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The propagation of electromagneto–thermoelastic disturbances produced by a thermal
shock in a perfectly conducting elastic half–space when the entire elastic medium is
rotating with a uniform angular velocity is investigated. The problem is in the context of
the Green and Lindsay’s generalized thermoelasticity with two relaxation times. There
acts an initial magnetic field parallel to the plane boundary of the half–space. The
medium deformed because of thermal shock, and due to the application of the magnetic
field. The normal mode analysis is used to obtain the exact expressions for the considered
variables. The distributions of the considered variables are represented graphically. From
the distributions, it can be found the wave type heat propagation in the medium. This
indicates that the generalized heat conduction mechanism is completely different from
the classic Fourier’s in essence. In generalized thermoelasticity theory heat propagates
as a wave with finite velocity instead of infinite velocity in medium. Comparisons are
made with the results predicted by the coupled theory in present and absent rotation.

Keywords: Thermal relaxation times, generalized thermo–elasticity theory, rotation ef-
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1. Introduction

In recent years considerable interest has been shown in the study of plane thermo–
elastic and magneto–thermo–elastic wave propagation in a non–rotating medium.
The classical theory of thermo–elasticity is based on Fourier’s law of heat conduction
which predicts an infinite speed of propagation of heat. This is physically absurd
and many new theories have been proposed to eliminate this absurdity. Lord and
Shulman [1] employed a modified version of the Fourier’s law and deduced a theory
of thermo–elasticity known as the generalized theory of thermo–elasticity. Lord and
Shulman’s theory with a thermal relaxation time has been used by several authors
including Puri [2] and Nayfeh and Nemat–Nasser [3] to study plane thermo–elastic
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waves in non–rotating infinite media. Surface waves have also studied by Agar-
wal [4] in the generalized thermo–elasticity. Ezzat and Othman [5] have studied
the generalized magneto–thermo–elasticity plane waves with thermal relaxation in
a non–rotating medium of perfect conductivity by using the state space approach.
Othman [6], [7] used the normal mode analysis to study two–dimensional prob-
lems of generalized thermo–elasticity with one relaxation time with the modulus
of elasticity dependent on the reference temperature for non-rotating and rotating
medium, respectively. Othman [8] have studied the problem of two–dimensional
electro–magneto–thermovisco–elasticity for a thermally and electrically conducting
half–space solid whose surface is subjected to a thermal shock with one relaxation
time.

Green and Lindsay [9] have presented a theory of thermo–elasticity with certain
special features that contrast with the previous theory having a thermal relaxation
time. In Green and Lindsay’s theory Fourier’s law of heat conduction is unchanged
whereas the classical energy equation and the stress–strain–temperature relations
are modified. Two constitutive constants νo, τo having the dimensions of time ap-
pear in the governing equations in place of one relaxation time τo in Lord–Shulman’s
theory. Using the Green–Lindsay’s theory, Agarwal [10,11] studied respectively
thermo–elastic and magneto–thermo–elastic plane wave propagation in an infinite
non-rotation medium. In a paper by Schoenberg and Censor [12], the propagation
of plane harmonic waves in a rotating elastic medium without a thermal field has
been studied. It was shown there that the rotation causes the elastic medium to be
depressive and anisotropic.

Investigation of the interaction between magnetic field and stress and strain in
a thermoelastic solid is very important due to its many applications in the field
of geophysics, plasma physics and related topics. Especially in nuclear fields, the
extremely high temperatures and temperature gradients, as well as the magnetic
fields originating inside nuclear reactors, influence their design and operations.

Great attention has been devoted to the study of electromagneto–thermoelastic
coupled problems based on the generalized Thermoelastic theories. In the context
of Green and Lindsay’s theory, Roy Choudhuri and Chatterjee Roy [13] considered
a one–dimensional problem of magneto–thermoelastic waves in a finitely conduct-
ing elastic half–space subjected to a thermal shock; Ezzat and Othman [14] ap-
plied the normal mode analysis to a problem of two–dimensional electro–magneto–
thermoelastic plane waves with two relaxation times in a medium of perfect conduc-
tivity, and they surveyed a electro–magneto–thermoelastic problem by state–space
approach in [15]. Dhaliwal and Rokne [16] have solved a thermal shock problem.
Recently Othman [17] considered a problem of plane wave propagation in a rotating
medium in generalized thermo–elasticity with two relaxation times.
In the present work we shall formulate the normal mode analysis to electromagneto–
thermoelastic coupled two–dimensional problem of a thermally and perfect conduct-
ing half–space solid subjected to a thermal shock on its surface when the entire
medium rotates with a uniform angular velocity. The magneto–thermoelastic cou-
pled governing equations under the effect of Centripetal acceleration are established.
The normal mode analysis is used to obtain the exact expressions for the consid-
ered variables. The distributions of the considered variables in present and absent
rotation are represented graphically. From the distributions, it can be found the
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wave type heat propagation in the medium.

