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In this paper, we present asymptotic solution to a Navier–Stokes equation of von Karman
type for the flow due to a rotating disk in a porous medium. Asymptotic solutions to a
Navier–Stokes equation is given in the case of small as well as large values of the porosity
parameter β whose coefficients are obtained in closed form in terms of properly scaled
von Karman’s similarity coordinate. Straining of coordinates is used to remove secular
terms and enable to obtain expressions that can be used to determine the coefficients
of the expansions to any order. A comparison of the asymptotic solution with an exact
numerical solution for the governing nonlinear differential equations is presented.
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1. Introduction

The flow due to an infinite rotating disk is one of the classical problems in fluid
mechanics which was first introduced by von Karman [1]. The flow is a fully three
dimensional one, involving a primary (azimuthal) flow and a secondary (meridional)
flow. Von Karman formulated the problem in the steady state and used similarity
transformations to reduce the governing partial differential equations to ordinary
differential equations. Asymptotic solutions were obtained for the reduced system
of ordinary differential equations (Cochran, [2]). Their analysis was much simpler
and valuable information was gained from it. This gave the problem significant
theoretical value and invited many researchers to add to it new features. The
extension of the steady hydrodynamic problem to the transient state was done by
Benton [3]. The flow of a conducting fluid above a rotating disk in the presence of
an external uniform magnetic field was studied (El–Mistikawy and Attia, [4]; El–
Mistikawy and Attia, [5]; and Aboul–Hassan and Attia, [6]). The effect of uniform
suction or injection through a rotating porous disk on the steady hydrodynamic or
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hydromagnetic flow induced by the disk was investigated (Stuart, [7]; Kuiken, [8];
Ockendon, [9]; Attia, [10], Attia, [11]; and Attia, [12]).

In this paper, we study von Karman rotating disk problem of a steady flow of
a viscous incompressible fluid through a porous medium. The flow in the porous
medium deals with the analysis in which the differential equation governing the
macroscopic fluid motion is based on the Darcy’s law which accounts for the drag
exerted by the porous medium (Joseph et al., [13]; Ingham and Pop, [14]; and Khaled
and Vafai, [15]). The porosity effect is to restrain the motion in the azimuthal and
radial directions by imposing resisting force components that are proportional to
the corresponding velocity components and the porosity parameter β.

In particular, we study this problem in the limit as β tends to zero or infinity.
Straining the coordinate ζ is used to remove this difficulty (Nayfeh, [16]). Expres-
sions that can be used to determine the coefficients of the expansions to any order
are obtained. Using finite differences and linearization, an exact numerical solution
for the governing nonlinear differential equations is represented which takes into
account the asymptotic boundary conditions. The results of the asymptotic solu-
tion are compared with that of the exact numerical solution to check its range of
validity. Sample results are presented.

2. The Governing Equations

We study the steady laminar flow of an incompressible viscous fluid of density ρ
and kinematic viscosity υ. The motion is due to the rotation of an insulated disk of
infinite extent about an axis perpendicular to its plane with constant angular speed
ω through a porous medium where the Darcy model is assumed (Khaled and Vafai,
[15]). Otherwise the fluid is at rest under pressure p∞. A schematic diagram for
the problem is shown in Fig. 1. The equations of steady motion are given by
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where u, v, w are velocity components in the directions of increasing r, ϕ, z respec-
tively, p is denoting the pressure, µ is the coefficient of viscosity, ρ is the density of
the fluid and K is the Darcy permeability (Khaled and Vafai, [15]).

The rotational symmetry suggests the use of cylindrical polar coordinates so
that the flow variables (the radial, azimuthal, and normal velocity component u,
v, and w, and the pressure p) be dependent only on the radial distance r and the
normal distance z. Following von Karman [1] who discovered the self–similar nature
of the problem, we introduce the similarity variables

ζ =
z√
ν/ω

(5)
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measuring distances in the normal direction,

F (ζ) =
u

rω
(6)

G(ζ) =
v

rω
(7)

H(ζ) =
w√
rω

(8)

representing the radial, azimuthal, and normal velocity components, and

Q(ζ) =
(p− p∞)

