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The purpose of this paper is the analysis of dynamic stability of thin–walled laminated
columns of closed rectangular cross–section, subjected to in–plane pulse loading of finite
duration. In the analysis with the FE Method the Lagrange strain tensor is assumed
and various material characteristics are applied. In the solution the shear influence is
considered according to the First Shear Deformation Theory displacement field. In the
performed analysis the influence of walls initial imperfections, pulse shape and pulse
duration on the dynamic buckling load are examined as well as the stacking sequence of
laminated walls, the orientation of principal directions of separate layers and orthotropy
ratio. The applications of some dynamic criteria are compared as well.
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1. Introduction

A variety of positive factors, especially strength–to–weight and stiffness–to–weight
ratios are the reasons of rising usage of fiber reinforced composite laminates in
many structural and engineering applications. These materials permit the designer
to tailor make the structure or components to achieve high performance structural
objectives. The composite columns or girders are subjected to various types of loads
which may cause buckling under static or suddenly applied loads. This dynamic
loading could be discrete type loading of finite duration caused also by natural
forces like wind or water in terms of solid-fluid interaction. The dynamic stability of
composite columns encompasses many classes of problems and physical phenomena,
for example parametric resonance, parametric excitation and impulse buckling.

The aim of this paper is the analysis of dynamic behavior of composite laminated
columns of closed rectangular cross–section, built of thin-walled rectangular plates
subjected to in-plane pulse loading of finite duration (Fig. 1). The analysis of dy-
namic stability of composite plated structures under in–plane pulse loading depends
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on pulse characteristic – it means pulse duration, pulse shape and magnitude of its
amplitude [9]. The dynamic impulse buckling occurs when the loading process is of
an intermediate amplitude and the pulse finite duration is close to the period of fun-
damental natural flexural vibrations. Usually the effects of dumping are neglected
in such cases [8]. The dynamic behavior of a column, consisting of rectangular
composite laminated plates, under in–plane loads involves rapid deflections growth
of walls, which are initially not flat but imperfect. There is no buckling load and
there is no bifurcation point over the loading path, as in the static case. Therefore
the dynamic critical load is defined on the basis of an assumed dynamic buckling
criterion. Very popular and most often used, adopted from shell structures to plate
columns, Budiansky–Hutchinson [7] criterion assumes that dynamic stability loss
occurs when the maximal plate deflection grows rapidly with the small variation
of the load amplitude. The other one, Petry–Fahlbusch [17] failure criterion states
that a dynamic response caused by a pulse load is defined to be dynamic stable
if the condition that the effective stress σeff is not greater than the limit stress
σL is fulfilled at every time everywhere in the structure. Ari Gur and Simoneta
[3] analyzed laminated plates behaviour under impulse loading and formulated own
criteria of dynamic buckling, two of them of collapse–type conditions. There are
publications [2],[8],[19] which deal with dynamic stability of columns but the beam
model is there employed in the stability analysis. The papers [1],[5],[6],[16] are
some examples of dynamic stability analysis with application of different methods
and tools in solution of shell structures but there are very few works which were
published of dynamic behaviour of thin-walled plated composite laminated columns
[8]. In [9] the dynamic response of thin orthotropic plates subjected to in–plane
pulse loading were analyzed. Mania and Kowal–Michalska [14] considered isotropic
columns of platted walls under axial pulse compression, especially the influence of
cross–section shape (square versus rectangle) and pulse shape (rectangle, triangle
and sinus) on dynamic critical load value. Recently in [11] some results of investiga-
tions of orthotropic thin walled columns were presented. The influence of strain rate
effect on the columns response in the framework of the incremental flow theory was
considered: in [12] for isotropic materials, whereas in [15] for orthotropic column
walls.

This paper thereby deals with thin–walled composite plate model of column
axially loaded by compression impulse of finite duration.