2. Formulation of the Problem and Basic Equations

We consider the problem of a thermo–elastic half–space (z ≥ 0). A magnetic field
with constant intensity H = (0,Ho, 0 ) acts parallel to the bounding plane (take as
the direction of the y–axis). The surface of the half–space is subjected at time t = 0
to a thermal shock that is a function of z and t. Thus, all quantities considered
will be functions of the time variable t and of the coordinates x and z. The elastic
medium is rotating uniformly with an angular velocity Ω = Ωn, where n is a
unit vector representing the direction of the axis of rotation. The displacement
equation of motion in the rotating frame of reference has two additional terms [17]:
Centripetal acceleration, Ω × (Ω × u ) due to time–varying motion only and the
Corioli’s acceleration 2Ω× u̇ where u is the dynamic displacement vector. These
terms don’t appear in non–rotating media.

Due to the application of initial magnetic field H, there results an induced
magnetic field h and an induced electric field E. The simplified linear equations
of electrodynamics of slowly moving medium for a homogeneous, thermally and
electrically conducting elastic solid are [18],

curlh=J+εoĖ (1)
curl E=− µoḣ (2)
div h=0 (3)
E = −µo(u̇×H) (4)

where u̇ is the particle velocity of the medium, and the small effect of temperature
gradient on J is also ignored. The dynamic displacement vector is actually measured
from a steady–state deformed position and the deformation is supposed to be small.

The displacement equation of motion in a rotating frame of reference is

ρ [ ü + Ω× (Ω× u ) + 2Ω× u̇ ] = ( λ + µ )∇ (∇ · u )

+ µ∇2u + µo(J×H )− γ ( 1 + νo
∂

∂ t
)∇T (5)

In the absence of the body force and inner heat source, the generalized electro–
magneto–thermoelastic governing differential equations in the context of Green and
Lindsay’s theory are

σi j = 2 µ ei j + λ e δi j − γ ( T − To + νoṪ ) δi j (6)

the heat conduction equation

kT ,i i= ρCE( Ṫ + τoT̈ ) + γT ou̇i ,i (7)

and strain–displacement relations

ei j=
1
2

( ui ,j+uj, i ) (8)

In the above equations, a comma followed by a suffix denotes material derivative
and a superposed dot denotes the derivative with respect to time, i, j = x, z.
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The displacement components have the following form

ux= u(x, z, t ) , uy= 0 , uz= w(x, z, t ) (9)

From Eqs. (8) and (9), we obtain the strain components

ex x=
∂ u

∂ x
, ey y= 0 , ezz =

∂ w

∂ z
, exy= ey z = eyy = 0

exz=
1
2

(
∂ u

∂ z
+

∂ w

∂ x
), e =

∂ u

∂ x
+

∂ w

∂ z
(10)

From Eqs. (6) and (10), the stress components are given by

σxx= ( λ + 2 µ )u,x+ λw,z − γ (T − To + νoṪ ) (11)

σzz= ( λ + 2 µ )w,z+ λu,x − γ (T − To + νoṪ ) (12)
σxy= µ (u,z + w,x ) (13)

The components of the magnetic intensity vector in the medium are

Hx= 0 , Hy= Ho + h(x, z, t ) , Hz= 0 (14)

The electric intensity vector is normal to both the magnetic intensity and the dis-
placement vectors. Thus, it has the components

Ex= E1 , Ey= 0 , Ez= E3 (15)

The current density vector J be parallel to E, thus

Jx= J1 , Jy= 0 , Jz= J3 (16)

From Eqs. (1)–(4) and (5), we get

ρ [
∂2 u

∂ t2
− Ω2u + 2Ω ẇ ] = ( λ + µ )

