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The propagation of electromagneto–thermoelastic disturbances produced by a thermal
shock in a finitely conducting elastic half–space is investigated. The formulation is ap-
plied to two–dimensional equations of generalized thermoelasticity Green and Lindsay’s
theory with two relaxation times. There acts an initial magnetic field parallel to the
plane boundary of the half–space. The medium deformed because of thermal shock and
due to the application of the magnetic field, there result an induced magnetic and an
induced electric field in the medium. The Maxwell’s equations are formulated and the
electromagneto–thermoelastic coupled governing equations are established. The normal
mode analysis is used to obtain the exact expressions for the considered variables. The
distributions of the considered variables are represented graphically for different values
of times. From the distributions, it can be found the wave type heat propagation in the
medium. This indicates that the generalized heat conduction mechanism is completely
different from the classic Fourier’s in essence. In generalized thermoelasticity theory heat
propagates as a wave with finite velocity instead of infinite velocity in medium.

Keywords: Generalized electro–magneto–thermoelasticity, thermal shock problem, finite
conductivity, normal mode analysis, two relaxation times

1. Introduction

Investigation of the interaction between magnetic field and stress and strain in a
thermoelastic solids is very important due to its many applications in the field
of geophysics, plasma physics and related topics. Especially in nuclear fields, the
extremely high temperature gradients, as well as the magnetic fields originating
inside nuclear reactors, influence their design and operations.

In recent years considerable interest has been shown in the study of plane
thermo–elastic and magneto–thermoelastic wave propagation in a medium. The
classical theory of thermoelasticity is base on Fourier’s law of heat conduction which
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predicts an infinite speed of propagation of heat. This is physically absurd and many
new theories have been proposed to eliminate this absurdity. Lord and Shulman [1]
employed a modified version of the Fourier’s law and deduced a theory of thermo-
elasticity known as the generalized theory of thermoelasticity. The Lord–Shulman’s
theory with a thermal relaxation time has been used by several authors including
Puri [2] and Nayfeh and Nemat–Nasser [3] to study plane thermoelastic waves in
an infinite media. Othman [4] construct the model of generalized thermoelasticity
in an isotropic elastic medium under the dependence of the modulus of elasticity on
the reference temperature with one relaxation time. Surface waves have also studied
by Agarwal [5] in the generalized thermoelasticity. Electro–magneto–thermoelastic
plane waves have also been studied by Nayfeh and Nemat–Nasser [6].

Green and Lindsay [7] have been presented a theory of thermoelasticity with cer-
tain special features that contrast with the previous theory having a thermal relax-
ation time. In this theory Fourier’s law of heat conduction is unchanged whereas the
classical energy equation and the stress–strain–temperature relations are modified.
Two constitutive constants having the dimensions of time appear in the governing
equations in place of one relaxation time in the Lord–Shulman’ theory. Agarwal
[8], [9] studied respectively thermoelastic and magneto–thermoelastic plane wave
propagation in an infinite medium. Othman [10] considered a problem of plane
wave propagation in a rotating medium in generalized thermoelasticity with two
relaxation times.

A comprehensive review of the earlier contributions to the subject can be found
in [11]. Among the authors who considered the generalized magneto–thermoelastic
equations are Roy Choudhuri [12] extended these results to rotating media. Ezzat
and Othman [13] applied the normal mode analysis to a problem of two–dimensional
electro–magneto–thermoelastic plane waves with two relaxation times in a medium
of perfect conductivity, and they surveyed a electro–magneto–thermoelastic prob-
lem by state–space approach in [14]. Dhaliwal and Rokne have solved a thermal
shock problem in [15]. Recently, Othman [16] studied the propagation of electro–
magneto–thermoelastic disturbances produced by thermal shock problem based on
three theories in a perfectly conducting half–space.

In the present work we shall formulate the normal mode analysis to electro–
magneto–thermoelastic coupled two-dimensional problem of a thermally and finite
conducting half-space solid with two relaxation times subjected to a thermal shock
on its surface. The electro–magneto–thermoelastic coupled governing equations are
established, the normal mode analysis is used to obtain the exact expressions for the
considered variables. The distributions of the considered variables are represented
graphically. From the distributions, it can be found the wave type heat propagation
in the medium.