2. Solution of the problem

The subject of the study is the short thin–walled column commented above and
presented in Fig. 1. The walls are multi–layered laminate with different stacking
sequence, composed of orthotropic laminas, which principal axes of orthotropy -
arbitrary orientated with respect to column edges, are defined by the lamination
angle θ ∈< 0o, 90o >. The material of lamina is modeled as linear elastic however
in some cases a bilinear characteristic is employed for calculations in elastic–plastic
range. It is assumed that the loaded edges of the column are simply supported and
remain straight and mutually parallel during loading. The shape of walls’ initial
imperfections fulfill the boundary conditions along all edges of component plates
and correspond directly to the first static buckling mode. The ratio of imperfection
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amplitude to the thickness of column walls (all walls are assumed of equal thickness)
was in the range (0.01, 0.1). The column was assumed a thin–walled structure with
walls of equal thickness therefore the maximal in–plane dimension of wall (length or
width) to its thickness was taken equal to max{l/h1, l/h2, b1/h1, b2/h2} = 1/100.

Figure 1 Geometry, dimensions and loads of multilayered column

The transient analysis was performed for pulse of rectangular and sine shapes with
time duration Tp equal to or close to the period of fundamental natural flexural
vibrations T . For each considered structure this period was obtained from modal
analysis (eigenvalue problem). Zero initial conditions were assumed for velocity and
initial imperfection with chosen amplitude was applied as initial deflections.

The presented solution was obtained on the basis of the first shear deformation
theory (FSDT ). The displacement field was assumed as follows:

u(x, y, z, t) = u0(x, y, t) + zϕx(x, y, t)
v(x, y, z, t) = v0(x, y, t) + zϕy(x, y, t)
w(x, y, z, t) = w0(x, y, t)

(1)

where u0, v0, w0 are the displacement components along the coordinate directions
of a point on the midplane (z = 0) and ϕx, ϕy denote rotations about the y and
x axes, respectively [13]. In order to determine both out–of–plane and in–plane
geometric plate behaviour under dynamic loading, the strain tensor with all terms
present (Green–Lagrange strain tensor) for in–plane deformation was employed:

εxx = u0,x + 1
2

(
u2

0,x +v2
0 ,x +w2

0,x
)

+ zϕx,x
εzz = 0
εyy = v0,y + 1
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0,y
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+ zϕy,y
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γxy = 2εxy = u0,y +v0,x +u0,x u0,y +v0,x v0,y +w0,x w0,y +z (ϕx,y +ϕy,x)

(2)
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The preceding strains in equation (2) can be divided into the membrane strains{
ε(0)

}
and the flexural strains

{
ε(1)

}
, what can be written in a shorter form as the

matrix sum:
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The Euler–Lagrange equations obtained from the Hamilton’s principle for a single
column wall have the form:

−Nxx,x−Nxy,y − (Nxxu0,x) ,x− (Nyyu0,y) ,y − (Nxyu0,x) ,y − (Nxyu0,y) ,x

+I0u0,tt +I1ϕx,tt = 0
−Nxy,x−Nyy,y − (Nxxv0,x) ,x− (Nyyv0,y) ,y − (Nxyv0,x) ,y − (Nxyv0,y) ,x

+I0v0,tt +I1ϕy,tt = 0 (4)
−Qx,x−Qy,y − (Nxxw0,x) ,x− (Nyyw0,y) ,y − (Nxyw0,x) ,y − (Nxyw0,y) ,x

+q + I0w0,tt = 0
−Mxx,x−Mxy,y +Qx + I1u0,tt +I2ϕx,tt = 0
−Mxy,x−Myy,y +Qy + I1v0,tt +I2ϕy,tt = 0

In (4) Nxx, Nyy, Nxy are resultants of membrane force, Mxx,Myy,Mxy are mo-
ment resultants, Qx, Qy denote the transverse force resultants [13], I0, I1, I2 are the
mass moments of inertia defined in (5) and Nxx,x is used instead of ∂Nxx