∂ e

∂ x
+ µ∇2u

−γ ( 1 + νo
∂

∂ t
)
∂ T

∂ x
− µoHo

∂ h

∂ x
− εo µ2

o H2
o

∂2u

∂ t2
(17)

ρ [
∂2w

∂ t2
− Ω2w − 2Ω u̇ ] = ( λ + µ )

∂ e

∂ z
+ µ∇2w

−γ ( 1 + νo
∂

∂ t
)
∂ T

∂ z
− µoHo

∂ h

∂ z
− εo µ2

o H2
o

∂2w

∂ t2
(18)

We introduce the displacement potentials ϕ and ψ by the relations

u = ϕ,x + ψ,z , w = ϕf,z − ψ,x (19)

we can obtain from Eqs. (1)–(4)

h = −Ho∇2ϕ (20)
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For convenience, the following non–dimensional variables are used:

x̄i =
xi

CT ω∗
ūi =

ui

CT ω∗
ϕ̄ =

ϕ

(CT ω∗)2
ψ̄ =

ψ

(CT ω∗)2

τ̄o=
τo

ω∗
ν̄o=

νo

ω∗
Ω̄= ω∗Ω θ =

γ (T − To)
λ + 2 µ

(21)

σ̄i j =
σi j

µ
, h̄ =

h

Ho
, i = 1, 2.

In terms of the non–dimensional quantities defined in Eq. (21), the above governing
equations reduce to (dropping the dashed for convenience)

β2[α ü− Ω2u + 2Ωẇ] = (β2 − 1)
∂ e

∂x
+∇2u

−β2

(
1 + νo

∂

∂t

)
∂θ

∂x
−RH

∂h

∂x
(22)

β2[α ẅ − Ω2w + 2Ωu̇] = (β2 − 1)
∂e

∂z
+∇2w

−β2

(
1 + νo

∂

∂t

)
∂θ

∂z
−RH

∂h

∂z
(23)

∇2θ =
(

∂

∂t
+ τo

∂2

∂t2

)
θ + ε̄

∂e

∂t
(24)

The constitutive equations reduce to

σxx = ( β2 − 2 ) e + 2 u,x − β2

(
θ + νo

∂ θ

∂ t

)
(25)

σz z = ( β2 − 2 ) e + 2 w,z − β2

(
θ + νo

∂ θ

∂ t

)
(26)

σxz = u,z + w,x (27)

In the subsequent analysis we are taking into consideration the case of low speed so
that centrifugal stiffening effects can be neglected. By differentiating Eq.(22) with
respect to x, and Eq. (23) with respect to z, then adding, we obtain

[
α

∂2

∂ t2
− Ω2 − ( 1 + RH)∇2

]
ϕ = −2Ω

∂ ψ

∂ t
−

(
1 + νo

∂

∂ t

)
θ (28)

by differentiating (22) with respect to z and (23) with respect to x and subtracting
we obtain

[β2α
∂2

∂ t2
− β2Ω2 −∇2] ψ = −2 β2Ω

∂ ϕ

∂ t
(29)

Equation (24) take the form
[
∇2 −

(
∂

∂ t
+ τo

∂2

∂ t2

) ]
θ = ε∇2 ∂ ϕ

∂ t
(30)

Equation (20) has the form
h = −∇2ϕ . (31)

where RH is the number of magnetic pressure. It is a measure of the relative
importance of magnetic effects in comparison with mechanical ones.
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3. Normal Mode Analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form

[
u,w, e, θ, h,ϕ, ψ, σij

]
(x, z, t)

=
[
u∗f, w∗, e∗, θ∗, h∗,ϕ∗, ψ∗, σ∗ij

]
(x) exp(ω t + i a z ) (32)

where ω is the complex time constant and a is the wave number in the y–direction.
Using Eq. (32), Eqs (28), (29) and (30) take the form

[(1 + RH) ( D2 − a2)− α ω2 + Ω2 ] ϕ∗(x)
= ( 1 + νoω) θ∗(x) + 2ω Ωψ∗(x) (33)
[ D2 − a2 − β2(α ω2 − Ω2) ] ψ∗(x) = 2 ω Ωβ2ϕ∗(x) (34)
[ D2 − a2 − ω(1 + τo ω) ] θ∗(x) = ε ω ( D2 − a2) ϕ∗(x) (35)

where D = ∂
∂ x

Eliminating θ∗(x) and ψ∗(x) between Eqs (33), (34) and (35), we obtain the
following sixth–order partial differential equation satisfied by ϕ∗(x)