ρων
(9)

representing the pressure.
Using von Karman transformations given by Eqs (5–9), the governing continuity

and NavierStokes equations (1–4) reduce to the following set of ordinary differential
equations

H ′ + 2F = 0 (10)
F ′′ −HF ′ − F 2 + G2 − βF = 0 (11)
G′′ −HG′ − 2FG− βG = 0 (12)
H ′′ −HH ′ −Q′ − βH = 0 (13)

where the primes denote differentiation with respect to ζ, and β = ν/Kω is the
porosity parameter, and K is the Darcy permeability. The terms including β repre-
sent the Darcy force exerted by the fibers of the porous media ((Joseph et al., [13],
Ingham and Pop,[14], Khaled and Vafai, [15]). Equations (10–16) are supplemented
with the no–injection and no–slip conditions

H(0) = 0 (14)
F (0) = 0 (15)
G(0) = 1 (16)

and the far–field conditions

ζ →∞ F → 0 (17)
G → 0 (18)
Q → 0 (19)

3. The Numerical Solution

The system of nonlinear ordinary differential equations is solved by a two–point
finite difference technique. We write this system as a set of first order equations
by introducing new independent variables and the resulting nonlinear equations are
solved iteratively. The linearized equations have to be solved in the infinite domain
0 < ζ < ∞. A finite domain 0 < ζ < ζf is used instead with ζf chosen large enough
to ensure that the solutions are not affected by imposing the asymptotic conditions
at a finite distance. The computational domain is divided into (I) intervals where (I)
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is the number of ζ divisions. Finite difference equations relating these variables are
obtained by writing the linearized equations at the midpoint of the computational
cell and then replacing the different terms by their second order accurate central
difference approximations. Extrapolation to zero step size has been performed to
produce fourth order accurate solutions.

4. Asymptotic solution for small β

Making use of Cochran’s analysis [2] of von Karman problem, we recast problem
(10–20) in terms of Cochran’s variables

η = ζ/
√

c (20)
h(η) = 1 + H

√
c (21)

f(η) = Fc (22)
g(η) = Gc (23)
q(η) = Qc (24)

where Cochran’s parameter c is such that
√

c = −1/H(∞) (25)

Note that
√

c is real since H(∞) is negative representing an inflow toward the disk
to compensate for the fluid that is expelled radially by the centrifugal effect.

The governing equations become

h′ + 2f = 0 (26)
f ′′ − (h− 1)f ′ − f2 + g2 − cβf = 0 (27)
g′′ − (h− 1)g′ − 2fg − cβg = 0 (28)
h′′ − (h− 1)h′ − q′ − βc(h− 1) = 0 (29)

where, now the primes denote differentiation with respect to η.
The boundary conditions take the form

h(0) = 1 (30)
f(0) = 0 (31)
g(0) = c (32)

η →∞ : h → 0 (33)
f → 0 (34)
g → 0 (35)
q → 0 (36)

where (33) is implied by (21, 25). After Eqs. (26)–(28) have been solved, pressure
q from (29) can be obtained by using the condition on q from (30)–(36) and it is
given by

q = h′ − 2−1h2 + h− βc

η∫

0

(h− 1)dη
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The terms including β in Eqs (26–36) are those expressing the porosity effect. By
setting β=0 we arrive at von Karman’s problem (written in Cochran’s variables).
For small β the terms cβf and cβg cause a perturbation O(β) to von Karman’s
problem. The asymptotic solution to the new problem (26–36) would, therefore, be
expected to have, in the leading order, von Karman’s solution and to proceed in
powers of β.

We introduce straightforward expansions of the form (summations without up-
per bounds run indefinitely)

() =
∑

i=0

()i βi (37)

for h, f , g, and q, while the expansion for c takes the form

{} =
∑

i=0

{}i βi (38)

Note that while ()i’s depend on η, the {}i’s are constants. Substituting in Eqs
(26–36) and equating the coefficients of like powers of β result in a hierarchy of
problems, the zeroth order one of which is von Karman’s problem:

h′o + 2fo = 0 (39)
f ′′o − (ho − 1)f ′o − f2

o + g2
o = 0 (40)

g′′o − (ho − 1)g′o − 2fogo = 0 (41)
ho(0) = 1 (42)
fo(0) = 0 (43)
go(0) = co (44)

