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This paper presents problems connected with the identification of dynamic motion equa-
tions derived on the basis of Maggi equations for a 2–wheeled mobile robot. The pos-
sibility of sending data between MapleTMand MatlabTM has been discussed. Off–line
identification structure has been presented with the use of genetic algorithms.

Keywords: Dynamics, identification, fuzzy logic, mobile robots

1. Introduction

The basic problem of the analysis of the complex dynamic constructions is the math-
ematical model description and its identification. ”Identifying” means the choice of
the best model in the sense of the accepted quality criterion of the class of models
formed on the basis of mathematical description of physical phenomena [1]. In this
paper the problem connected with mathematical model description and parameters
identification of the dynamic motion equations derived on the basis of Maggi equa-
tions for mobile robot AmigoBotTM has been presented. The paper suggest the
mode of symbolic computations in the environment of MapleTM programme and
afterwards the moving of the data to the MatlabTM package. In the MatlabTM–
Simulink environment simulation of the robot’s dynamic behaviour has been car-
ried out. Such a mode of computations and communicative MatlabTM–MapleTM

software have been further discussed in paper [2]. On the basis of kinematic and
dynamic parameters measured on real robot test rigs connected with identification
have been carried out.
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2. Modeling of the dynamics of the wheeled mobile robot AmigoBot
TM

The analysis of the dynamics has been carried out for AmigoBotTM robot. The
model of this robot has been shown in a schematic mode in Fig. 1. The basic
elements of the model are: wheel unit drive of wheels 1 and 2, self–adjusting sup-
porting wheel 3 and the frame of unit 4. As a result of symbolic computations
dynamic equations for the model taken have been received. In these equations the
influence of the mass of the self–adjusting supporting wheel has not been taken into
consideration [1,2,3].
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Figure 1 Computation model of AmigoBotTM robot

There are many mathematical forms of the dynamic motion equations descriptions.
One of the method based on Lagrange description is has been used to describe mo-
tion of the mobile robot. This mathematical form of the dynamic motion equations
is called as Maggi equations. This method, in many solutions, is more efficient and
easier to describe dynamics of the system. Additionally when we are describing
system receiving equations in quantity of the DOF of this mechanical structure.
The mathematical form of Maggi equations has been presented below [4,5,7]:

n∑

j=1

Cij

[
d

dt

(
∂E

∂q̇j

)
−

(
∂E

∂qj

)]
= Θi i = 1..s (1)

Where s describe quantity of the independent system parameters in generalized
coordinates qj (j=1..n) in the quantity equal DOF of the system. On the basis of
Maggi description we can present generalized velocity formula in the form:

q̇j =
s∑

i=1

Cij ėi + Gj (2)
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In the equation (2) parameter ėi is called characteristic or kinematics of the system
in generalized coordinates. The right sides of the Maggi equations (1) this are
coefficients connected with variance δei in description of the virtual work of the
external forces of the system. Definition of the virtual work of the external forces
can be presented as follow [1,2]

s∑

i=1

Θiδei =
s∑

i=1

δei

n∑

i=1

CijQj (3)

In the form of the matrix presentation, equations (1) have been presented as follow:
n∑

j=1

CijLj = Θi i = 1..s (4)

Where [7]:
L = M(q)q̈ + C(q, q̇)q̇ (5)

Maggiego equations (1) as Lagrange equations can be used to analyze the task
simple and inverse dynamics. Taking into account the problem of control, it appears
that the use of Maggi equations seems to be easer to described. The mathematical
forms of the Maggi and Lagrange equations can be also apply in the case of all other
stationary or wheeled mobile robots.

To determine the dynamic equations of motion adopted following vector of gen-
eralized coordinates:

q = [xA, yA, β, α1, α2]T (6)

The kinetics energy of the model illustrated in Fig. 1. as a function of gener-
alized coordinates without taking into account the influence of the self–adjusting
supported wheel 3 has been recorded as follows:

Ek = [(m1 + m2 + m4)ẋA + ((m1 −m2)l1 cos(β) + m4l2 sin(β))β̇]ẋA

+[(m1 + m2 + m4)ẏA + ((m1 −m2)l1 sin(β)−m4l2 cos(β))β̇]ẏA

+[((m1 −m2)l1 cos(β) + m4l2 sin(β))ẋA + ((m1 −m2)l1 sin(β) (7)
−m4l2 cos(β))ẏA + ((m1 + m2)l21 + Ix1 + Ix2 + Iz4 + m4l

2
2)β̇]β̇

+[Iz1α̇1]α̇1 + [Iz2α̇2]α̇2

where:
m1, m2, m3, m4 – weight of each component in the system
Ix1, Ix2, Ix3, Iz1, Iz2, Iz3, Iz4 – moments of inertia with respect to the axes
h – parameter defining the ratio l1/r1