( D6 −AD4 + B D2 − C ) ϕ∗(x) = 0 (36)

where

A = 3 a2 + b1 (37)
B = 3 a4 + 2 a2b1 + b2 (38)
C = a6 + a4b1 + a2b2 + b3

b1 =
1

(1 + RH)

[
(α ω2 − Ω2) [ 1 + β

2
( 1 + RH) ]

+ ε ω( 1 + νoω ) + ω (1 + τoω ) (1 + RH)] (39)

b2 =
1

( 1 + RH)

{
(α ω2 − Ω2)

[
β

2
( α ω2 − Ω2)

+ω ( 1 + τoω ) [1 + β
2
( 1 + RH) ] + ε β

2
ω( 1 + νoω )

]
− 4 ω2Ω2β2

}
(40)

b3 =
β2ω ( 1 + τoω )

( 1 + RH)

{
( α ω2 − Ω2)2 − 4 ω2Ω2

}
(41)

In a similar manner we arrive at

(D6 −A D4 + B D2 − C ) θ∗(x) = 0 (42)
(D6 −A D4 + B D2 − C )ψ∗(x) = 0 (43)

Eq. (36) can be factorized as

( D2 − k2
1 ) ( D2 − k2

2 ) ( D2 − k2
3 )ϕ∗(x) = 0 (44)

where k2
i ( i = 1, 2, 3) is the root of the following characteristic equation

k6 −Ak4 + B k2 − C = 0 (45)



The Effect of Rotation and Thermal Shock... 37

The solution of Eq. (44) has the form

ϕ∗(x) =
3∑

i=1

ϕ∗i (x) (46)

where ϕ∗i (x) is the solution of the equation

( D2 − k2
i )ϕ∗i (x) = 0 , i = 1, 2, 3 (47)

The solution of Eq. (47) which is bounded as x →∞, is given by

ϕ∗i (x) = Mi(a, ω) e−kix (48)

Thus, ϕ∗(x) has the form

ϕ∗(x) =
3∑

i=1

Mi(a, ω) e−ki x (49)

In a similar manner, we get

θ∗(x) =
3∑

i=1

M ′
i(a, ω) e−ki x (50)

ψ∗(x) =
3∑

i=1

M ′′
i(a, ω) e−ki x (51)

where Mi(a, ω), M ′
i(a, ω) and M ′′

i(a, ω) are some parameters depending on a and
ω.

Substituting from Eqs (49)–(51) into Eqs (33) and (35) we get the following
relations

M ′
i(a, ω) =

ε ω ( k2
i − a2)

[k2
i − a2 − ω ( 1 + τoω )]

Mi, i = 1, 2, 3 (52)

M ′′
i(a, ω) =

2ω Ωβ2

[k2
i − a2 − β2 (α ω2 − Ω2 )]

Mi, i = 1, 2, 3 (53)

Substituting from Eqs (52) and (53) into Eqs (50) and (51) respectively, we obtain

θ∗(x) =
3∑

i=1

ε ω ( k2
i − a2)

[k2
i − a2 − ω ( 1 + τoω )]

Mi e−kix (54)

ψ∗(x) =
3∑

i=1

2ω Ωβ2

[k2
i − a2 − β2 (α ω2 − Ω2 )]

Mi e−ki x (55)

In order to obtain the displacement components u and w in terms of Eq. (19), from
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Eqs (49) and (55), we can obtain

u(x, z, t)

=
3∑

i=1

[
−ki +

2 i a ωΩ β2

[k2
i − a2 − β2(α ω2 − Ω2) ]

]
Mie

−kixe( iaz+ωt ) (56)

w(x, z, t)

=
3∑

i=1

[
i a− 2 ωΩ β2ki

[k2
i − a2 − β2(α ω2 − Ω2) ]

]
Mie

−kixe( iaz+ωt ) (57)

From Eq. (31) in terms of Eq. (49), we can obtain

h(x, z, t) = −
3∑

i=1

[
k2

i − a2
]