η →∞ : ho → 0 (45)
fo → 0 (46)
go → 0 (47)

Cochran’s asymptotic expansions as η →∞ takes the form

()o =
∑

j=1

()o,j e−jη (48)

Obviously, these expansions satisfy the farfield conditions (17–19). Substituting
in Eqs (26–29) and equating the coefficients of e−jη, recurrence relations relating
the ()o,j ’s in terms of two unknown coefficients fo,1 and go,1. Cochran determined
these two coefficients by patching the asymptotic solution (48) to the asymptotic
solution as η → 0 at an intermediate–point, and thus obtained a solution of problem
(39–47). Benton [3], on the other hand, determined the two coefficients by forcing
the asymptotic solution (48) to satisfy (42, 43) and thus avoided the problems of
patching and obtained an improved solution.

When Benton’s method is extended to the higher order problems obtained by
introducing expansions (37) into Eqs (26–36), it is found that expansions of the
form

()i =
∑

j=1

()i,j e−jη (49)
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are not adequate for representing the solution of the i–th problem (when i ≥ 1).
Rather, expansions of the form

()i =
i∑

k=0


∑

j=1

()i,j,k e−jη


 ηk (50)

for h, f , g, and q, with expansion (38) for c, are to be used.
However, the terms including e−jηηk for k > 0 are secular. They render the

expansions non–uniformly valid as η →∞. To overcome this difficulty, straining of
the coordinate η is used. A strained coordinate n defined by

n = sη (51)

is introduced and the straining function is chosen such that no secular terms appear.
The governing Eqs (26–36) become

sh′ + 2f = 0 (52)
s2f ′′ − s(h− 1)f ′ − f2 + g2 − cβf = 0 (53)
s2g′′ − s(h− 1)g′ − 2fg − cβg = 0 (54)

where the primes denote differentiation with respect to n, while the boundary con-
ditions (49, 50) remain unchanged.

Transformation (51) is a near identity transformation with the straining func-
tion s having unity as a leading term. This leads again to von Karman’s problem as
a leading order approximation to the problem defined by Eqs (52–54). Its solution
using Benton’s method has been described above. One can now proceed to solve
the next problem O(β) using Benton’s method determining, at the same time, the
O(β)–term in s that removes the secular behaviour and the process can, theoreti-
cally, be repeated with higher order problems. However, the analysis becomes more
and more un–widely. Fortunately, the first few terms in the expansions show a sys-
tematic development that is exploited here to make possible the determination of
any number of terms in the expansions. The expansions for h, f , g, and q assume
the form

()i =
∑

i=0


∑

j=1

()i,j e−jn


βi (55)

while c and s have expansions of the form (38).
The usual procedure of substituting and equating the coefficients of e−jnβiis

carried out. It leads to the following relations between the coefficients of the expan-
sions, that guarantee satisfaction of the governing Eqs (52–54) and the conditions
as n →∞.

so = 1 (56)
s1 = co (57)

si = ci−1 −
i−1∑

l=1

slsi−l, i ≥ 2 (58)
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For j ≥ 2 and i ≥ 1

fo,j =
1

j2 − j

j−1∑
m=1

(fo,mfo,j−m − go,mgo,j−m −mfo,mho,j−m) (59)

fi,j =
1

j2 − j

(
−

i∑

l=1

(
(j2 − j)sl + (j2 − 1)cl−1

)
fi−l,j

(60)

+
i∑

l=0

j−1∑
m=1

(
fl,mfi−l,j−m − gl,mgi−l,j−m −mhi−l,j−m

l∑
u=0

sufl−u,m

))

go,j =
1

j2 − j

j−1∑
m=1

(2fo,mgo,j−m −mgo,mho,j−m) (61)

gi,j =
1

j2 − j

(
i∑

l=0

j−1∑
m=1

(
2fl,mgi−l,j−m −mhi−l,j−m

l∑
u=0

sugl−u,m

)

(62)

−
i∑

l=1

(
(j2 − j)sl + (j2 − 1)cl−1

)
gi−l,j

)

For j ≥ 1

ho,j =
2fo,j

j
(63)

hi,j =
2fi,j

j
−

i∑

l=1

slhi−l,j , i ≥ 1 (64)

co =
∑

j=1

go,j (65)

For i ≥ 0,
ci =

∑

j=1

gi,j , i ≥ 1 (66)

The satisfaction of the conditions at n=0 gives the following relations.
∑

j=1

hi,j = 1, i = 0 (67)

∑

j=1

hi,j = 0, i ≥ 1 (68)

∑

j=1

fi,j = 0, i ≥ 0 (69)

For every i, starting with i=0, we perform the following calculations, in the given
order, noting that each calculation uses values obtained in previous ones.
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(a) Calculate si using Eqs. (56–58).