In the same way as in the Lagrange equations, matrices of the inertia and cen-
trifugal forces of inertia and the Coriolis for the model the calculation have been
determined. Form of the matrix is shown below:

M =




2m1 + m4 0 m4l2 sin(β) 0 0
0 2m1 + m4 −m4l2 cos(β) 0 0
m4l2 sin(β) −m4l2 cos(β) 2m1l

2
1 + 2Ix1 + Iz4 + m4l

2
2 0 0

0 0 0 Iz1 0
0 0 0 0 Iz1




(8)
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C =




0 0 m4l2β̇ cos(β) 0 0
0 0 m4l2β̇ sin(β) 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




(9)

With the appointment of external forces acting on the system should take into
account the unknown dry friction forces acting in the plane of wheel contact with
the road and acting on appropriate wheels [1,2]. Fig. 2 present the distribution of
the friction forces acting on wheels of a mobile wheeled robot.

y

z

0

0
x 00

b

f

f

F

3

4 B

C

D

1

2

A

T
T

T

T

T

T2P

1P

3P

1O
3O

2O

Figure 2 The distribution of friction forces acting on the wheeled mobile robot

Generalized forces for the model shown in rys.3.2. described as follow:

Q1 = T1,0 cos(β)− T1,P sin(β) + T2,0 cos(β)− T2,P sin(β)
Q2 = T1,0 sin(β) + T1,P cos(β) + T2,0 sin(β) + T2,P cos(β)
Q3 = T1,0l1 − T2,0l1 (10)
Q4 = M1 −N1f1sgn(α̇1)− T1,0r

Q5 = M2 −N2f2sgn(α̇2)− T2,0r
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The generalized velocities based on dependence (2) states:

q̇1 = ẋA =
1
2
rė1 cos(β) +

1
2
rė2 cos(β)

q̇2 = ẏA =
1
2
rė1 sin(β) +

1
2
rė2 sin(β)

q̇3 = β̇ =
1
2

r

l1
ė1 − 1

2
r

l1
ė2 (11)

q̇4 = α̇1 = ė1

q̇5 = α̇2 = ė2

The Cij and Gj coefficients from the equation (2) have the form:

C11 =
1
2
r cos(β), C21 =

1
2
r cos(β), G1 = 0

C12 =
1
2
r sin(β), C22 =

1
2
r sin(β), G2 = 0

C13 =
1
2

r

l1
, C22 = −1

2
r

l1
, G3 = 0 (12)

C14 = 1, C24 = 0, G4 = 0
C15 = 0, C25 = 1, G5 = 0

Finally, using the Maggi equations (4) and dependences (6)–(12) we received dy-
namic motion equations for the mobile robot AmigoBotTM in the form generated by
the MapleTM program environment. Presented mobile robot has 2 DOF, it means
in order to describe it’s dynamic we need two equations.

(r2m4l
2
1 + 4r2m1l

2
1 + 2r2Ix1 + 4Iz1l

2
1 + r2Iz4 + r2m4l

2
2)

4l21
α̈1

+
(r2m4l

2
1 − r2m4l

2
2 − 2r2Ix1 − r2Iz4)
4l21

α̈2

−r3m4l2
4l21

α̇1α̇2 +
r3m4l2

4l21
α̇2

2 = M1 −N1f1sgn(α̇1)

(r2m4l
2
1 + 4r2m1l

2
1 + 2r2Ix1 + 4Iz1l

2
1 + r2Iz4 + r2m4l

2
2)

4l21
α̈2 (13)

+
(r2m4l

2
1 − r2m4l

2
2 − 2r2Ix1 − r2Iz4)
4l21

α̈1 +

−r3m4l2
4l21

α̇1α̇2 +
r3m4l2

4l21
α̇2

1 = M2 −N2f2sgn(α̇2)

After basic transformations and substitutions the form of dynamic motion equations
for our model have been presented as follow:

a2α̈2 + a1α̈1 + a3α̇
2
2 − a3α̇1α̇2 = M1 − a4sgn(α̇1)

a2α̈1 + a1α̈2 + a3α̇
2
1 − a3α̇1α̇2 = M2 − a5sgn(α̇2) (14)
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where

a1 =
1
4

(r2m4l
2
1 + 4r2m1l

2
1 + 2r2Ix1 + 4Iz1l

2
1 + r2Iz4 + r2m4l

2
2)

l21

a2 =
1
4

(r2m4l
2
1 − r2m4l

2
2 − 2r2Ix1 − r2Iz4)
l21

(15)

a3 =
1
4

r3m4l2
l21

a4 = N1f1 a5 = N2f2

however:

m2 = m1, m4 – mass of particular unit element.

Ix2 = Ix1, Iz2 = Iz1, Iz4 – moments of inertia in relation to particular axis.