Mie
−kixe( iaz+ωt ) (58)

Substituting from Eqs (49), (54), (55) into Eqs (25)-(27) we obtain

σxx(x, z, t) =
3∑

i=1

{
k2

i −
4 i a ωΩ β2ki

[k2
i − a2 − β2(α ω2 − Ω2) ]

− a2(β2 − 2 )

− β2ε ω ( 1 + νoω ) ( k2
i − a2 )

[k2
i − a2 − ω ( 1 + τoω ) ]

}
Mie

−kixe( iaz+ωt ) (59)

σz z(x, z, t) =
3∑

i=1

{
( β2 − 2 )k2

i −
4 i a ωΩβ2ki

[k2
i − a2 − β2(α ω2 − Ω2) ]

− a2β2

− β2ε ω ( 1 + νoω ) ( k2
i − a2 )

[k2
i − a2 − ω ( 1 + τoω ) ]

}
Mie

−kixe( iaz+ωt ) (60)

σxz(x, z, t)

= 2
3∑

i=1

[
−i a ki +

ωΩβ2( k2
i − a2)

[k2
i − a2 − β2(α ω2 − Ω2) ]

]
Mie

−kixe( iaz+ωt ) (61)

The normal mode analysis is, in fact, to look for the solution in the Fourier trans-
formed domain. Assuming that all the relations are sufficiently smooth on the real
line such that the normal mode analysis of these functions exist.

In order to determine the parameters Mi(i = 1, 2, 3), we need to consider the
boundary conditions at x = 0 as following

1. Thermal boundary condition that the surface of the half–space subjected to
a thermal shock

θ (0, y, t) = f(y, t) (62)

2. Mechanical boundary condition that the surface of the half–space is traction
free

σxx (0, y, t) = 0 (63)

σxz (0, y, t) = 0 (64)
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Substituting from the expressions of considered variables into the above boundary
conditions, we can obtain the following equations satisfied by the parameters

3∑

i=1

ε ω ( k2
i − a2)

[k2
i − a2 − ω ( 1 + τoω )]

Mi = f∗(a, ω ) (65)

3∑

i=1

{
k2

i − a2(β2 − 2)− 4 i a ωΩ β2ki

[k2
i − a2 − β2(α ω2 − Ω2)]

− β2ε ω (1 + νoω ) (k2
i − a2)

[k2
i − a2 − ω ( 1 + τoω )]

}
Mi = 0 (66)

3∑

i=1

[
−i a ki +

ωΩβ2( k2
i − a2)

[k2
i − a2 − β2(α ω2 − Ω2) ]

]
Mi = 0 (67)

Solving Eqs (65)–(67), we get the parameters Mi(i = 1, 2, 3) with the following from
respectively

M1 =
f∗(a, ω ) [ (c11c44 + d11d44) + i ( c11d44 − c44d11) ]

c2
44 − d2

44

(68)

M2 =
f∗(a, ω ) [ (c22c44 + d22d44) + i ( c22d44 − c44d22) ]

c2
44 − d2

44

(69)

M3 =
f∗(a, ω ) [ (c33c44 + d33d44) + i ( c33d44 − c44d33) ]

c2
44 − d2

44

(70)

where

Sj =
ε ω ( k2

j − a2)

[k2
j − a2 − ω (1 + τoω)]

, j = 1, 2, 3 (71)

aj1 = k2
j − a2( β2 − 2 )− β2( 1 + νoω ) Sj , j = 1, 2, 3 (72)

bj1 =
4 aω Ωβ2kj

[ k2
j − a2 − β2(α ω − Ω2) ]

, j = 1, 2, 3 (73)

aj 2 =
ω Ω β2( k2

j − a2)
[ k2

j − a2 − β2(α ω − Ω2) ]
, j = 1, 2, 3 (74)

bj 2 = a kj , j = 1, 2, 3 (75)
c11 = a21a32 − b21b32 − a31a22 + b31b22 (76)
d11 = a21b32 + a32b21 − a31b22 − a22b31 (77)
c22 = a31a12 − b31b12 − a11a32 + b11b32 (78)
d22 = a31b12 + a12b31 − a11b32 − a32b11 (79)
c33 = a11a22 − b11b22 − a21a12 + b21b12 (80)
d33 = a11b22 + a22b11 − a21b12 − a12b21 (81)
c44 = S1c11 − S2c22 + S3c33 (82)
d44 = S1d11 − S2d22 + S3d33 (83)
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Figure 1 Temperature distribution for z = 0 and Ω = 0
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Figure 2 Distribution of displacement component u for z = 0 and Ω = 0
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Figure 7 Temperature distribution for z = 0 and α = 1.02
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4. Numerical Results

The copper material is chosen for numerical evaluations. In the calculation process,
the material constants necessary to be known can be found in [19].