∂x notation.
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Generally, for complex geometry, arbitrary boundary conditions and/or nonlineari-
ties exact (analytical or variational) solution to equations (4) cannot be developed.
Therefore a finite element method was chosen to solve the problem. After some
transformations of presented above set of equations (4) (integrating by parts, rear-
ranging etc) the weak form of equations of motion, associated with the FSDT could
be obtained. The explicit expression of equation (4) can be found in [13]. Finally
after approximation of the primary variables u0, v0, w0, ϕx, ϕy with interpolation
Lagrange functions of the form:
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}
(6)

the FEM model of analyzed multilayered column was developed. Equation (6) is
defined in s, t, r local coordinates system and ui is motion of node i of a four
node quadrilateral Mindlin-type shell element, applied for the meshing. Ni is for
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shape function, [a] and [b] are unit vectors of the reference coordinates and θx,i; θy,i

are rotations with respect to [a] and [b] vectors, respectively [20]. To perform the
calculations for some chosen cases the ANSYS software was employed [20].

The column of a shape of a four wall cubic structure was meshed with SHELL181,
four nodes isoparametric nonlinear multilayered element (Fig. 2). It possesses six
degrees of freedom: three displacements along the axes of local coordinate system
and three rotations around these axes, respectively. However the in–plane rotation
around the axis normal to the element surface is controlled in Allman’s sense [8].
The uniformly distributed mesh was applied with up to 10000 quadrilateral elements
[4] what allowed to analyze even the high frequency modes in dynamic response
of the column, giving acceptable time of computations. The simply supported
boundary conditions of S2 type [10] were chosen for the loaded edges of the column
and the uniform compression of impulse type of finite duration, parallel to the walls,
dynamically loaded the structure [11].

Figure 2 Meshed column model in reference coordinate system (dimensions and loading are
repeated as well)

The critical conditions for dynamic buckling were determined on the basis of
Budiansky–Hutchinson criterion [7] and the quadratic interaction failure criterion
reported by Tsai and Hahn [18]. According to Tsai–Wu theory the 3–D strength
ratio also called IF failure index, is defined as [20]:

IF =


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(7)
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with (in contracted notation):
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In equations (8) Fic/t are strength of lamina in i = 1,2,3 principal direction, in
tension and compression respectively, where cj , j = 4,5,6 are the Tsai–Wu coupling
coefficients, taken by default equal to –1 [20].

3. Numerical results

Some chosen results of all performed numerical calculations are presented in dia-
grams. The material properties of considered unidirectional composites are collected
in Table 1.

Table 1
Property Unit Carbon/epoxy Boron/epoxy
E1 GPa 133.860 137.900
E2 = E3 GPa 7.706 8.963
G12 = G13 GPa 4.306 7.102
G23 GPa 2.760 6.205
ν12 = ν13 0.301 0.250
ν23 0.396 0.450
ρ kg/m3 1520 1450

It is seen from the Table 1 that the composite strength properties was taken
as for transversely isotropic material what is common practice for fiber reinforced
composites [18].

In the performed analysis for the first time occurred the highest deflection of
column walls was registered. Usually it took place during the acting pulse load or
immediately after it has been released. The difference was connected with the time
duration of pulse load and pulse amplitude [8]. Unloaded structure after impulse
time vibrated freely what is presented in phase diagrams for pre–buckling DLF
amplitude (Fig. 3) and post–buckling DLF value (Fig. 4). The introduced dynamic
load factor - DLF is a quotient of pulse load amplitude to the static buckling load
for perfect structure. The static buckling load was determined in the first step of
performed investigation, it is in linear eigenbuckling analysis.

Recalling the laminate constitutive equations [18], which relate the force and
moment resultants to the strains:

{ {N}
{M}

}
=

[
[A] [B]
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]{ {
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}
{
ε(1)

}
}

(10)



Membrane–Flexural Coupling ... 143

-0,4 -0,2 0,0 0,2 0,4

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

v y
[m

/s
]

uy_2 [mm]

