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Kinematics Modeling of the Amigobot Robot
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Józef Giergiel

Technology Department of Robotics and Mechatronics,
Rzeszow University of Technology

Received (10 January 2010)
Revised (25 February 2010)
Accepted (8 March 2010)

In this article authors presenting problems connected with the kinematics modeling based
on Denavit–Hartenberg notation for a wheeled mobile robot. The possibility of sending
data between MapleTM and MatlabTM has been discussed. Simulations of the kinemat-
ics parameters have been made and the results are shown.
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1. Introduction

In order to describe the kinematics of the mobile robot it is necessary to present
kinematics equations. If we take in to consideration radial trajectory for the robot,
we are able to split main trajectory from sub–trajectories with can be describe by
one system of equations. The problem connected with mathematical description
of the kinematics equations derived on the basis of Denavit–Hartenberg notation
for mobile robot AmigoBotTM has been presented. The paper suggest the mode of
symbolic computations in the environment of MapleTM programme and afterwards
the moving of the data to the MatlabTM package. In the MatlabTM–Simulink
environment simulation of the robot’s kinematics behaviour has been carried out.
Such a mode of computations and communicative MatlabTM–MapleTM software
have been further discussed in paper [1,2,3]. On the basis of kinematics parameters
simulation and comparison of the results have been carried out.

2. Modeling of the kinematics of the wheeled mobile robot AmigoBotTM

The firs step in the process of the kinematics descriptions is connected with robot
unit description and system coordinates assumptions. The basic elements of this
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model are the vehicle frame 4, driving units 1 and 2 and the self–adjusting supported
wheel 3.

The individual components of the model are connected with coordinate systems,
and so with part 4 of the system we have system coordinates x4 y4 z4. It’s beginning
in the center of mass of this part. System x0 y0 z0 is a fixed base reference system.

The driving units 1 and 2 are connected with systems of coordinates x1 y1 z1,
x2 y2 z2 in characteristic points B and C. Those points are located on axis of the
rotation of the particular driving wheels. In order to describe the such a mechatronic
system, kinematics equations of the characteristic points have been used. The basic
assumption is that robot move with constant velocity of the point A [1,2,3,6,7,8].
The basic assumptions related with modeling have been presented in fig.2.1.
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Figure 1 Computation model of AmigoBotTM robot

There are two kinematics problems, simple and inverse, simple describe position
and orientation of the system in space with respect reference system while inverse
kinematics problem gives as information about kinematics parameters as angles,
angular velocities and accelerations on the base of assumed trajectory. In this
article we focus on inverse kinematics problem. The all symbolic computations
have been leaded in MapleTM environment. For the point H kinematics equation
will have the following form:

r̄H = T4,0,H ρ̄H (1)

In the presented case transformation matrix T4,0 of x4 y4 z4 to x0 y0 z0 system
for the point H was entered as [6,7]:

T4,0,H =




cos(β) − sin(β) 0 xA + l3 cos(β)
sin(β) cos(β) 0 yA + l3 sin(β)
0 0 1 r1

0 0 0 1


 (2)
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The vector describing the position of the point H relative to the x4 y4 z4:

ρH =




0
0
−l4
1


 (3)

After calculating the expression (1) obtained equation of motion of the point H and
saved it in two equivalent forms:

rH =




xA + l3 cos(β)
yA + l3 sin(β)
r1 − l4
1


 (4)




xH

yH

zH

1


 =




xA + l3 cos(β)
yA + l3 sin(β)
r1 − l4
1


 (5)

In the next step equations of the trajectory for wheeled mobile robot have been
shown. In the current case is a circular path. The equations of motion in a circular
path is described as follows:

xH = R sin(φ)
yH = R(1− cos(φ)) (6)
zH = r1 − l4

After compare the coordinates of point H represented by expression (5) with the
trajectory equations of motion (6) we obtained the following equation:

R sin(φ) = xA + l3 cos(β) (7)
R(1− cos(φ) = yA + l3 sin(β) (8)

Differentiating expression (7) and (8) with respect to time obtained velocity equa-
tion x and y coordinates of the H point, which were presented in the form of allowing
further calculations using symbolic computation program MapleTM :

ẋA − l3β̇ sin(β)−Rφ̇ cos(φ) = 0 (9)

ẏA + l3β̇ cos(β)−Rφ̇ sin(φ) = 0 (10)

Another characteristic point is a point A of the system for which it assumes a
constant speed and recorded the projections of the speed for particular axis x and
y:

ẋA − vA cos(β) = 0 (11)

ẏA − vA sin(β) = 0 (12)

Knowing all the parameters of motion system is also analyzed to determine the an-
gular velocities and angles of the rotation for particular wheels 1 and 2. These an-
gular velocity determined from the equations describing the velocities of the points
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of contact with the road wheels, assuming cooperation without slipping. To deter-
mine the angular parameters of the wheel 1 saved the equation of kinematics point
of contact with the road as follows:

r̄K = T4,0,KT1,4ρ̄K (13)

Transformation matrix T4,0 of x4 y4 z4 to x0 y0 z0 system for point K are defined
as:

T4,0,K =




cos(β) − sin(β) 0 xA + l1 sin(β)
sin(β) cos(β) 0 yA − l1 cos(β)
0 0 1 r1

0 0 0 1


 (14)

Transformation matrix T1,4 of x1 y1 z1 to x4 y4 z4 system for point K stated:

T1,4 =




sin(α1) cos(α1) 0 0
0 0 1 0
cos(α1) − sin(α1) 0 0
0 0 0 1


 (15)

The vector describing the position of the point K relative to the x1 y1 z1:

ρK =




−r1 cos(α1)
r1 sin(α1)
0
1


 (16)

Differentiating the equation for the kinematics of the point K (13) we received:

v̄K = Ṫ4,0,K Ṫ1,4ρ̄K (17)

Substituting into the velocity equation of the point F (17) expressions (14), (15)
and (16) we obtained the velocity equation of point K:




ẋK

ẏK

żK

0


 =




xA − r1α̇1 cos(β) + l1β̇ cos(β)
yA − r1α̇1 sin(β) + l1β̇ sin(β)
0
0


 (18)

Given that VK = 0, since only wheel 1 cooperates with the road without skidding,
the record received a scalar equation:

ẋA − r1α̇1 cos(β) + l1β̇ cos(β) (19)

ẏA − r1α̇1 sin(β) + l1β̇ sin(β) (20)

With the assigning of second wheel parameters was done similarly as for the wheels
1 it means assumed the kinematics equation of point L, that is the point of contact
with the road wheel 2:

r̄L = T4,0,LT2,4ρ̄L (21)
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Transformation matrix T4,0 of x4 y4 z4 to x0 y0 z0 system for point L are defined
as:

T4,0,L =




cos(β) − sin(β) 0 xA − l1 sin(β)
sin(β) cos(β) 0 yA + l1 cos(β)
0 0 1 r2

0 0 0 1


 (22)

Transformation matrix T2,4 of x2 y2 z2 to x4 y4 z4 system for point L are defined
as:

T2,4 =




sin(α2) cos(α2) 0 0
0 0 1 0
cos(α2) − sin(α2) 0 0
0 0 0 1


 (23)

The vector describing the position of the point L relative to the x2 y2 z2:

ρL =




−r2 cos(α2)
r2 sin(α2)
0
1


 (24)

Differentiating the equation for the kinematics of the point L (21) we received:

v̄L = Ṫ4,0,LṪ2,4ρ̄L (25)

Substituting into the equation (25) expressions (22), (23) and (24) we obtained the
velocity equation of point L:




ẋL

ẏL

żL

0


 =




xA − r2α̇2 cos(β)− l1β̇ cos(β)
yA − r2α̇2 sin(β)− l1β̇ sin(β)
0
0


 (26)

Given that VL = 0, since only wheel 2 cooperates with the road without skidding,
the record received a scalar equation:

ẋA − r2α̇2 cos(β)− l1β̇ cos(β) (27)

yA − r2α̇2 sin(β)− l1β̇ sin(β) (28)

The following system of six equations (1,2,3,6,7) allows the designation of all basic
motion parameters if the assumed velocity of the point A is known, and the radius
R with wheels diameter are also known.

ẋA − l3β̇ sin(β)−Rφ̇ cos(φ) = 0
ẏA + l3β̇ cos(β)−Rφ̇ sin(φ) = 0
ẋA − vA cos(β) = 0
ẏA − vA sin(β) = 0
ẋA − r1α̇1 cos(β) + l1β̇ cos(β) = 0
ẋA − r2α̇2 cos(β)− l1β̇ cos(β) = 0 (29)√

l25β̇
2 + v2

A − r3α̇3 = 0
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On the base of the kinematics equations (29) simulations in the MatlabTM–Simulink
have been carried out. The following movement model has been assumed: starting,
driving straight, driving on circular curve with turning axis of frame β and radius
of wheels r, braking. The robot moves with the velocity va=0,2 [m/s] (velocity of
point A in Fig. 1). The construction data included in Tab. 1 present kinematics
parameters necessary to made simulation.

Table 1 The construction data of the AmigoBotTM robot based on kinematics

l1 [m] l3 [m] l4 [m] l5 [m] r1 [m] r2 [m] r3 [m]
0.12 0.08 0.03 0.12 0.05 0.05 0.03

Figure 2 The angles of rotations time courses from simulation: α1 [rad] – blue, α2 [rad] – red

Figure 3 The angular velocities time courses from simulation: α̇1 [rad/s]– blue, α̇2 [rad/s]– red
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As an result of the simulation we received kinematics parameters in the form pre-
sented in Fig. 2 and Fig. 3.

In order to compare the result of the simulation with real kinematics parameters
test rig on real object has been carred out. The result of test rig is presented in
Fig. 4 and Fig. 5.

The presented mode of kinematics equations can be applied to structures of
various types.

Figure 4 The angles of rotations time courses from test rig: α1 [rad] – blue, α2 [rad]– red

Figure 5 The angular velocities time courses from test rig: α̇1 [rad/s] – blue, α̇2 [rad/s]– red
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3. Summary and conclusions

One of the common problems of the analysis of the complex constructions is model
parameters creation with means the choice of the best model description in the
sense of the accepted quality criterion. The presented kinematics modeling with
the use of Denavit–Hartenberg notation allow to received kinematics parameters
very similar to the real values. Those parameters we can use in dynamics and
control modeling [4]. The advantages of the using Denavit–Hartenberg notation in
kinematics modeling are the simplicity of implementation and the formulation of
the problem. The presented mode of the modeling of kinematics parameters can be
used in order to describe any types of mobile and stationary robots.
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