The thermal shock f (y, t) applied on the surface, is taken of the form

f (y, t) = θoH (L− | y | ) exp(− b t ) (84)

where H is the Heaviside unit step function and θo is a constant. This means
that heat is applied on the surface of the half–space on a narrow band of width 2L
surrounding the y–axis to keep it at temperature θo,while the rest of the surface is
kept at zero temperature. The other constant of the problem are taken as

L = 4, θo = 1, b = 1, νo = 0.05, τo = 0.03, ωo = 1, a = 1.2

Considering the distributions of temperature, displacement and stresses for z = 0.
Calculated results of the real part of the non-dimensional temperature θ , displace-
ment components u, w and stress components σxx , σzz, σxz are shown in Figs 1–12
respectively. The solid lines represent the solution obtained by Green–Lindsay’s the-
ory ( νo = 0.05, τo = 0.03 ) and the dashed lines represent the solution obtained by
the coupled theory ( νo = 0, τo = 0 ).

Figs 1–6 give the field quantities distribution at time t = 10, Ω = 0, α = 1 .02.
and RH = 8120, respectively. Figs 7–12 give the field quantities distribution at three
different values of the rotation namely, Ω = 0.5, 0.6, 0.7. Also Figs 7–12 indicate
the effect of the rotation on the field quantities distribution. The phenomenon of
finite speeds of propagation is manifested in all these figures. The medium deforms
because of thermal shock, and due to the application of the magnetic field, there
result an induced magnetic field in the medium.

5. Concluding remarks

In all figures, it is clear that all the distributions considered have a non–zero value
only on a bounded region of space. Outside this region the values vanish identi-
cally and this means that the region has not felt thermal disturbance yet. From
the distributions of temperature, it can be found the wave type heat propagation
in the medium. The heat wave front moves forward with a finite speed in the
medium with the passage of time. This is not the case for the classical theories of
thermo–elasticity where an infinite speed of propagation is inherent and hence all
the considered functions have a non–zero (though may be very small) value for any
point in the medium. This indicates that the generalized heat conduction mech-
anism is completely different from the classic Fourier’s in essence. In generalized
thermo–elasticity theory heat propagates as a wave with finite velocity instead on
infinite velocity in medium.

Owing to the complicated nature of the governing equations for the generalized
electromagneto–thermoelasticity with two relaxation times few attempts have been
made to solve problems in this field, these attempts utilized approximate methods
valid for only a specific range of some parameters.

In this work, the method of normal mode analysis is introduced in the field of
electromagneto–thermoelasticity and applied to a specific case in which the temper-
ature, displacement, stress and magnetic field are coupled for a rotating medium.



The Effect of Rotation and Thermal Shock... 53

It is important to observe that rotation has high influence on all the field quantities
in the generalized electromagneto-thermoelasticity.
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Nomenclature

λ, µ Lame”s constants
ρ density
CE specific heat at constant strain
t time
T absolute temperature
To reference temperature chosen so that

∣∣∣ T−To

To

∣∣∣ << 1
σij components of stress tensor
eij components of strain tensor
ui components of displacement vector
k thermal conductivity
J current density vector
µo magnetic permeability
εo electric permeability
C2

T = ( λ+2 µ )
ρ

CL =
√

µ/ρ, velocity of transverse waves
c2 = 1/µoεo sound speed
νo, τo two relaxation times
e cubical dilatation
αt coefficient of linear thermal expansion
γ = (, 3λ + 2µ)αt

ε = γ2 To

ρ2 CEC2
T

, is the usual thermo–elastic coupling parameter

C2
A = µoH2

o

ρ is the so–called Alfven speed

α = 1 + C2
A

c2

β2 = C2
T

C2
L

ω∗ = k
ρ CEC2

T

RH = C2
A

C2
T