(b) Perform the following iterative scheme to calculate hi,j , fi,j and gi,j for j=1
to j = J where J is a cutoff limit on the number of j–terms that is chosen high
enough in order not to affect the accuracy.

1. Guess starting values for fi,1 and gi,1 then calculate the starting value for hi,1

using Eqs (63, 64).

2. For every j, starting with j=2, calculate fi,j using Eq. (51) and gi,j using
Eqs. (61, 62), then hi,j using Eqs. (63, 64).

3. Calculate new values for hi,1, fi,1, and gi,1 so as to satisfy Eqs (61, 62), using
the following relations that are obtained by manipulating Eqs (51), (55), and (61,
62). Note that the values of hi,1, fi,1, and gi,1 appearing in the right–hand sides
are old values.

ho,1 = 1−
J∑

j=2

ho,j (70)

fo,1 = 0.5ho,1 (71)

go,1 =
fo,1 +

J∑
j=3

fo,j − 0.5f2
o,1

go,1
(72)
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For i ≥ 1

hi,1 = −
J∑

j=2

hi,j (73)

hi,1 = 0.5

(
hi,1 +

i∑

l=1

slhi−l,1

)
(74)

gi,1 =
1

2go,1


2fi,1 + 2

J∑

j=3

fi,j−
i−1∑

l=1

gl,1gi−l,1

(75)

+
i∑

l=0

(
fl,1fi−l,1 −

l∑
m=0

smfl−m,1

)
hi−l,1 −

i∑

l=1

(2sl + 3cl−1) fi−l,2

)

4. Check for convergence: i) if reached, go to (c) else go to 2.
(c) Calculate ci using Eqs (65, 66).
Calculations based on the numerical procedure described above were performed

in double precision arithmetic. A value of 50 was used for the cutoff number J , for
all values of i considered. The starting values for (fi,1, gi,1) were taken to be (1,1)
when i=0 and (0,0) when i ≥ 1. Convergence was considered reached when the
variation in each of fi,1, and gi,1 in two consecutive iterations did not exceed 10−7.

Figs 2–4. show the variation of the velocity components with the vertical coor-
dinate ζ for different small values of β. Three–term expansion in powers of β has
been calculated and the results agree with those obtained by the numerical solution.
The figures show the stabilizing effect of the porosity of the medium. It is seen that
as β increases the flow becomes more rigid with the velocity components dimin-
ishing over most of the domain. The region close to the disk where fast changes
take place also contracts in size as β grows. In addition, comparison between the
figures shows that for the same step of increase in β, the reduction in the vertical
velocity component H is higher than that in the radial component F and much
higher than that in the azimuthal component G. This is due to the fact that, the
centrifugal effect is the source of the radial motion which is the source of the vertical
motion. Hence the reduction in the azimuthal velocity affects the radial velocity
which in turn affects the vertical velocity. In addition, Figs 2. and 3. show that the
azimuthal and radial velocity components reach the far field conditions at a finite
distance from the disk that decreases with increasing β. Also, Fig. 4. shows that
the vertical velocity component reaches a saturated value at a finite distance from
the disk.