2. Development of the method

We consider the problem of a thermoelastic half–space (x ≥ 0). A magnetic field
with constant intensity H = (0, 0,Ho) acts parallel to the bounding plane (take as
the direction of the z–axis). The surface of the half–space is subjected at time t = 0
to a thermal shock that is a function of y and t. Thus, all quantities considered will
be functions of the time variable t and of the coordinates x and y.
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The displacement equation of motion is

ρü = (λ + µ)∇(∇u) + µ∇2u + µo(J×H)− γ∇(T + νoṪ ) (1)

Due to the application of initial magnetic field H, there results an induced magnetic
field h and an induced electric field E. The simplified linear equations of electro-
dynamics of slowly moving medium for a homogeneous, thermally and electrically
conducting elastic solid are [17],

curl h = J+Ḋ (2)
curl E = −Ḃ (3)
div B = 0 div D = ρe (4)

B = µ0(H + h) D = ε0E (5)

where, B and D are the magnetic and electric induction vectors [13]. According to
Ohm’s law, we can obtain

J = σo(E + µou̇×H) (6)

where u̇ is the partial velocity of the medium, and the small effect of temperature
gradient on J is ignored. In the absence of the body force and inner heat source,
the generalized electromagneto–thermoelastic governing differential equations in the
context of Green and Lindsay’s theory are

σij = 2µeij + λekkδij − γ(T − To + νoṪ ) (7)

the heat conduction equation

kT ,ii= ρCE(Ṫ + τoT̈ )+γT oui,i (8)

and strain-displacement relations

eij =
1
2
(ui,j+uj,i) (9)

e = ui,i+uj,j (10)

In the above equations, a comma followed by a suffix denotes material derivative
and a superposed dot denotes the derivative with respect to time, i, j = x, y.

The displacement components have the following form

ux=u(x, y, t), uy=v(x, y, t), uz=0 (11)

From Eqs (9) and (11), we obtain the strain components

ex x=
∂ u

∂ x
, ey y=

∂ v

∂ y
, exy=

1
2

(
∂ u

∂ y
+

∂ v

∂ x
), exz= ey z = ez z = 0 (12)

From Eqs (7) and (12), the stress components are given by

σxx= ( λ + 2 µ )u,x+ λv,y − γ (T − To + νoṪ ) (13)
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σy y = ( λ + 2 µ )v,y+ λu,x − γ ( T − To + νoṪ ) (14)
σxy = µ (u,y + v,x ) (15)

The components of the magnetic intensity vector in the medium are

Hx= 0 , Hy= 0 , Hz= Ho + h(x, y, t ) (16)

The electric intensity vector is normal to both the magnetic intensity and the dis-
placement vectors. Thus, it has the components

Ex= E1 , Ey= E2 , Ez= 0 (17)

The current density vector J be parallel to E, thus

Jx= J1 , Jy= J2 , Jz= 0 (18)

Ohm’s law (6) after linearization gives

J1= σo(E1 + µo Ho
∂ v

∂ t
) , J2 = σo(E2 − µo Ho

∂ u

∂ t
) (19)

Eqs (2), (5) and (19) give the two equations

∂ h

∂ y
= σo(E1 + µo Ho

∂ v

∂ t
) + εo

∂ E1

∂ t
(20)

∂ h

∂ x
= −σo(E2 − µo Ho

∂ u

∂ t
) − εo

∂ E2

∂ t
(21)

From Eqs (3), (5) we can get one–vanishing component, namely

∂ E1

∂ y
− ∂ E2

∂ x
= µo

∂ h

∂ t
(22)

From Eqs (16) and (19), we obtain

(J×H)x = µo σoHo

(
E2 − µo Ho

∂ u

∂ t

)
(23)

(J×H)y = −µo σoHo

(
E1 + µo Ho

∂ v

∂ t

)
(24)

(J×H)z = 0 (25)

From Eqs (1) and (23)–(25), we get

(λ + µ)
∂e

∂x
+ µ∇2u− γ

(
1 + νo

∂

∂t

)
∂T

∂x
+µoσoHo

(
E2 − µoHo

∂u

∂t

)
= ρ

∂2u

∂t2
(26)