M1, M2 – drive moments.

N1, N2 – the pressure forces of particular wheels.

f1, f2 – rolling friction factors of wheels 1 and 2.

α1, α2 – angles of rotation (wheels 1 and 2).

The next step in the process of the precise description of the wheeled mobile
robot mathematical model is to present dynamic motion equations in state space
form. Taking into consideration state variables as follows:

α1 = x1, α̇1 = ẋ1 = x2, α2 = x3, α̇2 = ẋ3 = x4 (16)

On the base of assumption (16) the dynamic motion equations (14) have been
written in the state space form as follow:

ẋ = Ax + B[f(x, a) + G(x, a)u] (17)

where:

A =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 B =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




G(x, a) =




0 0
0 0
G31 G32

G41 G42


 (18)

f(x, a) =




0
0
f3

f4
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where

G31 =
a1

a2
1 − a2

2

G32 = − a2

a2
1 − a2

2

G41 = − a2

a2
1 − a2

2

G42 =
a1

a2
1 − a2

2

f3 =
a2a5sgn(x4) + a2a3x

2
2 − a2a3x2x4 + a1a3x2x4 − a1a3x

2
4 − a1a4sgn(x2)

a2
1 − a2

2

f4 =
−a1a5sgn(x4)− a1a3x

2
2 + a1a3x2x4 − a2a3x2x4 + a2a3x

2
4 − a2a4sgn(x2)

a2
1 − a2

2

Vector u stands for the driving moments M1 and M2, which can be measured
or which can be generated on the basis of dynamic motion equations. The form
of the dynamic motion equations for wheeled mobile robot as in (17) allows for
identification of the mathematical model of the robot. The following movement
model has been assumed: starting, driving straight, driving on circular curve with
turning axis of frame β and radius of wheels r, braking. The robot moves with the
velocity va=0,2 [m/s] (velocity of point A in Fig. 1.).

The time courses of driving moments for this movement model and construction
data included in Tab. 1 and Tab 2 have been presented in Fig. 3.

Table 1 The construction data of the AmigoBotTM robot based on kinematics

l1 [m] l3 [m] l4 [m] l5 [m] r1 [m] r2 [m] r3 [m]
0.12 0.08 0.03 0.12 0.05 0.05 0.03

Table 2 The construction data of the AmigoBotTM robot based on dynamics

l2 [m] m1 [kg] m2 [kg] m3 [kg] m4 [kg] Ix1[kgm2]
0.06 0.65 0.65 0.4 2.25 0.01
Ix2[kgm2] Ix3[kgm2] Iz1[kgm2] Iz2[kgm2] Iz3[kgm2] Iz4[kgm2]
0.01 0.004 0.025 0.025 0.0018 0.06
N1 [N] N2 [N] N3 [N] f1 [m] f2 [m] f3 [m]
12.5 12.5 11.7 0.01 0.01 0.001

As a representation of mobile robot AmigoBotTM robot kinematics parameters
representing rotation and angular velocity of particular wheels have been measured
and some of those parameters have been shown in Fig. 4.

The measurements have been taken on real object in laboratory environment.
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Figure 3 Time courses of driving moments M1– blue and M2– red

Figure 4 Time courses of angular velocity of particular wheels (α̇1– blue, α̇1– red)
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3. Identification of the dynamic motion equations of the AmigoBotTM

Since dependence f(x, a) does not have linear representation due to the parameters,
the system which is subject to identification can be presented in the form of a parallel
structure [3,4,5]:

˙̂x = Ax̂ + B[f̂(x̂, â) + G(a)u] + Kx̃ (19)

where vector x̂ is the estimator of the state vector x, f̂(x̂, â) is the estimator of non-
linear functions appearing in equation (17). In equation (19) vectors u and x̃ are not
simultaneously known. After computational algorithm, parameters which appear
in dynamic equations have been received. It is an example of off–line identification.
Taking into consideration the estimation error of the state vector in the form x̃ =
x − x̂ and subtracting equation (19) from equation (17), the description of the
identification unit in the errors space has been received:

˙̃x = AH x̃ + B[f̃(x, x̂, a, â) + G(a)u] (20)

where AH = A−K, and matrix K has been so projected that characteristic equation
of matrix AH should be strictly stable.

f̃(x, x̂, a, â) = f(x, a)− f̂(x̂, â) (21)

Where as in parallel structure vectorx̂is the estimator of the state vector x, f̂(x̂, â)
is the estimator of non–linear functions appearing in equation (17).