DLF = 0.6
rectangle
Tp = T

t = 8 * T

Figure 3 Phase diagram for rectangular pulse and different DLF value: DLF = 0.6
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we can distinguish three matrices: Aij which is called extensional stiffness, Dij

the bending (flexural) stiffness and Bij the bending–membrane coupling stiffness.
For some chosen cases of multi–layered laminates made of plies of equal thickness,
considered in this paper, coefficients of matrix [B] have non zero values. Especially
for cross–ply antisymmetric laminate non zero are B11 and B22 elements, whereas for
antisymetric angle–ply laminate, B16 and B26 coefficients have non–trivial values.
These coefficients are responsible for the coupling effects although for balanced
and/or symmetric stacking they vanished. In some applications the membrane–
coupling effect meets the design requirements but in buckling phenomena – in statics
and dynamics – influences the critical load and changes the response.
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Figure 5 Deflection as a function of impulse amplitude

The study of effect of stacking sequence in cross–ply unsymmetric laminate on
dynamic response is presented in Fig. 5. For comparison reasons the thickness of
all column walls was assumed unchanged and the number of plies was increased.
In this study boron–epoxy composite lamina mechanical properties were used in
calculations. The lay–up influences the flexural stiffness of the wall and in limit of
infinite number of plies tends to orthotropic, square–symmetric solution. For high
number of plies the critical DLF value does not depend of plies number. For higher
amplitudes of dynamic pulse load (DLF greater than 3) the change in dynamic
buckling mode is observed, from imperfect one half-wave shape in dynamic response
three half–waves deflection of walls occurred.

Comparing the dynamic critical loads for laminates used in above considerations,
with critical loads values obtained for them in static analysis, one can observed the
same range of values for both cases. Although for low number of layers (up to 8)
the critical dynamic loads are visibly higher (even 12% for 4 layers column wall)
than those for static but this effect diminishes when the number of layers increases.
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Figure 6 Comparison of buckling loads for static and dynamic cases, for cross-ply antisymetric
laminates, rectangular pulse
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For multilayered composites, mean the number of layers NL is greater than 16, in
practice, both dynamic and static critical loads are of the same value. In Fig. 6 the
buckling loads are related to the minimal critical load (in static and dynamic load-
ing) obtained for columns with two–layered composite walls of the same thickness.
Introducing the definition of orthotropy ratio as a quotient of Young’s modulus in
composite plane with E1 in fiber direction and E2 in direction perpendicular to
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fibers, which coincides with principal orthotropy direction as well:

O R =
E1

E2
(11)

and conducting appropriate numerical calculations, the anisotropy effect in col-
umn dynamic response can be analyzed. The results of these calculations for 20
layers cross–ply antisymetric carbon–epoxy laminate with the same lamination an-
gle, present the graphs in Figure 7. Curves for all otrhotropy ratio grater than 10,
for dynamic load factor DLF value up to 2.5 show little differences. The dashed
rectangle in Fig. 7 interprets the critical range of DLF according to Budiansky–
Hutchinson criterion [7], [8]. However, considering each line of dynamic response
as a separate discrete function and determining the second derivatives for it (for
example with Finite Difference method), the deflection point can be found [13].
Its abscissa gives the numerical value for critical dynamic load factor for material
with given orthotropy ratio. It is obvious that this value is located in the marked
period in Fig. 7. Among the engineering applications of fiber reinforced compos-
ites for most cases the orthotropy ratio is grater then 10 so it could be stated that
CFRP are less sensitive to own anisotropy in dynamic response history. The maxi-
mal deflections of column walls for increasing orthotropy ratio are lower comparing
with deflections for column with equal moduli in wall plane what of course is con-
nected with increased stiffness. In connection with the orthotropy sensitivity and
deflections, the analysis of boron–epoxy column gave similar conclusions.

The influence of membrane–flexural coupling on buckling load of angle-ply lam-
inate plate was analyzed in [10]. In Figs 8–9 results of analogous but dynamic
investigation for rectangular impulse loading with Tp = T , for column of carbon–
epoxy walls is presented. Tp denotes time of acting pulse load equal to time T –
it is a period of fundamental vibrations. According to Budiansky–Hutchinson cri-
terion the highest critical value of dynamic load factor (DLF cr) was obtained for
[–45/45]2A stacking, similarly as for static loading. However the relation to uni-
directional fiber orientation is ca 40% for dynamic response, while only 26% for
static case. The plot of deflection for the case when the dynamic load amplitude
for different lay–ups is related to buckling load of [0/0]2A laminate (Fig. 9), shows
the difference for [–90/90]2A walls. This is due two half–waves buckling mode which
was applied as initial imperfection for this stacking and comparatively low stiffness
due to perpendicular on–axis orientation.