(λ + µ)
∂e

∂y
+ µ∇2v − γ

(
1 + νo

∂

∂t

)
∂T

∂y
− µoσoHo

(
E1 + µoHo

∂v

∂t

)
= ρ

∂2v

∂t2
(27)
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For convenience, the following non–dimensional variables are used:

x′ = c1η x, y′ = c1η y, u′ = c1η u, v′ = c1η v,

t′ = c2
1η t, ν′o= c2

1η νo, τ ′o= c2
1η τo, θ =

γ (T − To)
λ + 2 µ

(28)

σ′i j =
σi j

µ
, h′ =

η h

σoµoHo
, E′

i =
η Ei

σoµ2
oHoc1

, i = 1, 2

In terms of the non–dimensional quantities defined in Eq. (28), the above governing
equations reduce to (dropping the dashed for convenience)

( β2 − 1 ) e,x +∇2u− β2

(
1 + νo

∂

∂ t

)
θ,x

+ β2α β1( β1E2 − u,t) = β2u,tt (29)

( β2 − 1 ) e,y +∇2v − β2

(
1 + νo

∂

∂ t

)
θ,y

−β2α β1(β1E1 + v,t) = β2v,tt (30)
∇2θ = ( θ,t + τo θ,tt ) + ε1 e,t (31)
∂ h

∂ y
= β1E1 + ε2

∂ E1

∂ t
+

∂ v

∂ t
(32)

∂ h

∂ x
= − β1E2 − ε2

∂ E2

∂ t
+

∂ u

∂ t
(33)

∂ E1

∂ y
− ∂ E2

∂ x
=

∂ h

∂ t
(34)

The constitutive equations reduce to

σxx = ( β2 − 2 ) e + 2 u,x − β2

(
1 + νo

∂

∂ t

)
θ (35)

σy y = ( β2 − 2 ) e + 2 v,y − β2

(
1 + νo

∂

∂ t

)
θ (36)

σxy = u,y + v,x (37)

Differentiating Eq.(29) with respect to x, and Eq. (30) with respect to y, then
adding, we obtain

(
∇2 − β1α

∂

∂ t
− ∂2

∂ t2

)
e −

(
1 + νo

∂

∂ t

)
∇2θ − β2

1 α
∂ h

∂ t
= 0 (38)

Differentiating Eq.(32) with respect to y, and Eq. (33) with respect to x, then
adding, we obtain

(
∇2 − β1

∂

∂ t
− ε2

∂2

∂ t2

)
h =

∂ e

∂ t
(39)
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3. Normal Mode Analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form

[u, v, e, θ, h, Ei, σij ] (x, y, t)

= [u∗(x), v∗(x), e∗(x), θ∗(x), h∗(x), E∗
i (x), σ∗ij(x)] exp(ω t + i a y) (40)

where ω is the complex time constant and a is the wave number in the y–direction.
Using Eq. (40), Eqs. (31), (38) and (39) take the form

(D2 − a2 − ω − τoω
2)θ∗(x) = ε1ωe∗(x) (41)

(D2 − a2 − β1αω − ω2)e∗(x)−
(

1 + νo
∂

∂t

)
(D2 − a2)θ∗(x)

−β2
1αωh∗(x) = 0 (42)

(D2 − a2 − β1ω − ε2ω
2)h∗(x) = ω e∗(x) (43)

where D = ∂
∂ x

Eliminating θ∗(x) and h∗(x) between Eqs. (41), (42) and (43), we obtain the
following sixth-order partial differential equation satisfied by e∗(x)

(D6 −AD4 + B D2 − C ) e∗(x) = 0 (44)

where

A = 3 a2 + b1 (45)
B = 3 a4 + 2 a2b1 + b2 (46)
C = a6 + a4b1 + a2b2 + b3 (47)
b1 = ω [ω ( ε1νo + τo + ε2 + 1 ) + ε1 + α β1 + β1 + 1 ] (48)
b2 = ω2

{
ω2 [ τo ( ε2 + 1 ) + ε2 + ε1ε2νo]

+ω [ ε1ε2 + α β1( τo + ε2) + β1( τo + 1 ) + ε2+1 + ε1β1νo] (49)
+ β1( ε1 + α + 2 β1α + 1 )}

b3 = ω4( 1 + τo ω ) [ β1 + ε2(ω + α β1) ] (50)