Figure 5 Fuzzy logic system

Dependence (21) describes the differences between the algebraic expressions appear-
ing in matrix f(x, a) and estimator of the non–linear functions matrix. In order
to solve the presented identification problem fuzzy logic has been used. In the
presented identification problem, the estimator of non–linear functions appearing
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Figure 6 Fuzzy logic interference system f31

Figure 7 Fuzzy logic interference system f41
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Figure 8 Membership function for first input of the system

Figure 9 Membership function for second input
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Figure 10 Rules editor for fuzzy systems

Figure 11 Fuzzy logic system output
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in matrix f(x, a) (18) has been subject to optimization in order to fit the simulation
result to the behaviour of the real object represented by the measured kinematics
parameters illustrated in Fig. 4. To create fuzzy logic interference systems, ready
toolbox (fuzzy logic toolbox ) available in the MatlabTM environment has been used
Two fuzzy logic interference systems have been used since in matrix f(x, a) there
are two functions for approximation, while the remaining equal 0.

These fuzzy logic systems called Fuzzy Logic f 31 and Fuzzy Logic f 41 have been
modelled in MatlabTM–Simulink environment. The way of modelling has been
presented in Fig. 5.

The fuzzy logic symbol presented in the upper part of Fig. 5. has been used
in further part of this paper as a representation of this system [4,5]. With the use
of fuzzy logic editor two fuzzy logic interference systems f31 and f41 have been
created. Fuzzy logic system f31 has been presented in Fig. 6.

In the phase of designing the fuzzy logic systems, the model of Takagi–Sugeno
type has been used. As an input for f31 two angular velocities α̇1, α̇2 of particular
wheels have been assumed (dalpha1 and dalpha2 in Fig. 6). The f31 system has
a rule base and one output. The problem of modelling of these elements will be
discussed in the further part of this paper. The fuzzy logic system f41 has been
modelled in the same way as f31 system and has been presented in Fig. 7.

We are able to describe fuzzy systems in such a way that defuzzification block
transforms input space in the form X = [α̇1a, α̇1b] × [α̇2a, α̇2b] ⊂ Rn into fuzzy
set,characterized by membership function µA(x) : X → [0, 1], i.e. assigns the
level of membership to particular fuzzy logic sets. In Fig. 8. and Fig. 9. the
used membership functions in the form of Gauss function with the input ranges of
variability resulting from the range of possible to reach velocities (α̇1 ∈ [0, 30], α̇2 ∈
[0, 30]) of mobile robot have been presented.

The basic rules for the described model have been used in the form presented
in Fig. 10. Since for the particular fuzzy system inputs, six membership functions
have been used, the following manner of creating rules has been applied: each
membership function from α̇1 input with each membership function from α̇2 input.
As a result of such a rule base construction we receive 36 rules.

Figure 12 Parallel structure of AmigoBotTM mobile robot state emulator
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Figure 13 The space vector estimator, α̂1 [rad] – black, α̂2 [rad] – green, ˙̂α1 [rad/s] – blue, ˙̂α2

[rad/s] – red

Figure 14 The estimation error of the state vector, α̃1 [rad]– black, α̃2 [rad]– green, ˙̃α1 [rad/s] –
blue, ˙̃α2 [rad/s] – red
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Such an operation has been applied to both systems (f31 and f41). In the
algorithm used for computations function fminbnd has been applied. This function
finds the minimum of a function of one variable within a fixed interval; it means
that fminbnd(fun, x1, x2) returns a value x that is a local minimize of the function
that is described in fun in the interval, x1 < x < x2. In Fig. 11. fuzzy logic set
output has been presented. In the process of the defuzzification using weighted sum
method we receive one Fuzzy Logic f 31 and one Fuzzy Logic f 41 (see Fig. 5) output
variable.

Provided that we dispose of the complete state vector, we can accept the iden-
tification system in the form of state emulator in the parallel [4,5,6].

The emulator scheme mode in the MatlabTM–Simulink environment has been
presented in Fig. 12. The parallel structure presented in Fig. 12. has been used to
execute off–line identification. The result of computations in the form of the space
vector estimator has been presented in Fig. 13 and 14. We received kinematics
parameters and error.

The presented mode of dynamic motion equations identification with the use of
fuzzy logic can be applied to structures of various types, among others to parallel
structure and serial-parallel structure of a state emulator.

4. Summary and conclusions

The presented identification structure with the use of fuzzy logic allowed for receiv-
ing state vector x̂which is compatible with state vector x of the computational model
of AmigoBotTM robot. Indicator of quality calculated as the integral of the sum
of the square of errors of angular velocities of each wheel equals 0.139 for parallel
structure. The presented fuzzy sets creation mode can be used for the identification
of any mobile robots and in the process of identification of any signals. The pre-
sented offline identification mode may be used for learning fuzzy systems by neural
networks. However, the learnt fuzzy systems can be used for online identification
in control units e.g. in adaptive control.
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[6] Giergiel J., Hendzel Z. and Żylski W.: Kinematyka, dynamika i sterowanie mo-
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