In the response of column with [–60/60]2A stacking the change in buckling mode
is connected with the transition from initial two half–waves into three half–wave
deflection of the column wall. It occurred for amplitudes of pulse loading higher
than DLF = 1.8.

For angle–ply antisymetric laminates the range of critical dynamic loads is visi-
bly wider than those for static buckling (Fig. 10). Where the static buckling loads
for the orthotropy directions orientated in angles 30÷60 degrees are practically the
same, those for impulse loading differ in more than 14%. Also the total range of
critical dynamic loads is 10% wider than static buckling loads range. The critical
loads for impulse loading were determined with Budiansky–Hutchinson criterion
application.
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[0/0]2A solution

For both cases the load values were normalized to critical loads (static and dynamic)
obtained for column with walls of [90/90]2A lay–up, which were the lowest loads.
As it was mentioned earlier in dynamic buckling analysis none buckling–bifurcation
load can be determined and bifurcation point as well. The dynamic response history
has to be analyzed with incorporation of arbitrary chosen criterion to establish the
critical dynamic load. The well–known from literature criteria were referenced in
the introduction. It is interesting to compare the results of their application in
finding critical dynamic load. As an example in Fig. 11, the results of calculations
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for angle–ply laminates are presented, where both Budiansky-Hutchinson and Tsai-
Wu criteria were employed. The last one was applied according to Petry–Falhbusch
approach for orthotropic materials. Although the membrane–flexural coupling is not
present in symmetric angle–ply multi–layered laminate, their results are included
for comparative study. The range of critical values of dynamic load factor obtained
with application of Budiansky–Hutchinson criterion is indicated by the left, lower
dashed rectangle. Those critical values determined with (7) Tsai–Wu stress ratio
(failure index IF ) application are marked by right, higher and slender rectangle. The
values for two ranges differ almost twice. One can consider Budiansky–Hutchinson
criterion as more conservative as relate to Tsai–Wu/Petry–Falhbusch criterion but
Budiansky–Hutchinson criterion is generally in a good agreement with Ari Gur–
Simoneta and not mentioned previously Volmir criteria [8]. It can be assessed as
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safer than Tsai–Wu or Petry–Fahlbusch criterion which is rather of failure type,
and in such case it should be assumed that the material is not fully exploited even
for plated structures which have stable postbuckling branch.

3.1. Conclusions

In the paper the representative results of dynamic buckling analysis of thin–walled
laminated columns under impulse compression were presented. The plated walls
of columns were made of fiber reinforced composites. Different layers architecture
of FRP type composites were analyzed in order to assess their dynamic behav-
ior. The special emphasis has been placed on the consideration of the effect of
membrane–flexural coupling. The numerical calculations were obtained with Finite
Element Method and ANSYS software package applications. The results of carried
out analyses confirm the sensitiveness of the column dynamic response on the ini-
tial imperfections, pulse shape [8], [12] (and pulse duration not presented in the
paper) on the dynamic buckling load as well as the stacking sequence of laminated
walls, the orientation of principal directions of separate layers and their influence
on the dynamic critical load value. In the case of cross–ply antisymetric laminates
with high number of plies the critical DLF value does not depend on plies number.
Also the rising orthotropy ratio does not influence the critical DLF range. For
angle–ply antisymetric lay–up the dynamic load range is wider then in static case
but similarly the highest buckling load was obtained for lamination angle θ = 45o,
similarly for static and dynamic loading. Due to lack of bifurcation buckling load
in the dynamic analysis there is the necessity of dynamic buckling criterion usage.
The applied criterion influences the draw conclusions and DLF critical value.

The complex of the problem of dynamic stability of composite thin–walled
columns induces the need of application of different numerical technique combi-
nation to reach the solution. In the presented study it was obtained – among others
– due to FE application.
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