In a similar manner we arrive at

(D6 −AD4 + B D2 − C ) θ∗(x) = 0 (51)
(D6 −AD4 + B D2 − C )h∗(x) = 0 (52)

Eq. (44) can be factorized as

( D2 − k2
1 ) ( D2 − k2

2 ) ( D2 − k2
3 ) e∗(x) = 0 (53)

where k2
i ( i = 1, 2, 3) is the root of the following characteristic equation

k6 −Ak4 + B k2 − C = 0 (54)
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The solution of Eq. (53) has the form

e∗(x) =
3∑

i=1

e∗i (x). (55)

where e∗i (x) is the solution of the equation

(D2 − k2
i ) e∗i (x) = 0 , i = 1, 2, 3 (56)

The solution of Eq. (56) which is bounded as x →∞, is given by

e∗i (x) = Ri(a, ω) e−kix (57)

Thus, e∗(x) has the form

e∗(x) =
3∑

i=1

Ri(a, ω) e−ki x (58)

In a similar manner, we get

θ∗(x) =
3∑

i=1

R′i(a, ω) e−ki x (59)

h∗(x) =
3∑

i=1

R′′i(a, ω) e−ki x (60)

where Ri(a, ω), R′i(a, ω) and R′′i(a, ω) are some parameters depending on aandω.
Substituting from Eqs. (58)-(60) into Eqs. (41) and (43) we get the following

relations

R′i(a, ω) =
ε1ω

[k2
i − a2 − ω ( 1 + τoω )]

Ri, i = 1, 2, 3 (61)

R′′i(a, ω) =
ω

[k2
i − a2 − ω (β1 + ε2 ω )]

Ri, i = 1, 2, 3 (62)

Substituting from Eqs. (61) and (62) into Eqs. (59) and (60) respectively, we obtain

θ∗(x) =
3∑

i=1

ε1ω

[k2
i − a2 − ω ( 1 + τoω )]

Ri e−ki x (63)

h∗(x) =
3∑

i=1

ω

[k2
i − a2 − ω( β1 + ε2 ω )]

Ri e−ki x (64)

In order to obtain the displacement u, in terms of Eq. (40), from Eqs. (29) and
(33), we can obtain the following relations

(D2 − a2 − β2ω2 − β2α β1 ω )u∗(x) = β2(1 + νoω)D θ∗

− β2 α β2
1 E∗

2 (x)− ( β2 − 1 ) D e∗ (65)

E∗
2 (x) =

1
(β1 + ε2ω )

[ ω u∗ −D h∗] (66)
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Eliminating E∗
2 (x) between Eqs. (65) and (66) and using Eqs (58), (63) and (64)

we
get the following partial differential equation satisfied by u∗(x)

(D2 −m2)u∗(x) = −
3∑

i=1

{
1 + β2

[
ε1 ω (1 + νoω)

[k2
i − a2 − ω (1 + τoω)]

+
β2

1 α ω

(β1 + ε2 ω ) [ k2
i − a2 − ω ( β1 + ε2 ω ) ]

− 1
] }

ki Ri e−ki x (67)

where

m2 = a2 + β2ω2 +
β2 ω2β1 ε2α

β1 + ε2 ω
(68)

In order to simplify the right–hand side of Eq. (67) we substitute from Eqs. (58),
(63) and (64) into Eq. (42), to get

ε1 ω (1 + νoω)
[k2

i − a2 − ω (1 + τoω)]
=

k2
i − a2 − ω(α β1 + ω)

(k2
i − a2 )

− β2
1 α ω2

( k2
i − a2 ) [ k2

i − a2 − ω (β1 + ε2 ω ) ]
(69)

Using Eq. (69), Eq. (67) reduce to

(D2 −m2)u∗(x) = −
3∑

i=1

[
1− β2 ω2(β1 + ε2 ω + ε2 β1α )

(k2
i − a2) ( β1 + ε2 ω )

]
kiRie

−kix (70)

The solution of Eq. (70), bounded as x →∞, is given by

u∗(x) = G a2e−mx −
3∑

i=1

[
kiRi

(k2
i − a2)

]
e−kix (71)

where G = G(a, ω) is some parameter depending on a and ω.
In terms of Eq. (40), from Eq. (10) we can obtain

v∗(x) =
−i

a
( e∗ − ∂ u∗

∂ x
) (72)