Figures 5–7. show the variation of the azimuthal wall shear γ, radial wall shear
τ , and the vertical velocity component at infinity H∞ in the range 0 ≤ β ≤ 1.
Comparison between the numerical solution, the two–term and the three-term ex-
pansions is shown. The figures show that the three solutions are very close to each
other for small β which proves the validity of the extrapolated numerical solution.
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Figure 1 Azimuthal velocity profile for different values of β

Figure 2 Radial velocity profile for different values of β
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Figure 3 Variation of the azimutal wall sher with β

Figure 4 Variation of the radial wall sher with β
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Figure 5 Variation of the vertical velocity at infinity with β

Figure 6 Radial velocity profile for different values of β
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It shows also that the two–term expansion is sufficient to obtain accurate solution
within that range of β. As β increases differences between the three solutions appear
and addition of new terms of the expansions prove necessary. Comparison with the
numerical solution shows the validity of the three–term expansion up to values ofβ
close to unity. Better accuracy can be obtained by adding new terms using the
numerical procedure discussed before. The three solutions are closer to each other
in Fig. 5. than they are in Figs 6. and 7. This can be attributed to the fact that
the flow velocity in the azimuthal direction and the corresponding flow variables (as
the azimuthal wall shear) do not vary greatly with changes in β as the radial and
vertical velocities are doing (see Figs 2–4.). It should be noted that the coincidence
of the two–term expansion and the extrapolated numerical solution shown in Fig.
5. is obviously accidentally and may be explained by the weak dependence of the
azimuthal wall shear on β. The addition of the third term moves the series solution
away from the numerical solution. In Fig. 7., the two–term expansion leads to
positive vertical velocity component for values of β near unity which is physically
unacceptable. Three–term expansion does not face this problem.

Fig. 5. shows that the increase in the value of β leads to an increase in the
magnitude of the azimuthal wall shear γ. Thus as β increases the applied torque
required for prescribed steady state velocity distribution is increased. Figure 6 in-
dicates that, the increase in β leads to a decrease in the vertical velocity component
at infinity. These results are due to the rigidity acquired by the fluid as a result of
the influence of the porosity of the medium.

5. Asymptotic solution for large β

To determine the asymptotic solution of the flow as β goes to infinity, we first scale
the flow variables with β in a suitable way that expresses their correct limiting
behavior described above. The fact that G assumes a value of unity at the surface
irrespective of β, guarantees that G = O(β0). A quick study of Eq. (12) shows that
for the diffusion term G′′ to balance the porous force term βG, the coordinateζwould
have to be O(β

−1/2
). The two corresponding terms F ′′ and βF in Eq. (10) have the

same order O(βF ). However, since the radial motion is driven by the centrifugal
effect expressed by G2, it is expected that βF = O(G2), leading to F = O(β−1).
Further, H = O(β−3/2), for the two terms of the continuity Eq. (10) to be of the
same order. Finally, Eq. (13) implies Q = O(β−1).

We introduce new variables ζ̃, F̃ , G̃, H̃, Q̃ defined as follows

ζ = β−1/2ζ̃ F = β−1F̃ G = G̃ H = β−3/2H̃ Q = β−1Q̃ (76)
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in terms of which the flow equations and boundary conditions become

H ′ + 2F = 0 (77)
F ′′ + F = −G2 + β−2(HF ′ + F 2) (78)
G′′ + G = β−2(HG′ + 2FG) (79)
Q′ = H ′′ − β−2HH ′ −H (80)

ζ →∞ : F → 0 (81)
G → 0 (82)
Q → 0 (83)
F (0) = 0 (84)
G(0) = 1 (85)
H(0) = 0 (86)

where the tildes have been dropped. This suggests straightforward expansions for
F̃ , G̃, H̃, Q̃ that proceed in powers of β−2. However, these expansions are found
to contain secular terms; e.g., the expansion for G̃ is

G̃ = exp(−ζ) + β−2 {exp(−ζ)− exp(−3ζ)− 4ζ exp(−ζ)} /24 + ..... (87)

Terms of the form ζ exp(−ζ) have secular behavior as ζ →∞. To avoid this behavior
and to obtain uniformly valid expansions we use the method of strained coordinates
(Nayfeh, [16]). We introduce a strained coordinate

T = Dζ (88)

and choose the straining function D that eliminates the secular terms. The following
two–term expansions are obtained. (The expansions for Q̃ can be deduced from that
for H̃).

D ≈ 1 + β−2/6 (89)
G̃ ≈ E + β−2

{
E − E3

}
/24 (90)

F̃ ≈ {
E − E2

}
/3 + β−2

{−53E + 10E2 + 45E3 + 2E4
}

/1080 (91)

H̃ ≈ {−1 + 2E − E2
}

/3

+β−2
{
127− 226E + 70E2 + 30E3 + E4

}
/1080 (92)

where E = exp(−T ).

