008

-0,004

0,000

0,004

0,008

0,012

0,016

0,020

0,024

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5

Generalized G-L

Coupled

Figure 8 Horizontal displacement distribution u on the middle plane at t = 0.1.
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Figure 9 Horizontal displacement distribution u on the middle plane at t = 1.
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Figure 10 The distribution of stress component σxx on the middle plane at t = 0.1.
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Figure 11 The distribution of stress component σx x on the middle plane at t = 1.
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The real part of the functions θ (x, y, t), u (x, y, t) and σxx (x, y, t) on the plane
y = 2 and y = 0 respectively at t = 0.1 and t = 1 for two different values of
Ω = 0 and Ω = 0.5, where L = 4. The results are shown in Figs 1–11. Figs 1–
11 show the four curves predicted by different theories of thermoelasticity. In all
these figures, the solid lines represent the solution obtained by using the coupled
theory (ν = τo = 0)and the dashed lines represent the solution obtained by using
the Green–Lindsay theory (τo = 0.01, ν = 0.03). We notice that the representation
of the field quantities when the relaxation time appears in the equation of motion
and heat equation are distinctly different from those when the relaxation times are
not mentioned in that equation. This is due to the fact that thermal waves in
the Fourier theory of heat equation travel with an infinite speed of propagation as
opposed to finite speed in the non–Fourier case. This shows the difference between
the coupled and generalized theories of thermoelasticity.

Figs 1–6 show the effect of different rise time and rotation on the temperature
θ , horizontal component of displacement u and stress component σxx on the sur-
face. But Figs 7–11 show the effect of rise time and rotation for these functions
on the middle plane. Due to the symmetries of geometrical shape and thermal
boundary condition, the displacement component v (x, y, t) and the component of
stress σxy (x, y, t) are zero when y = 0. On the surface Figs 1 and 2 show that
the amplitude of the temperature increases with increasing time and rotation, but
on the middle plane as in Fig. 7 for different values of time the rotation has no
effect. Figs 3–6 and 8–11 show that the amplitude of the horizontal component of
displacement and the component of stress increases with increasing time and de-
creasing with increasing rotation. Also, on the middle plane the amplitude of the
horizontal component of displacement and the component of stress are much less
than that on the surface.

5. Concluding remarks

We obtain the following conclusions from the above analysis:

1. On the surface and the middle plane the time has an increasing effect on all
the field quantities studied.

2. On the surface the rotation has an increasing effect on the thermal propagation
but on the middle plane it has no effect.

3. On the surface and the middle plane the rotation has a decreasing effect on
the horizontal component of displacement and the stress component.

4. The amplitude of the horizontal component of displacement and the stress
component on the middle plane are much less than that on the surface.
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Nomenclature

λ, µ Lamé’s constants
ρ density
CE specific heat at constant strain
t time
T absolute temperature
To reference temperature chosen so that

∣∣∣T−T o

To

∣∣∣ >> 1
θ temperature increment
σij components of stress tensor
εij components of strain tensor
Sij components of stress deviator tensor
e dilatation
ui components of displacement vector
R(t) relaxation function
k thermal conductivity
A, β, α∗ experimental constants
K = λ + 2

3µ bulk modulus
τo, ν two relaxation times
αT coefficient of linear thermal expansion
γ = 3KαT

ε = γ/ρCE coupling parameter
δo = 3To αT non–dimensional number