Substituting from Eqs. (58) and (71) into the right–hand side of Eq. (72), we get

v∗(x) = −i a

[
mGe−mx −

3∑

i=1

Ri

(k2
i − a2)

e−kix

]
(73)

Substituting from Eqs. (64) and (71) into Eq. (66), we get

E∗
2 (x) =

ω

β1 + ε2ω

[
Ga2 e−mx

+ω (β1 + ε2ω )
3∑

i=1

kiRi

( k2
i − a2) [k2

i − a2 − ω (β1 + ε2ω ) ]
e−kix

]
(74)
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In terms of Eq. (40), from Eq. (32), we obtain

E∗
1 (x) =

1
β1 + ε2ω

( i a h∗ − ω v∗) (75)

Substituting from Eqs. (64) and (73) into Eq. (75), we get

E∗
1 (x) =

i a ω

(β1 + ε2ω)
[
mG e−mx

+ω (β1 + ε2ω )
3∑

i=1

Ri

( k2
i − a2) [k2

i − a2 − ω (β1 + ε2ω ) ]
e−kix

]
(76)

In terms of Eq. (40), substituting from Eqs. (58), (63), (71) and (73) into Eqs.
(35)–(57) respectively, we obtain the stress components in the form

σ∗xx(x) = − 2 mG a2 e−mx +
3∑

i=1

{
2 a2

(k2
i − a2)

+
β2[ k2

i − a2 − ω ( 1 + τo ω )− ε1ω ( 1 + νo ω ) ]
[k2

i − a2 − ω ( 1 + τo ω ) ]

}
Ri e−kix (77)

σ∗yy(x) = 2 mG a2 e−mx −
3∑

i=1

{
2 k2

i

(k2
i − a2)

+ β2

[
1− ε1ω ( 1 + νoω )

[k2
i − a2 − ω ( 1 + τoω ) ]

]}
Ri e−kix (78)

σ∗xy(x) = i a

[
( m2 + a2 ) G e−mx − 2

3∑

i=1

kiRi

(k2
i − a2)

e−kix

]
(79)

We consider the magnetic and electric field intensities in free space. We denote
these by ho, E10 and E20, respectively. These variables satisfy the non–dimensional
field equations

∂ ho

∂ y
= ε2

∂ E10

∂ t
(80)

∂ ho

∂ x
= −ε2

∂ E20

∂ t
(81)

∂ ho

∂ t
=

∂ E10

∂ y
− ∂ E20

∂ x
(82)

Similarly these variables can be decomposed as the following

[ ho, E10, E20 ] =
[
h∗o(x), E∗

10(x), E∗
20(x)

]
exp(ω t + i ay ) (83)

Applying Eq. (83) to Eqs (80)–(82), and solving the resulting equations, we obtain
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the solutions bounded for x < 0 as

h∗o = F (a, ω) enx (84)

E∗
10(x) =

i a

ε2ω
F (a, ω)enx (85)

E∗
20(x) =

−n

ε2ω
F (a, ω)enx (86)

n =
√

a2 + ε2 ω2 (87)

where F (a, ω) is some parameter depending on a and ω.
The normal mode analysis is, in fact, to look for the solution in the Fourier

transformed domain. Assuming that all the relations are sufficiently smooth on the
real line such that the normal mode analysis of these functions exist.

In order to determine the parameters Ri(i = 12, 3), GandF , we need to consider
the boundary conditions at x = 0.We consider two kinds of boundary conditions
respectively, and the details are described as following.

Case 1

1. Thermal boundary condition that the surface of the half-space subjected to a
thermal shock

θ (0, y, t) = f(y, t) (88)

2. Mechanical boundary condition that the surface of the half-space is traction
free

σxx (0, y, t) = σxy (0, y, t) = 0 (89)

3. The transverse components of the electric field intensity are continuous across
the surface of the half–space

E2 (0, y, t) = E20 (0, y, t) (90)

4. The transverse components of the magnetic field intensity are continuous
across the surface of the half-space

h (0, y, t) = h0 (0, y, t) (91)

Substituting from the expressions of considered variables into the above boundary
conditions, we can obtain the following equations satisfied by the parameters

3∑

i=1

ε1ω

[k2
i − a2 − ω (1 + τoω)]

Ri = f∗(a, ω) (92)