Determination of further terms becomes more and more complicated. However,
from the first few terms, we can detect general forms for the expansions that can
help determine as many terms as we need with the aid of the computer. These



Asymptotic Solution for Rotating Disk ... 133

forms are

D =
∞∑

m=1

β−2(m−1)dm (93)

G̃ =
∞∑

m=1

{
β−2(m−1)

2m−1∑
n=1

gnmEn

}
(94)

F̃ =
∞∑

m=1

{
β−2(m−1)

2m∑
n=1

fnmEn

}
(95)

H̃ =
∞∑

m=1

{
β−2(m−1)

2m∑
n=0

hnmEn

}
(96)

with the requirements

2m−1∑
n=1

gnm = δ1m (97)

2m∑
n=1

fnm = 0 (98)

2m∑
n=0

hnm = 0 (99)

where δ1m is the Kronicker delta. These requirements guarantee the satisfaction of
the surface conditions (84–86). The conditions (81–83) valid as T →∞ (ζ →∞) are
satisfied automatically on account of the exponentials appearing in the expansions.
Substituting the expansions (93–96) in Eqs. (77–80), and equating the coefficients
of like terms, we obtain algebraic equations whose solutions for the d, g, f , h’s are
given in Appendix A. When expansions (77–80) are used to calculate F , G, and
H, the results are found to coincide, within plotting accuracy, with the numerical
solutions for β as low as 1.

6. Conclusions

The limiting behaviour of the flow due to a rotating disk through a porous medium
as the porosity parameter β tends to zero or infinity has been established and the
expansions of the flow variables have been found to proceed in powers of β or in
powers of β−2, respectively. Straining of coordinates was used to remove a secular
behavior and lead to a systematic determination of the expansion coefficients. Then,
it becomes possible to produce the expansion to any order. Comparison with an
exact numerical solution for the governing equations proved the validity of the
expansions even for moderate values of β.
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Appendix A

The expressions for the d, g, f , h’s are

d1 = 1.0 (100)
g11 = 1.0 (101)
f11 = 1/3, f21 = −1/3 (102)
h01 = −1/3, h11 = 2/3, h21 = −1/3 (103)
For m=2,3,. . .

dm =



−

m−1∑

j1=2




j1∑

j=1

djdj1−j+1


 g1,m−j1+1 −




m−1∑

j1=2

dj1dm−j1+1




−
m−1∑

j1=1




j1∑

j=1

djh1,j1−j+1


 g1,m−j1



 /2 (104)

gnm =




−

m−1∑

j=2

(
j∑

k=1

dkdj−k+1

)
gn,m−j+1n

2 + 2
m−1∑

j=1




2j∑

j2=1

2m−2j−1∑

j3=1
j2+j3=n

fj2,jgj3,m−j




+
m−1∑

j=1

dm−j

j∑

j4=1

2j4+1∑

j2=1

2j−2j4+1∑

j3=1
j2+j3−1=n

hj2,j4gj3,j−j4+1 (−j3)





/(n2 − 1)

n = 2 → 2m− 1 (105)

fnm = {−
m∑

j=2

(
j∑

k=1

dkdj−k+1

)
fn,m−j+1n

2 −
m∑

j=1

2j−1∑

j2=1

2m−2j+1∑

j3=1
j2+j3=n

gj2,jgj3,m−j+1

+
m−1∑

j=1

2j∑

j2=1

2m−2j∑

j3=1
j2+j3=n

fj2,jfj3,m−j

+
m−1∑

j=1

j∑

j4=1

2j4+1∑

j2=1

2j−2j4+2∑

j3=1
j2+j3−1=n

hj2,j4fj3,j−j4+1(−j3)dm−j}/(n2 − 1)

n = 2 → 2m (106)

hnm = {
m∑

j=2

djdn,m−j+1(−n + 1) + 2fn−1,m}/(n− 1)

n = 1 → 2m (107)
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g1m = −
2m−1∑
n=2

gnm (108)

f1m = −
2m∑
n=2

fnm (109)

h0m = −
2m∑
n=1

hnm (110)