−2 m Ga2 +
3∑

i=1

{
2 a2

( k2
i − a2)

+ β2[ 1− ε1ω (1 + νoω)
[k2

i − a2 − ω 1 + τoω)]
]

}
Ri

= 0 (93)
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2
3∑

i=1

kiRi

(k2
i − a2)

− (m2 + a2) G = 0 (94)

Ga2

ω(β1 + ε2ω)
+

nF

ε2 ω3
+

3∑

i=1

kiRi

( k2
i − a2) [k2

i − a2 − ω ( β1 + ε2ω ) ]
= 0 (95)

3∑

i=1

ω Ri

[k2
i − a2 − ω (β1 + ε2ω)]

− F = 0 (96)

Solving Eqs. (92)–(96), we get the parameters Ri (i = 1, 2, 3 ), G and F with the
following form respectively

G =
2

(m2 + a2)

3∑

i=1

ki

(k2
i − a2)

Ri (97)

F =
3∑

i=1

ω

[k2
i − a2 − ω (β1 + ε2ω)]

Ri (98)

R1 =
f∗(a, ω ) [ N2M3 −N3M2 − β2(1 + νoω) ( N2S3 −N3S2) ]

S1(N2M3 −N3M2) + S2(N3M1 −N1M3) + S3(N1M2 −N2M1)
(99)

R2 =
f∗(a, ω ) [ N3M1 −N1M3 − β2(1 + νoω) ( N3S1 −N1S3) ]

S1(N2M3 −N3M2) + S2(N3M1 −N1M3) + S3(N1M2 −N2M1)
(100)

R3 =
f∗(a, ω ) [ N1M2 −N2M1 − β2(1 + νoω) ( N1S2 −N2S1) ]

S1(N2M3 −N3M2) + S2(N3M1 −N1M3) + S3(N1M2 −N2M1)
(101)

where

Si =
ε1ω

[k2
i − a2 − ω (1 + τoω)]

(102)

Mi =
−4 ma2ki

( m2 + a2) ( k2
i − a2)

+
2a2

( k2
i − a2)

+ β2

[
1− ε1ω ( 1 + νoω )

[ k2
i − a2 − ω ( 1 + νoω ) ]

]
(103)

Ni =
1

( k2
i − a2)

{
2 a2ki

ω (m2 + a2)( β1 + ε2 ω)

+
n ( k2

i − a2) + kiε2 ω2

ε2 ω2[ k2
i − a2 − ω (β1 + ε2 ω) ]

}
(104)

Case 2

• Thermal boundary condition that the surface of the half–space subjected to
a thermal shock

θ (0, y, t) = f(y, t) (105)

• Mechanical boundary condition that the surface of the half–space is rigidly
fixed

u(0, y, t) = v (0, y, t) = 0 (106)
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• The transverse components of the electric field intensity are continuous across
the surface of the half–space

E2 (0, y, t) = E20 (0, y, t) (107)

• The transverse components of the magnetic field intensity are continuous
across the surface of the half–space

h (0, y, t) = h0 (0, y, t) (108)

Substituting from the expressions of considered variables into the above boundary
conditions, we can obtain the following equations satisfied by the parameters

3∑

i=1

ε1ω

[k2
i − a2 − ω (1 + τoω)]

Ri = f∗(a, ω) (109)

Ga2 −
3∑

i=1

kiRi

( k2
i − a2)

= 0 (110)

Gm−
3∑

i=1

Ri

( k2
i − a2)

= 0 (111)

Ga2

ω (β1 + ε2ω)
+

nF

ε2 ω3

+
3∑

i=1

kiRi

( k2
i − a2) [k2

i − a2 − ω (β1 + ε2ω ) ]
= 0 (112)

3∑

i=1

ω Ri

[k2
i − a2 − ω (β1 + ε2ω )]

− F = 0 (113)

From Eqs (109)–(113), we get

G =
1
m

3∑

i=1

1
(k2

i − a2)
Ri (114)

F =
3∑

i=1

ω

[k2
i − a2 − ω (β1 + ε2ω)]

Ri (115)

R1 =
f∗(a, ω ) [ g2 L3 − g3 L2 ]

S1( g2 L3 − g3 L2) + S2( g3 L1 − g1 L3) + S3( g1 L2 − g2 L1)
(116)

R2 =
f∗(a, ω ) [ g3 L1 − g1 L3 ]

S1( g2 L3 − g2 L3) + S2( g3 L1 − g1 L3) + S3( g1 L2 − g2 L1)
(117)

R3 =
f∗(a, ω ) [ g1 L2 − g2 L1 ]

S1( g2 L3 − g2 L3) + S2( g3 L1 − g1 L3) + S3( g1 L2 − g2 L1)
(118)
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where,

Li =
a2 −mki

( k2
i − a2)

(119)

gi =
1

( k2
i − a2)

{
a2

mω (β1 + ε2 ω)

+
n ( k2

i − a2) + kiε2 ω2

ε2 ω2[ k2
i − a2 − ω (β1 + ε2 ω)]

}
(120)

4. Numerical Results

The copper material is chosen for numerical evaluations. In the calculation process,
the material constants necessary to be known can be found in [18].

The thermal shock f (y, t) applied on the surface, is taken of the form

f (y, t) = θoH (L− | y | ) exp(− b t ) (121)

where H is the Heaviside unit step function and θo is a constant. This means that
heat is applied on the surface of the half-space on a narrow band of width 2L
surrounding the y-axis to keep it at temperature θo,while the rest of the surface is
kept at zero temperature.

Since we haveω = ωo + i ζ, where i is an imaginary unit, eω t = eωot( cos ζ t +
i sin ζ t) and for small values of time, we can let ω = ωo. The other constant of the
problem are taken as L = 4, θo = 1, b = 1, νo = 0.05, τo = 0.03, ωo = 1, a = 1.2.
Considering the distributions of temperature, displacement, stress, induced mag-
netic field and induced electric field for y = 0 at t = 0.01 and t = 0.3 respectively.
Calculated results of the real part of the non–dimensional temperature, displace-
ment, stress, induced magnetic field and induced electric field are shown in Figs
1–10 respectively. The graph shows the four curves predicted by the different the-
ories of thermo–elasticity. In these figures the solid lines represent the solution for
Green–Lindsay’ theory and the dashed lines represent the solution corresponding
to using the coupled equation of heat conduction ( νo = 0, τo = 0 ). The phe-
nomenon of finite speeds of propagation is manifested in all these figures. The
medium deforms because of thermal shock, and due to the application of the mag-
netic field, there result an induced magnetic field in the medium. This indicates the
electromagneto–thermoelastic coupled effects. Due to the symmetries of geomet-
rical shape and thermal boundary condition, the displacement component v, the
component of stress σxy and the induced electric field component E1 are zero when
y = 0.

5. Concluding remarks

In all figures, it is clear that all the distributions considered have a non-zero value
only a bounded region of space. Outside this region the values vanish identically
and this means that the region has not felt thermal disturbance yet. From the
distributions of temperature, it can be found the wave type heat propagation in the
medium. The heat wave front moves forward with a finite speed in the medium with
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the passage of time. This is not the case for the classical theories of thermo–elasticity
where an infinite speed of propagation is inherent and hence all the considered
functions have a non–zero (although may be very small) value for any point in
the medium. This indicates that the generalized heat conduction mechanism is
completely different from the classic Fourier’s in essence. In generalized thermo–
elasticity theory heat propagates as a wave with finite velocity instead on infinite
velocity in medium.
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Nomenclature

λ, µ Lamé’s constants
ρ density
CE specific heat at constant strain
t time
T absolute temperature
To reference temperature chosen so that

∣∣∣ T−To

To

∣∣∣ << 1
σij components of stress tensor
eij components of strain tensor
ui components of displacement vector
k thermal conductivity
J current density vector
µo magnetic permeability
εo electric permeability
σo electric conductivity
c2
1=( λ + 2 µ ) / ρ

c2 =
√

µ/ρ, velocity of transverse waves
c2 = 1/µoεo sound speed
νo, τo two relaxation times
e cubical dilatation
αt coefficient of linear thermal expansion
γ=(3λ + 2µ)αt

ε1 = γ2 To

ρ CE( λ+2 µ )

α = µoH2
o

λ+2 µ

β1 = σo µo/η
ε2 = c2

1/c2

η = ρ CE/k
β2=(λ + 2 µ)/µ

∇2 = ∂2

∂ x2 + ∂2

∂ y2


